Skip to main content
. 2016 Feb 24;17:101. doi: 10.1186/s12859-016-0955-3

Table 3.

Summary of arthropod machine learning model performance

OrthoDB Arthropod EQUAL OrthoDB Arthropod PROP
Algorithm Validation Testing Validation Testing
Neural Network 97.1815 % 96.8153 % 97.5452 % 96.5423 %
Suppor Vector Machine (SVM) 89.1351 % 88.0801 % 88.0668 % 88.2621 %
Random Forest 98.1362 % 95.9054 % 97.8748 % 95.5414 %
Naive Bayes 53.0628 % 52.5023 % 61.2229 % 60.3276 %
Logistic Regression 96.5905 % 97.2702 % 96.3064 % 96.3603 %
Meta-Classifier w/o Logistic Regression 98.5112 % 98.3621 % 98.5907 % 96.8153 %
Meta-Classifier w/ Logistic Regression 98.6362 % 97.7252 % 98.5680 % 97.5432 %

This table shows the performance of each of the different learning algorithms that were trained, validated, and tested with the OrthoDB arthropod gene clusters