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Abstract

Brain-computer interfaces (BCIs) promise to restore independence for people with severe motor 

disabilities by translating decoded neural activity directly into the control of a computer. However, 

recorded neural signals are not stationary (that is, can change over time), degrading the quality of 

decoding. Requiring users to pause what they are doing whenever signals change to perform 

decoder recalibration routines is time-consuming and impractical for everyday use of BCIs. We 

demonstrate that signal nonstationarity in an intracortical BCI can be mitigated automatically in 

software, enabling long periods (hours to days) of self-paced point-and-click typing by people 

with tetraplegia, without degradation in neural control. Three key innovations were included in our 

approach: tracking the statistics of the neural activity during self-timed pauses in neural control, 

velocity bias correction during neural control, and periodically recalibrating the decoder using data 

acquired during typing by mapping neural activity to movement intentions that are inferred 

retrospectively based on the user’s self-selected targets. These methods, which can be extended to 

a variety of neurally controlled applications, advance the potential for intracortical BCIs to help 

restore independent communication and assistive device control for people with paralysis.

INTRODUCTION

Conventional assistive devices for people with severe motor disabilities are inherently 

limited, relying on (and thereby encumbering) residual motor function for their use. Brain-

computer interfaces (BCIs) aim to provide a richer, more powerful command signal for 

assistive devices by decoding movement intentions in real time directly from neural activity 

(1–3). Intracortical BCIs have enabled people with tetraplegia to control cursors on 

computer screens, robotic and prosthetic arms, and other assistive devices by imagining 

moving their own arm (4–10).

A crucial component of a BCI is the decoder—an algorithm that estimates movement 

intention from neural activity (11, 12). The calibration of this decoder, which includes 

statistical modeling of the mapping from neural activity to movement intention, relies upon 
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an accurate estimation of the person’s movement intention. In people with paralysis, 

movement intention cannot be measured directly from actual movement. Instead, it is 

typically estimated by asking the user to imagine that she or he is controlling the movement 

of an effector (for instance, a computer cursor or robotic arm) that is moved automatically to 

a series of presented visual targets (4–6). For continuous BCIs (ones that allow the person to 

control movements in continuous space), the user’s intended movement at each moment can 

be assumed to be a vector pointing from the current location of the effector toward the 

instructed target. This inferred movement intention can be regressed against the population 

of neural activity collected during the task to map the observed neural activity to the desired 

movements, thereby calibrating the decoder (4–6). After decoder calibration using this 

“open-loop” task (so-called because the user is not actually controlling the cursor), the 

decoder can be used for real-time, “closed-loop” neural control. In this mode, the user’s 

neural activity directly commands cursor movement with real-time feedback. By adding 

click decoding (6, 13) to this continuous velocity decoding and enabling text entry via a 

neurally controlled communication interface (14), people with tetraplegia should, in 

principle, be able to use any point-and-click computer application under neural control that 

able-bodied individuals can use with a point-and-click mouse.

Some intracortical BCI studies in monkeys have demonstrated stable neural recordings for 

long periods of time, permitting the use of fixed decoders (15–17). However, in many other 

intracortical BCI studies, particularly in humans (18), the relationship between movement 

intention and neural activity can change over the time scale of minutes, hours, or days 

because of physiological and/or recording nonstationarities in neural signals (17–23). If 

these nonstationarities are ignored, a decoder calibrated on data from an earlier time period 

will become un-calibrated, and the quality of neural control will degrade. If signal non-

stationarity is expected to occur even occasionally, then successful clinical translation of 

BCIs requires that decoding methods are capable of compensating for it. One solution is 

recalibrating the decoder using data acquired during closed-loop neural control (“closed-

loop calibration”) by mapping neural activity to movement intention, which can be inferred 

to be directly toward the presented target (7, 8, 24–28). However, even when using closed-

loop decoder calibration, it would be cumbersome and disruptive to require the person to 

pause whatever practical BCI application he or she is using to perform a calibration task 

whenever signal nonstationarities occur. This strategy also limits the amount of data that can 

be used for decoder calibration to the amount of time the person is willing to perform the 

calibration task—and thereby limits the quality of the decoder [see, for example, (24)].

