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Abstract

Traditionally a pursuit of large pharmaceutical companies, high-throughput screening assays are 

becoming increasingly common within academic and government laboratories. This shift has been 

instrumental in enabling projects that have not been commercially viable, such as chemical probe 

discovery and screening against high risk targets. Once an assay has been prepared and validated, 

it must be fed with screening compounds. Crafting a successful collection of small molecules for 

screening poses a significant challenge. An optimized collection will minimize false positives 

whilst maximizing hit rates of compounds that are amenable to lead generation and optimization. 

Without due consideration of the relevant protein targets and the downstream screening assays, 

compound filtering and selection can fail to explore the great extent of chemical diversity and 

eschew valuable novelty. Herein, we discuss the different factors to be considered and methods 

that may be employed when assembling a structurally diverse compound screening collection. 

Rational methods for selecting diverse chemical libraries are essential for their effective use in 

high-throughput screens.

Keywords

Drug-like Molecule: A molecule with molecular properties that overlap with the majority of 
existing drugs.; High-throughput Screening: A screening process that utilises robotics and rapid 
data processing to perform millions of assays in a short space of time.; Molecular Similarity: A 
measure of the relatedness of two molecules. This would ideally quantify the similarity in 
biological effect but in practice tends to quantify the similarity in structure.; Molecular Diversity: 
A measure of how well a subset of molecules represents a larger set of molecules. A more diverse 
subset will tend to have a lower molecular similarity between molecules.; Frequent Hitter: A 
molecule or molecular substructure that hits numerous screening assays on different drug targets 
with a mode of action that is assumed to be non-specific.; Substructure Filter: A computational 
filter used to remove molecules containing molecular substructures that are considered to give rise 
to non-specific binding or deleterious pharmacodynamic properties.
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Introduction

The earliest efforts in drug discovery focused on crude extracts from natural sources and 

success relied mainly on trial and error. Work in the middle of last century established the 

concept of a molecular disease(1), moving drug discovery in a more rational direction and 

toward screening compounds against a molecular target. Natural products provided the 

majority of early drugs and still remain as an invaluable source of chemicals for screening, 

along with semi-synthetic derivatives(2). In more recent times, the advent of combinatorial 

chemistry provided a radical increase in the number of available screening compounds and 

this was coupled with high-throughput screening (HTS) of large chemical libraries(3). 

Despite many failures amongst the successes, HTS remains a widely used method for 

initiating the process of drug and chemical probe discovery(4-9). The concept of a drug-like 

molecule has existed for many years(10) and includes optimized parameters for 

physicochemical properties as well as functional groups to be avoided. This concept has 

been extended to consider lead-like instead of drug-like molecules(11), and this progresses 

naturally to the identification of hit-like molecules, which are geared to provide true positive 

results in HTS assays and yield a basis for lead generation(12). The vastness of chemical 

space means that there are currently tens of millions of molecules available for purchase and 

screening. Even using harsh filters to remove unwanted compounds, there are in the order of 

a million hit-like molecules available commercially(13-14). However, identifying a 

representative subset of these molecules to screen is a complex task, with multiple scientific, 

financial and logistical considerations. Whilst this review article is unable to 

comprehensively cover the multifold aspects of library design, its aim is to highlight the key 

issues that must be taken into account. This is now important in academic groups and 

government labs as well as in industry(15). Here we review current methods for crafting 

screening compound collections and outline the traps and pitfalls. This will be done in three 

sections: compound sourcing, compound filtering and compound selection. Finally, we 

highlight key challenges to the field and outline future directions.

Compound Sourcing

There are many suppliers of screening compounds, ranging from small chemical suppliers 

with hundreds of compounds to large ones with over a million compounds. Many collections 

of small molecules have been analyzed for drug-like and lead-like properties (13, 16-20) and 

chemical supplier libraries are being increasingly tailored toward these parameters. Details 

of the main screening libraries from six chemical suppliers with varied collections of over 

300,000 screening compounds are reported in Table 1. At present, all have a high pass rate 

for commonly employed drug-like and lead-like filters. However, compound collections turn 

over rapidly and should be analysed in this way prior to selecting suppliers. Compound 

prices per milligram vary widely dependent on the number of compounds purchased and the 

sample weight per compound required, with significantly lower prices per compound if 

thousands or tens of thousands are purchased. Theoretically, searching the entirety of 

currently available chemical space encompasses the maximum commercially available 

molecular diversity. In practice, a great expanse of available diversity can be sampled by 

selecting large numbers of compounds from a few chemical suppliers with diverse 

collections. Many chemical suppliers also sell pre-selected diverse libraries at reduced cost. 
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These are generally selected by rational means, but the compound filters employed may 

have been too harsh or too lenient, dependent on the nature of the screening assay and the 

target. Furthemore, although the compounds tend to be relatively diverse, they are also much 

more likely to have been tested by other laboratories, as they are for sale off-the-shelf. 

