Table 3.
OrthoDB Arthropod EQUAL | OrthoDB Arthropod PROP | |||
---|---|---|---|---|
Algorithm | Validation | Testing | Validation | Testing |
Neural Network | 97.1815 % | 96.8153 % | 97.5452 % | 96.5423 % |
Suppor Vector Machine (SVM) | 89.1351 % | 88.0801 % | 88.0668 % | 88.2621 % |
Random Forest | 98.1362 % | 95.9054 % | 97.8748 % | 95.5414 % |
Naive Bayes | 53.0628 % | 52.5023 % | 61.2229 % | 60.3276 % |
Logistic Regression | 96.5905 % | 97.2702 % | 96.3064 % | 96.3603 % |
Meta-Classifier w/o Logistic Regression | 98.5112 % | 98.3621 % | 98.5907 % | 96.8153 % |
Meta-Classifier w/ Logistic Regression | 98.6362 % | 97.7252 % | 98.5680 % | 97.5432 % |
This table shows the performance of each of the different learning algorithms that were trained, validated, and tested with the OrthoDB arthropod gene clusters