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Summary

In this paper we describe the application of finite element tearing and interconnecting methods for 

the simulation of biological tissues, as a particular application we consider the myocardium. As 

most other tissues, this material is characterized by anisotropic and nonlinear behavior.

1 Modeling Biological Tissues

In this paper we consider the numerical simulation of biological tissues, that can be 

described by the stationary equilibrium equations

(1)

to find a displacement field u where we have to incorporate boundary conditions to describe 

the displacements or the boundary stresses on Γ = ∂Ω.

In the case of biological tissues the material is assumed to be hyperelastic, i.e. we have to 

incorporate large deformations and a non-linear stress-strain relation. For the derivation of 

the constitutive equation we introduce the strain energy function Ψ (C) which represents the 

elastic stored energy per unit reference volume. From this we obtain the constitutive 

equation as in [1]

where J = det F is the Jacobian of the deformation gradient F = ∇φ, and C = F⊤ F is the 

right Cauchy-Green tensor. In what follows we make use of the Rivlin-Ericksen 

representation theorem to find a representation of the strain energy function Ψ in terms of 

the principal invariants of C = F⊤ F.

The cardiac muscle, the so-called myocardium, is the most significant layer for the modeling 

of the elastic behavior of the heart wall. Muscle fibers are arranged in parallel, in different 

sheets within the tissue. Although this fiber type is predominant, we have also collagen that 

is arranged in a spatial network connecting the muscle fibers. We denote by f0 the fiber axis 

which is referred to as the main direction of the cardiac muscle fibers. The sheet axis s0 is 

defined to be perpendicular to f0 in the plane of the layer. This direction coincides with the 
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collagen fiber orientation. As many other biological tissues we treat the myocardium as a 

nearly incompressible material. It shows a highly nonlinear and, due to the muscle and 

collagen fibers, an anisotropic behavior.

To capture the specifics of this fiber-reinforced composite, Holzapfel and Ogden proposed a 

strain-energy function Ψ that is decomposed into a volumetric, an isotropic and an 

anisotropic part, which consists of a transversely isotropic and an orthotropic response, see 

[7, 11],

(2)

Following [11], we describe the volume changing part by

(3)

The bulk modulus κ > 0 serves as a penalty parameter to enforce the (almost) 

incompressibility constraint. To model the isotropic ground substance we use a classical 

exponential model, see [2],

(4)

where a > 0 is a stress-like and b is a dimensionless material parameter. I1 = tr(C) is the first 

principal invariant of the right Cauchy-Green tensor C. In (2), Ψtrans is associated with the 

deformations in direction of the fiber directions. Following [7] we describe the transversely 

isotropic response by using

(5)

with the invariants I4f := f0 · (Cf0) and I4s := s0 (Cs0) and the material parameters af, bf, as 

and af which are all assumed to be positive. It is worth to mention, that in this model the 

transversely isotropic responses Ψtrans only contribute in the cases I4f > 1, I4s > 1, 

respectively. This corresponds to a stretch in a fiber direction, and this is explained by the 

wavy structure of the muscle and collagen fibers. In particular, the fibers are not able to 

support compressive stress. Moreover, the fibers are not active at low pressure, and the 

material behaves isotropically in this case. In contrast, at high pressure the collagen and 

muscle fibers straighten and then they govern the resistance to stretch of the material. This 

behavior of biological tissues was observed in experiments and this is fully covered by the 

myocardium model as described above. The stiffening effect at higher pressure also 

motivates the use of the exponential function in the anisotropic responses of the strain 

energy Ψ.

Finally a distinctive shear behavior motivates the inclusion of an orthotropic part in the 

strain energy function in terms of the invariant I8fs = f0 · (Cs0)
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(6)

Here afs > 0 is a stress-like and bfs > 0 a dimensionless material constant.

Note that the material parameters can be fitted to an experimentally observed response of the 

biological tissue. In the case of the myocardium, experimental data and, consequently, 

parameter sets are very rare. Following [7] and [11], we use the slightly adapted material 

parameters to be found in Table 1.

Note that similar models can also be used for the description of other biological materials, 

e.g., arteries, cf. [6, 8].

2 Finite Element Approximation

In this section we consider the variational formulation of the equilibrium equations (1) with 

Dirichlet boundary conditions u = gD on ΓD, Neumann boundary conditions t := σ (u)n = gN 

on ΓN, , ΓD ∩ ΓN = θ and n is the exterior normal vector of Γ = ∂Ω. In particular 

we have to find u ∈ [H1(Ω)]3, u = gD on ΓD, such that

(7)

is satisfied for all v ∈ [H1(Ω)]3, v = 0 on ΓD.

By introducing an admissible decomposition of the computational domain Ω into tetrahedra 

and by using piecewise quadratic basis functions φℓ, the Galerkin finite element 

discretization of the variational formulation (7) results in a nonlinear system of algebraic 

equations, to find uh satisfying an approximate Dirichlet boundary condition uh = QhgD on 

ΓD, and

(8)

For the solution of the nonlinear system (8), i.e. of G(uh) := K(uh) − F = 0, we apply 

Newton’s method to obtain the recursion

or, by using the definition of G(·),

(9)

For the computation of the linearized stiffness matrix  we need to evaluate the 

derivative of the nonlinear material model as described in the previous section. For a 

detailed presentation how to compute  in this particular case, see [5].
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3 Finite Element Tearing and Interconnecting

For the parallel solution of (9) we will use a finite element tearing and interconnecting 

approach [4], see also [8, 14] and references given therein. For a bounded domain 

we introduce a non-overlapping domain decomposition

(10)