Including novelty in HTS is a vital aspect of drug discovery and many firms offer unlisted 

libraries at higher costs, promising an easier path to intellectual property rights.

Compound Databases

In addition to compound libraries direct from chemical suppliers, there are a number of 

preassembled online data repositories including ZINC(21) (http://zinc.docking.org/), 

emolecules (http://www.emolecules.com/) and Chemspider (http://www.chemspider.com/). 

The ZINC repository currently has the largest number of compounds, including the complete 

compound libraries of the majority of chemical suppliers. The number of molecules in the 

ZINC set of purchasable compounds currently stands at just under 18.7 million. However, 

chemical suppliers commonly update their libraries every few months, which may not be 

reflected in data repositories such as ZINC. Despite the huge number of commercially 

available compounds, existing chemistry efforts have only probed a small proportion of 

chemical space. The number of synthetically feasible, drug-like molecules is estimated to be 

in excess of 1060 (22) and only a small subset of this has been explored. For example, data 

compiled in the Generated Database of Molecules (http://www.dcb-server.unibe.ch/groups/

reymond/gdb/start.html) demonstrates that less than 0.5% of the synthetically feasible 

compounds comprised of up to 11 atoms of C, N, O and F are recorded in public databases 

as having been synthesised(23). Recent studies have also highlighted a large number of 

novel ring systems that are not currently represented in available chemical space(24). Many 

sources of diversity are excluded from existing compound collections and this greatly 

restricts the coverage of chemical space. In particular, the bias against chirality skews 

commercially available compounds toward flat compounds with many aromatic rings(25). 

This in turn may negatively impact on the properties related to absorption, distribution, 

metabolism, elimination and toxicity (ADMET) and increase the risk of attrition during 

development(26). Shelat and Guy have questioned whether libraries of synthetic molecules 

are suitable for addressing novel drug targets and suggest the use of natural products in 

HTS, particularly for phenotypic and high-content screens.

Natural Products

The vast majority of commercially available small molecules are obtained from synthetic 

chemistry. Nonetheless, nature is an important source of biologically active compounds and 

natural products have played a key role in drug discovery efforts. It has been estimated that 

as many as 50% of marketed small molecule drugs have been derived from natural 

products(27). However, of the compounds currently approved for marketing each year, 

natural products represent a much lower percentage. Many chemical suppliers sell natural 

products for HTS and some chemical suppliers specialize in natural product chemistry. The 

natural product collections are usually separated from synthetic compounds and can be 

significantly more expensive. However, they can provide unique chemical structures, and 

may show more drug-like ADMET properties(28). Natural products have proven 

particularly powerful as anti-cancer and anti-infective agents(2) and tend to be well suited to 
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phenotypic screening. Recent analysis shows that there are many ring systems present in 

natural products that are not found in screening libraries and many have suggested that 

screening compounds should be further biased toward biogenic scaffolds(29-30). However, 

the advantages of natural products must be balanced against their often greater structural 

complexity that may lead to difficulties in synthesis and purification of analogues during 

lead generation and optimization. There is still great controversy over the relative merits of 

screening natural products or natural product derivatives versus screening libraries from 

combinatorial chemistry or diversity oriented synthesis(31). Both have advantages and 

disadvantages and thus HTS library commonly combine both sources, though typically with 

more synthetic small molecules. Recently, it has been suggested that compounds balancing 

the properties of natural products and synthetic molecules may be optimal(32).

In summary, there are multiple sources of potential screening compounds and successful 

libraries typically strike a balance between synthetic compounds and natural products. 

However, whilst the growth in commercially available chemical space should always be 

capitalized upon, many compounds are unsuitable for screening in HTS assays and should 

be filtered out of any quality screening collection.

Compound Filtering

In order to obtain commercially available hit-like compounds, computational filters are 

commonly used to remove compounds with undesirable properties. Ideal drug-like and lead-

like molecules have differing properties and these differ again from hit-like molecules. In 

general, the physicochemical properties of a lead-like molecule can be improved during lead 

optimization toward a drug-like molecule by tailoring the lipophilicity. Similarly, the 

binding affinity of a hit-like molecule can be improved during the process of hit explosion to 

yield a lead-like molecule. However, hit-like molecules must be large and lipophilic enough 

to gain sufficient binding affinity that they can be identified in a screening assay, but not so 

large that they have a very small probability of binding. Larger and more complex molecules 

have a lower probability of exhibiting perfect shape and electrostatic complementarity with 

any given target and this suggests that smaller and less complex molecules will more 

commonly provide starting points for drug development(33). An ideal hit molecule should 

also be amenable to chemical elaboration, show reasonable levels of cell permeability and 

have a range of commercially available analogues, some of which have also been tested in 

the same assay.

Computational Filters

There are numerous computational filters used to mark compounds that may have problems 

due to assay interference or downstream ADMET properties. The most commonly used of 

these are physicochemical property filters that specifically attempt to remove compounds 

that may lead to low levels of drug absorption and distribution. An exception that is ignored 

by these filters is compounds that are substrates for drug transporters, which recent works 

suggests may be a significant proportion of molecules(34). In addition to Lipinski’s well 

known rule of five(35), Ghose filters(36) and Veber filters(37) are commonly employed to 

filter compounds. Noteworthy analysis has also been performed by Walters(38), Oprea(39), 

Egan(40), Lee(41), Baurin(13) and Martin(42). The key properties that determine drug 
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absorption and distribution for an oral drug are the lipophilicity measures of the octanol/

water partition coefficient (logP) and surface area of the polar atoms in the molecule (PSA)

(43-45). Analysis of trends in launched drugs has highlighted a significant increase in 

molecular weight in the last fifty years, but a negligible increase in logP values(46). This is 

not surprising, as drugs with increased logP tend to be more promiscuous binders and can 

thus be expected to have a higher attrition rate in later development(47). However, studying 

the most recent trends in molecules being synthesized in leading drug discovery companies 

suggests an increase in both molecular weight and logP(46). This has been attributed to the 

fact that more lipophilic drugs have the potential to be more efficacious, as they tend to have 

increased binding affinity. It has been suggested that this may adversely affect drug attrition 

rates in the future due to an increased likelihood of toxicity(48). However, as discussed, 

larger and more complex molecules have a lower probability of exhibiting perfect shape and 

electrostatic complementarity with any given target and they are thus expected to show 

greater specificity(33). This predicted increase in promiscuity due to increased lipophilicity 

may thus be ameliorated by increased complexity. Despite the noted increase in molecular 

weight, there is great pressure during the development process to lower the molecular 

weight, likely because larger molecules show reduced passive absorption across cell 

membranes, increased number of toxic pharmacophores or rapidly metabolized 

moieties(49). One caveat when filtering on lipophilicity or solubility is to note whether you 

are using experimental values or predicted values. Solubility predictions based on clogP 

values or PSA can be accurate in some circumstances, but are inaccurate in others and tend 

to perform particularly badly for charged compounds(50). Charged compounds may be 

better represented by the octanol/water distribution coefficient logD, which takes into 

account the different protonation states. It is vital to carefully consider whether compounds 

should be excluded based on predicted insolubility, when such predictions can be inaccurate.

One other significant method for marking ADMET risks are the Rapid Elimination of 

Swill(51) (REOS) filters. As well as physicochemical properties, REOS filters remove 

molecules containing certain functional groups, as described by SMILES or SMARTS 

patterns(52). Some of these are shown in Figure 1. REOS filters flag compounds containing 

functional groups that may lead to false positives due to reactivity or assay interference, 

which have long been noted as a problem in HTS efforts(53). They also remove compounds 

containing functional groups known to be risks for ADMET. However, it is important to 

note that many known drug molecules fail the common physicochemical and substructure 

filters. The Drugbank(54) (http://www.drugbank.ca/) contains structural data for over 1,350 

FDA approved small molecule drugs and nearly 5000 experimental drug entries. Analysis of 

the Drugbank experimental drugs is shown in Table 1 and reveals that only 71.4% pass all of 

the Lipinski filters and only 51.7% pass all of the REOS substructure filters. This data 

highlights that compound filtering is used to reduce risk, but will also eliminate useful 

molecules from further consideration. More recently, a Herculean analysis of compounds 

hitting multiple orthogonal HTS assays has lead to the identification of pan assay 

interference compounds (PAINS)(55). As increasing amounts of assay data from different 

HTS efforts around the world is becoming publically available, a clearer picture of 

compounds and functional groups that tend to yield false positives is developing(56). This 

development is vital, as frequent hitters are likely to be over represented in compounds from 
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chemical vendors due to an increased likelihood that they will be ordered as analogues of 

apparent hits. Research has also specifically highlighted substructures that alert when a 

compound may be a DNA-reactive genotoxin(57). Whilst this may be acceptable in a 

screening hit, it would almost certainly have to be removed in the hit to lead process.