The local interfaces are given by Γij := Γi ∩ Γj for all i < j. The skeleton of the domain 

decomposition (10) is denoted as

Instead of the global problem (1) we now consider local subproblems to find the local 

restrictions ui = u∣Ωi satisfying partial differential equations

the Dirichlet and Neumann boundary conditions ui = gD on Γi ∩ ΓD, σ (ui)ni = gN on Γi ∩ 

ΓN, and the transmission conditions ui = uj, ti + tj = 0 on Γij, where ti = σ (ui)ni is the local 

boundary stress, and ni is the exterior normal vector of the local subdomain boundary Γi = 

∂Ωi. Note that the local stress tensors σ (ui) are defined locally by using the stress-strain 

function Ψ as introduced in Sect. 1, and by using localized parameters κ,k1,k2,c and fiber 

directions β1, β2. Hence, by reordering the degrees of freedom, the linearized system (9) can 

be written as

where the increments  correspond to the local degrees of freedom within the 

subdomain Ωi, and  is related to all global degrees of freedom on the coupling boundary 

ΓC. By introducing the tearing

Augustin and Steinbach Page 4

Domain Decompos Method Sci Eng XX (2011). Author manuscript; available in PMC 2016 February 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



by applying the interconnecting , and by using discrete Lagrange multipliers, we 

finally have to solve the system

(11)

For the solution of the linear system (11) we follow the standard approach of tearing and 

interconnecting methods. In the case of a floating subdomain Ωi, i.e. Γi ∩ ΓD = θ, the local 

matrices , are not invertible. Hence we introduce the Moore-Penrose pseudo inverse  to 

represent the local solutions as

(12)

where vk,i ∈ ker  correspond to the rigid body motions of elasticity. Note that in this case 

we also require the solvability conditions

In the case of a non-floating subdomain, i.e. ker Ki = θ, we may set . As in [10] we 

may also consider an all-floating approach where also Dirichlet boundary conditions are 

incorporated by using discrete Lagrange multipliers.

In general, we consider the Schur complement system of (11) to obtain

which can be written as

(13)

with

For the solution of the linear system (13) we use the projection P⊤ := I−G(G⊤G)−1G⊤ and it 

remains to consider the projected system
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(14)

which can be solved by using a parallel GMRES method with suitable preconditioning. Note 

that the initial approximate solution λ0 satisfies the compatibility condition G⊤ λ0 = e. In a 

post processing we finally recover γ = (G⊤ G)−1G⊤ (Fλ − d), and subsequently the desired 

solution (12).

Following [3] we are going to apply either the lumped preconditioner

(15)

or the Dirichlet preconditioner

(16)

where

is the Schur complement of the local finite element matrix . Alternatively, one may also 

use the scaled hypersingular boundary integral operator preconditioner as proposed in [9].

4 Numerical Results

In this section we present some examples to show the applicability of the FETI approach for 

the simulation of the myocardium, see Fig. 3. We consider a mesh of the left and the right 

ventricle of a rabbit heart with given fiber and sheet directions, see Fig. 1, which is 

decomposed in 480 subdomains, see Fig. 2. To describe the anisotropic and nonlinear 

cardiac tissue, we use the material model (2) with the parameters given in Table 1. Dirichlet 

boundary conditions are imposed on the top of the myocardium mesh. The interior wall of 

the right ventricle is exposed to the pressure of 1 mmHg which is modeled with Neumann 

boundary conditions. Although this pressure is rather low, the material model as used is 

orthotropic. To simulate a higher pressure, an appropriate time stepping scheme has to be 

used. However, this does not affect the number of local iterations significantly. The local 

Moore Penrose pseudo inverse matrices are realized with a sparsity preserving regularization 

and the direct solver package Pardiso [12, 13]. The global nonlinear finite element system 

with 12.188.296 degrees of freedom is solved by a Newton scheme, where the FETI 

approach is used in each Newton step. For this specific example the Newton scheme needed 

six iterations. Due to the non-uniformity of the subdomains the efficiency of a global 

preconditioner becomes more important. We consider both the classical FETI approach, as 

well as the all–floating formulation. Besides no preconditioning we use the simple lumped 

preconditioner (15) and the Dirichlet preconditioner (16). It turns out that the number of 

iterations for the all–floating formulation is approximately half the number of iterations for 
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the standard approach. Moreover, the Dirichlet preconditioner within the all–floating 

formulation requires only 108 iterations, with a computing time of approximately 5 min. All 

computations were done at the Vienna Scientific Cluster (VSC2).
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Fig. 1. 
Left and right ventricle of the rabbit heart. Mesh consists of 3.073.529 tetrahedrons and 

547.680 vertices. Black lines indicate fiber directions f0. Point of view is from above 

showing the interior of the left and right ventricle
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Fig. 2. 
The picture shows the displacement field of the rabbit heart with pressure applied in the 

right ventriculum. Point of view is from below showing the apex of the heart at the bottom. 

In the table the iteration numbers of the global GMRES method for different preconditioners 

are given
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Fig. 3. 
Von Mises stress in the right ventricle. Point of view is from above looking inside the right 

ventricle
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Table 1

Material parameters used in the numerical experiments [7, 11].

κ = 3333.33 kPa, a = 33.445 kPa, b = 9.242 (−),

af = 18.535 kPa, bs = 10.446 (−), bf = 15.972 (−),

afs = 0.417 kPa, as = 2.564 kPa, bfs = 11.602 (−).

Domain Decompos Method Sci Eng XX (2011). Author manuscript; available in PMC 2016 February 24.