Physicochemical Property Filters

The majority of physicochemical property filters are simple to understand. Eight drug-like 

filters and one lead-like filter are described in Table 2. There is general agreement, although 

the exact properties vary slightly. Any of these rules can be used, alone or in conjunction, to 

filter a set of compounds and it is worth noting that many of the properties are highly 

correlated, such as logP and PSA. However, due consideration must be given to the details 

of the screening assay and the nature of the target as this affects the desired physicochemical 

properties of the screening compounds. For example, a fragment with a molecular weight of 

200 may be too small to show measurable binding in typical HTS assays or compete with 

high-affinity ligands. However, if the assay is tailored to identify smaller molecules, 

fragment based methods have been shown to be very useful, with higher ligand 

efficiencies(58) and a greater potential for chemical elaboration and linking(59). Compound 

filters for fragments are completely different to filters for traditional small molecules. 

Phenotypic screens also place a different pressure on the screening library, with 

considerably more emphasis on cell permeability at the initial stage. As well as the 

importance of the assay format, the composition of an ideal screening library also varies 

with the protein target. Many existing screening libraries and are tailored toward screening 

against a narrow range of targets such as kinases and GPCRs(60). A screening library 

tailored toward screening against protein-protein interactions would have a very different 

profile. Recent analysis collected in the TIMBAL database(24) suggests that inhibitors of 

protein-protein interactions have higher molecular weights and lipophilicity than inhibitors 

of buried binding sites, as well as a greater number of hydrogen bond donors, hydrogen 

bond acceptors and rotatable bonds. Whilst the general applicability of this approach to 

generating approved drugs remains to be seen, it is an important consideration. As well as 

traditional physicochemical property filters, there are now a number of flags for more 

complex properties(61). Increasing evidence shows that small molecules may cause non-

specific protein aggregation(62) and thus lead to false positives in some assays. 

Experimental work has shown that a significant number of compounds may act in this way 

and potential risks can be identified and removed from consideration(63). There are also 

experimental methods to identify compound that are reactive, such as ALARM NMR(64), 

and also for compounds containing fluorophores(65). However, whilst the latter is of great 

importance for fluorometric assays, it is of little or no importance in other assays. 

Experimental studies such as PAINS have identified molecular scaffolds that form the basis 

for promiscuous inhibitors and thus yield false positives in many screening assays(55, 66). 

Defining the mechanism underlying the promiscuous inhibition of these PAINS compounds 

will no doubt provide significant but interesting challenges in the next decade. In addition 

there are now methods for predicting compounds that disrupt particular screening 

assays(67), but these methods are approximate and should be used with this understanding.
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Substructure Filters

Many filters simply remove compounds with specific functional groups that are known to 

interfere with HTS assays or cause problems later in drug development. The importance of 

removing these functional groups has been discussed in numerous papers(38, 53). The 

majority of screening libraries contain very few if any of the most troublesome compounds 

such as aldehydes, epoxides or α-halo ketones. The prevalence of these three groups in the 

six supplier databases is on average 0.3%, 0.01% and 0.04% respectively. However, many 

still contain potential risks such as isolated alkenes (12.3%), αβ-unsaturated carbonyls 

(8.5%) or nitro groups (7.6%). The prevalence of the more common functional groups can 

be seen in Table 3. Each of these substructures is a potential liability for the reasons 

described in Box 1.

However, many of these functional groups do appear in certified drug molecules(68), as 

shown in Table 3, and many show no activity in HTS assays(69). When eliminating 

functional groups due to any ADMET risk, the nature of the functional group should be 

considered. It may be easier to replace a potentially risky side-group at the hit-to-lead stage 

than a potentially risky core group. For example, a nitroaromatic side-group can be replaced 

with another similar side-group such as a trifluoromethanesulfonyl side-group to retain or 

increase binding affinity without disrupting the structure of the molecule(70). The same is 

not true for a 2-aminothiazole core group, as its shape and hydrogen bonding characteristics 

are more difficult to mimic without disrupting the structure of the molecule. Despite this, 

scaffold hopping can be achieved and is increasingly common(71). When eliminating 

functional groups due to the risk of cytotoxicity, it is important to consider the target, as 

some therapies (for cancer in particular) are damaging to cells. For example, 2-

aminothiazoles may lead to cytotoxicity but they form the basis of a number of potent CDK 

inhibitors for cancer therapy(72). Functional groups implicated in organ toxicity may also be 

acceptable in chemical probe discovery.

Filtering Tools

There are a number of software packages used to predict chemical properties and/or filter 

screening compounds. This includes Accelrys’ Pipeline Pilot(73), MOE’s sdfilter(74), 

Schrodinger’s qikprop(75) and Openeye’s filter(76), which is freely available to academics. 

Once the filtering process is complete, it is important to inspect a subset of the resulting 

structures. No matter how sophisticated the filtering criteria and algorithms, a scientist 

should always ensure that the remaining compounds meet their requirements. Despite the 

importance of filtering compounds to prevent screening potentially problematic compounds, 

it is common to screen a small proportion of “wildcards” that do not pass all of the filters. 

As seen in Tables 1 and 2, many drug molecules do not pass the drug-like or lead-like filters 

and contain significant proportions of functional groups that are commonly removed by 

HTS filters. For example, the REOS rule to exclude compounds with more than four joined 

rings, removes all steroids and nearly 10% of the Drugbank experimental drugs. It is 

important to realise that the process of compound filtering is about minimising risk and 

downstream expenditure rather than maximising hit-rate. For example, reactive groups may 

present the risk of false positives, but work has shown that this is not always the case(69). In 

some cases, reactive groups can act as covalent inhibitors, inactivating the target by binding 
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irreversibly, and thus provide an advantage over non-covalent inhibitors. However, this 

activity may be difficult to extract from HTS data as it can be hard to discriminate from 

unwanted reactivity. Potentially reactive compounds should remain, at most, a small 

percentage of any screening library, unless there is a clear plan to extract useful data on 

covalent inhibition from the screening assay.

In summary, it may be necessary to rethink the process of designing libraries for screening 

against the more diverse range of targets now being considered. Research at Harvard(77), 

the NIH(6, 78), and the DDU in Dundee(9) amongst others has shown that HTS is feasible 

in a non-industrial center and can be vital in developing treatments for neglected diseases. 

Whilst such drug development projects must also select screening compounds with care, 

many of the functional group and physicochemical property filters are unsuitable for 

screening efforts aimed at development of chemical probes. Compounds causing assay 

interference or low solubility should be avoided, but compounds causing liver toxicity or 

poor oral absorption may be acceptable. Recent analysis suggests that the nature of 

screening hits is shifting to larger and more lipophilic molecules as a result of the increased 

use of in vitro assays over in vivo assays(79). This is expected to shift or widen the nature of 

screening libraries. However, the exact nature of the assay and the target must be considered 

when selecting compound exclusions as, for a diversity library aiming to span multiple 

assays and targets, it may not be appropriate to remove all potential risks. A balance must be 

reached between filtering out all compounds that are a risk in any drug development 

program and only filtering compounds that are a risk in all programs. There is now a critical 

mass of published data highlighting risks for compound interference and this can easily be 

applied to hits post screening, along with experimental methods to detect false positives 

such as dose-response plotting. This should ensure that screening libraries take advantage of 

the enormous diversity in chemical space, whilst assessing risk appropriately. With respect 

to chemical diversity, chemical suppliers will only provide chiral compounds if there is a 

market for them and thus filtering out chiral compounds from screening libraries will drive 

the purchasable chemical space further in this direction and away from biogenic chemical 

space.

Compound Selection

Aggressive filtering may remove up to 50% of compounds from consideration, but huge 

numbers of commercially available compounds still remain. The main aim of compound 

selection is to pick a subset of these compounds for testing. In general, it is wasteful to test 

many compounds with similar structures in frontline assays, at the expense of more diverse 

compounds. Analysis has shown that if a compound is biologically active, a molecule with 

very high similarity will have a similar biologically activity and thus testing the second 

molecule in the frontline assay is unlikely to be worthwhile(80-81). It is thus common to 

select a structurally diverse subset of compounds that represents the chemical space being 

considered. However, chemical space grows very rapidly with molecular size and, in 200 

years of chemical synthesis, we have covered only a tiny fraction of chemical space up to a 

molecular weight of 500. The biggest screening libraries, which are of the order of tens of 

millions of molecules, can never hope to cover this space. Approaching compound selection 

in a sensible manner is thus very important(82).
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Measuring Chemical Diversity

Molecular similarity is a key prerequisite in assessing molecular diversity(83). There are 

many different techniques to measure whether two compounds are similar(81, 84) but none 

of them are entirely satisfactory. From a pharmaceutical perspective, the ideal metric would 

predict that two compounds are similar if they elicit the same biological effect by hitting the 

same biological target and binding in the same pose. Unfortunately such a metric does not 

exist. Currently used metrics predict that two compounds are similar if they have similar 

chemical connectivity or similar shape and electrostatic form. One important issue in 

assessing chemical similarity is that a compound can be very different in its various 

conformations, tautomers and protonation states. Two compounds that are calculated to be 

similar in specific tautomeric states may be calculated to be different in other states. 

However, there are numerous computational methods for the enumeration of protonation 

and tautomeric states. This includes Schrodinger’s Ligprep(85), the Openeye toolkit(76), 

CCG’s MOE(74), Tripos Sybyl(86) and Accelrys’ Discovery Studio(73). Three of the most 

common methods for predicting similarity are fingerprint(87), shape-based(88) and 

pharmacophore(71) methods. These methods are commonly used in virtual screening when 

a known active compound has been identified. Fingerprint methods are relatively simple and 

usually two-dimensional. Each molecule is assessed for a number of atom and bond 

connectivities. Each of these connected units is termed a bit/key and the combination of bits/

keys that are present in a given molecule is its fingerprint. Two molecules with similar 

fingerprints have similar atoms in similar bonding environments and are likely to bind in 

similar ways to a protein target. There are a number of fingerprinting techniques as well as a 

number of atom-typing schemes and close reading of the current literature is recommended 

before selecting a method, as this is still a rapidly developing field(89). Recent analysis has 

shown that atom-type based radial fingerprints perform well(90) but other work suggests 

that fingerprints based on physicochemical properties or pharmacophores may perform 

better(91). Different fingerprinting methods can yield very different similarities and thus an 

exact comparison with literature is not always appropriate. There are also a number of 

similarity/difference metrics(92) and, whilst the Tanimoto metric is most commonly used, 

close reading of the current literature is again recommended. The molecules in Figure 2 

were analyzed using radial fingerprints based on daylight atom types using Schrodinger’s 

Canvas software and Tanimoto similarity scores were then generated. As can be seen, 

molecule with a high similarity such as A and B are very similar and would likely give 

similar assay results, whereas molecule A and D are significantly different and should 

ideally both be tested in a frontline assay. Shape based methods compare molecules by 

analyzing whether they have the same shape and electronic form. This is implemented in 

Openeye’s ROCS and EON software(76), which is widely used and is freely available to 

non-commercial groups working toward public disclosure(93). Pharmacophore methods 

have the obvious advantage of including the three dimensional geometry of the molecules. 

As noted, chemical similarity is a very important concept in assessing chemical diversity. 

Whilst three dimensional methods have the potential to provide a much more accurate model 

of molecular similarity, there is great difficulty in applying them when the bioactive 

conformation is unknown, as is the case in diversity analysis. Thus, two dimensional 

methods such as fingerprinting remain the tool of choice at present.
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Rational Selection

Once a set of compounds has been analyzed on the basis of similarity it is possible to select 

a diverse set of compounds. In some cases it is possible to consider the average similarity 

between compounds and optimise this as an objective function. However, this requires 

generation of an N by N similarity matrix, which may become prohibitively large as N 

increases(94). Heuristic clustering methods are thus more commonly used(94). Such 

methods include k-means clustering(95), sphere exclusion(96), directed sphere 

exclusion(97) and maxmin(98). The aim of such methods is that, for each selected molecule, 

no similar molecules are then selected. This is illustrated using a two dimensional 

representation for a simple sphere exclusion method in Figure 3. The centroid molecules R, 

B, G and Y represent all the molecules within a similarity of greater than 0.2. Iterative 

selection in this chemical space will finally encompass all molecules. A secondary aim of 

compound selection is to pick clusters of two or more structurally similar compounds in 

each cluster, such that the initial assay results immediately provide some QSAR data to 

inform decision-making. In many cases the aim of compound selection is to augment an 

existing compound collection. In this case, the existing compound structures can be used as 

an input to the diverse selection algorithm. This can be used to select new compounds that 

“fill the gaps” in chemical space. Despite this usefulness of diversity selection methods, the 

use of virtual screening methods should always be considered in a resource constrained 

environment, with sufficient knowledge of the protein target and its structure. Both 

molecular docking(99) and pharmacophore analysis(100) can improve hit rates in HTS 

assays and are commonly used.

In summary, the process of selecting a representative subset of compounds from a large 

collection relies heavily on the ill-defined concept of molecular similarity. However, the 

concept is vital as it allows lead molecules to be identified at reduced cost and effort through 

hit identification and explosion.

Conclusions and Discussion

Shrewd selection of screening compounds is one of the most vital enabling steps in the drug 

development process. There are no strict rules, only rules of thumb. No compound filters are 

globally applicable and no diversity metrics or selection methods can be proven as optimal. 

However, misapplication of filtering can reduce chemical diversity within a project and 

preclude many novel discoveries. Conversely, careful filtering reduces the risk of false 

positives and downstream ADMET failures, whilst sensible compound selection can yield 

libraries that cover larger regions of chemical space and increase true positive hit rates. 

ADMET concerns may not be as important for chemical probes developed in academic 

groups, but solubility, cell permeability and potential chemical reactivity are all still 

important considerations and chemical diversity is still highly desirable. There are numerous 

sources of compound interference, which plague HTS assays. However, recent large-scale 

analyses have identified molecular scaffolds that appear as frequent hitters in numerous 

assays. The resultant data is very useful and should be incorporated either into library 

filtering or triaging of assay data. However, if every group used the same filters then every 

group would test similar compounds and many useful molecules could be missed. Large 
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screening libraries in industry include a substantial fraction of commercially available 

compounds. Thus, if an academic group sources from commercial vendors and uses 

traditional industry filters then they will develop smaller relatives of the big industrial 

libraries with little or no chemical novelty. It may thus be advisable for academics to 

consider synthesizing or purchasing molecules in untapped regions of chemical space, 

particularly embodying multiple stereogenic centers, to maximise chemical diversity and 

increase the number of unique chemical entities tested. Diversity should also be maximised 

by considering natural products and biogenic scaffolds, which may show improved ADMET 

properties. At present, commercially available chemical space is heavily skewed toward flat 

compounds with many aromatic rings. Whilst this makes synthesis more tractable, it 

excludes many sources of chemical diversity and shifts screening libraries away from 

biogenic scaffolds and toward pharmacological risks. These risks have been recently 

quantified and the results are compelling(26). This problem will only be remedied by 

customers changing their practices to incentivise chemical suppliers.

A screening library must have the correct balance of molecular weight and logP, tailored to 

the constraints of the assay. Once a true positive hit has been identified, increasing size and 

complexity in tandem with lipophilicity is expected to increase both affinity and specificity. 

It is important to note that the ideal range of chemical and physicochemical properties of an 

HTS library differs when considering different assay platforms or protein targets. An 

optimal screening library for a fragment-based screen or targetting a protein-protein 

interaction will thus be different from a traditional kinase set and should be carefully 

designed. Due to the economies of scale with respect to purchasing a screening library, cost 

sharing between academic and government labs can increase the scope of screening efforts. 

Some companies may be willing to share portions of their screening libraries, in return for 

IP rights, on projects focused on commercially viable, validated targets. With respect to 

compound selection, there are numerous existing methods for measuring chemical similarity 

and selecting diverse sets of compounds, but no ideal metric can exist. Whilst current work 

has highlighted the best applications of fingerprinting, shape-based and pharmacophore 

methods, these are all evolving fields and no technique can be proven superior in all cases. 

However, compound selection through analysis of molecular similarity reduces the size and 

cost of screening libraries whilst retaining diversity.

One question of great importance that has not been addressed in great detail is how many 

compounds need to be tested to ensure a sufficient coverage of chemical space(101). This 

question can be answered by considering the number of lead series desired, the false positive 

rate, the number of molecules assayed per cluster and the hit rate of the primary screen. 

Such an analysis predicts that on average one lead series can be developed from testing 

approximately 350,000 diverse compounds in a typical HTS screen(102). This number 

applies only to leads successfully developed into marketed drugs and is thus not appropriate 

when considering chemical probe discovery. However, it is commonly accepted that some 

targets are more druggable than others such that this value can vary greatly and that some 

screens will yield no successful lead series. Due to the importance of HTS in the 

development of new drugs and chemical probes, high-quality screening libraries are a key 

asset of any research group and there are many factors to be weighed. However, each library 

will be unique and should be suited to the particular needs of the screening group. With the 
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rapid increase in the number of purchasable molecules, the almost limitless volume of 

chemical space and the proliferation of HTS groups, rational selection of diverse hit-like 

compounds seems likely to continue as a lynchpin of drug development.
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Box 1

Screening Liabilities

• 1,2 dicarbonyls – Metabolically unstable/Potential toxicity due to mutagenicity.

• 1,2 dimethoxys – Prone to oxidation yielding reactive quinones.

• 1,4 dimethoxys – Very prone to oxidation yielding reactive quinones.

• αβ-Unsaturated Carbonyls – Prone to reactivity by acting as a Michael acceptor.

• Acetals – Metabolically unstable due to acetal hydrolysis.

• Acylhydrazides – Metabolically unstable due to acyl hydrolysis.

• Aliphatic Ketones – Metabolically unstable due to nucleophilic attack.

• Alkenes – Metabolically unstable due to epoxidation.

• Aminothiazoles – Potential toxicity.

• Anthracene/Phenanthrene-likes – Known DNA intercalation.

• Nitro Groups – Prone to reduction yielding reactive species/Potential 

hepatocarcinogens.

• Methylenedioxys – Metabolically unstable due to acetal hydrolysis/Prone to 

oxidation yielding reactive quinones.

• Thioureas – Metabolically unstable due to flavin oxidation/Potential non-

specific protein binding.

• Unflanked Pyridyls – Potential interference with cytochrome P450s due to metal 

ion coordination.
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Figure 1. Chemical structures used in compound filtering
Chemical structures of functional groups commonly used to remove compounds from 

consideration in HTS assays. The functional group name and SMILES/SMARTS string used 

in the filter are reported.
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Figure 2. Example of similarity between compounds
Four compounds and the Tanimoto similarity between them. The compounds were assigned 

radial fingerprints using Schrodinger’s Canvas software at 64-bit precision using daylight 

invariant atom types.
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Figure 3. Clustering of compounds in chemical space
A two dimensional representation of chemical space being partitioned into clusters of 

similar compounds using a simple sphere exclusion method.
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Table 1

Details of the screening libraries for six chemical suppliers, the ZINC database of purchasable molecules and 

the Drugbank database of experimental drugs. All physicochemical properties were generated with Qikprop 

and filtering was performed with Canvas.The compound collection refers to the subset of molecules that was 

analyzed from each source.

Compound Source Compound Collection URL Number Of Compounds % Lipinski Passes % REOS Passes

Asinex Gold and Platinum 
Collections http://www.asinex.com 364407 79.6 73.0

Chembridge Express Pick Library http://www.chembridge.com 442051 84.0 66.6

ChemDiv Discovery Chemistry http://www.chemdiv.com 789603 73.8 72.1

Enamine HTS Collection http://www.enamine.net 1116406 90.7 79.6

Life Chemicals Stock http://www.lifechemicals.com 327211 84.9 76.6

Vitas M Labs HTS Stock http://www.vitasmlab.com 476184 75.1 65.8

Drugbank All Drugs http://www.drugbank.ca 4886 71.4 51.7

Zinc Purchasable Compounds http://zinc.docking.org 18671085 87.2 73.1
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Table 2
Details of physicochemical property filters to mark drug-like and lead-like compounds for 
screening libraries. LTE stands for less than or equal to

MW PSA (A2) HBA HBD logP Rotatable Bonds # Atoms Charge

Lipinski (1997) LTE 500 0 to 10 0 to 5 LTE 5.0

Ghose (1999) 160 to 480 −0.4 to +5.6 20 to 70

Oprea Drug-Like (2000) 2 to 9 0 to 2 2 to 8

Egan (2000) LTE 130 −1.0 to +5.8

Walters (2000) 200 to 500 LTE 120 0 to 10 0 to 5 0 to 8 20 to 70 −2 to +2

Oprea Lead-Like (2001) LTE 450 0 to 8 0 to 5 −3.5 to +4.5

Veber (2002) LTE 140 0 to 10

REOS (2002) 200 to 500 0 to 10 0 to 5 −5.0 to +5.0 0 to 8 −2 to +2

Martin (2005) LTE 150
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Table 3

Percentage of compounds failing common drug-like filters for unfavourable physiochemical properties and 

unwanted substructures for the six combined chemical supplier libraries, the ZINC database of purchasable 

molecules and the Drugbank database of experimental drugs. All physicochemical properties were generated 

with Qikprop and filtering was performed with Canvas.

Combined Suppliers Drugbank ZINC

clogP > 5 15.8 7.0 10.7

HBA > 10 3.8 23.0 6.7

HBD > 5 0.0 13.1 0.1

MW > 500 4.9 13.3 1.7

PSA > 150 1.8 22.0 3.3

Rotatable Bonds > 10 1.5 20.3 2.5

Isolated Alkene 9.1 12.3 8.7

αβ-Unsaturated Carbonyl 8.5 8.5 6.9

1,2-Dimethoxy 7.6 6.0 7.6

Nitro 7.4 6.6 6.5

Acylhydrazide 4.0 4.6 4.1

Aminothiazole 4.0 4.8 3.1

Thiourea 3.3 4.3 1.6

Anthracene/Phenanthrene-like 3.1 5.9 1.2

Unflanked Pyridyl 3.1 5.9 2.5

Acetal 2.7 13.0 2.0

Methylene-Dioxy 2.3 4.6 1.5

Aliphatic Ketone 2.1 10.6 2.0

1,2 dicarbonyl 1.6 5.6 1.0

1,4-dimethoxy 1.5 4.5 1.6
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