Instead, it would be desirable to calibrate the decoder using data collected during practical 

use of the BCI, in applications in which targets are not instructed. This would allow as much 

data as desired to be used to calibrate the decoder while eliminating the need to interrupt 

practical use of the BCI with explicit decoder calibration tasks. Because practical BCI 

applications do not have instructed targets (the user is free to select from many possible 

locations on-screen), it is not immediately evident how and whether movement intentions 

can be inferred during practical BCI use, and therefore how they could be mapped to neural 

signals to calibrate the decoder.
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Here, we show that the decoder can be calibrated by mapping neural activity acquired during 

practical BCI use to movement intentions that are inferred retrospectively, based on the 

location of the user’s self-selected targets. We demonstrate that retrospective target 

inference (RTI)–based calibration produces a decoder that performs as well as a standard 

decoder that is calibrated using instructed targets, as measured by the typing speed and 

accuracy of four participants with tetraplegia, using each type of decoder in a point-and-

click virtual keyboard. Combining RTI decoder calibration with two other self-calibration 

methods—correction of velocity bias during neural control and adaptive tracking of neural 

feature statistics during self-timed pauses—yielded stable neural control quality for long 

periods of self-paced BCI use, despite neural signal nonstationarities and without the need 

for disruptive recalibration tasks.

RESULTS

Four BrainGate participants with tetraplegia resulting from stroke (participants S3 and T2) 

or amyotrophic lateral sclerosis (ALS) (participants T6 and T7) were implanted with one to 

two 96-channel silicon microelectrode arrays in the hand/arm area of dominant motor 

cortex. Threshold-detected action potentials and/or the amount of power in the spike band 

were used as neural features for decoding. At the beginning of each 3- to 4-hour session 

(Fig. 1A), each participant performed a center-out task (the “standard calibration task”) to 

initialize and calibrate the Kalman filter (24). Once the standard closed-loop decoder 

calibration was completed, the task was switched to a neurally controlled point-and-click 

virtual QWERTY or radial keyboard communication interface, in which the participant was 

asked either to type standard words or phrases, to type their answers to questions posed by 

the clinical technician, or to type self-generated text. A preliminary version of these results 

was previously reported in abstract form (29, 30).

Mitigating nonstationarities in baseline rates

Cosine tuning curves have three characteristics that can theoretically change over time: the 

baseline rate, the preferred direction (PD), and the modulation depth (fig. S1). A shift in a 

unit’s baseline rate (fig. S1B), if ignored, would bias cursor motion toward (or opposite) that 

unit’s directional contribution to the decoder (31). To illustrate the prevalence and 

magnitude of baseline rate nonstationarities, Fig. 1B shows the baseline rates of all units 

used in the decoder in each block of a typical session from participant T7 (trial day 293).

To verify the utility of updating mean rate estimates, the difference between the mean rate of 

each unit in each block and its mean rate in the previous block (actual vs. used) was 

compared to the difference that would have been obtained if the decoder had not adjusted for 

mean rate nonstationarities and instead had used the mean rates from the first block for the 

entire session (actual vs. original) (Fig. 1C). In this session, the average (across units and 

blocks) actual vs. used mean rate difference (1.80 ± 0.12 Hz) was significantly smaller than 

the average actual vs. original mean rate difference (3.50 ± 0.22 Hz) (paired t test: t = 8.78, 

df = 639, P < 10−17). Thus, the previous block’s mean rates provided a significantly better 

estimate of the current baseline rates than did the original block’s mean rates, supporting the 

use of the more recent estimates by the decoder. In the self-paced typing sessions, the 
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intervals of time between blocks of neural control could become arbitrarily long, increasing 

the chances of large baseline shifts between blocks as well (fig. S2). Thus, in these sessions, 

the estimate of the baseline rates was iteratively updated in real time between periods of 

neural control and frozen at the onset of the next typing block.

Because baseline rates can also be unstable during blocks of neural control, it would at first 

seem desirable to iteratively update the estimate of each feature’s mean rate at faster time 

scales during neural control as well. However, if the time constant of mean estimation is 

short, then mean subtraction can dampen the effects of actual neural modulation related to 

voluntary movement intent and cause a subsequent bias opposite the intended movement. If 

the time constant is sufficiently long not to cause a bias, then mean subtraction takes longer 

to counteract biases resulting from actual signal nonstationarities. As soon as a bias appears, 

the user would then have to counteract the bias by modulating their neural activity, but then 

the neural activity resulting from counteracting the bias would enter into the estimation of 

the new baseline rates. Thus, the user would have to keep modulating their neural activity to 

counteract the bias; that is, the bias would effectively never disappear. Instead of seeking a 

time constant that minimizes the negative effects of each extreme, our solution to within-

block nonstationarities was to iteratively estimate and subtract out the direction and 

magnitude of the cursor velocity bias itself (Fig. 2). Specifically, the bias estimate was 

initialized to [0, 0] at the start of each block, and updated iteratively by computing an 

exponentially weighted running mean of all decoded velocities whose speeds exceeded a 

predefined threshold (Fig. 2, A and B) that included high-speed movements in the direction 

of the bias but excluded low-speed movements against the bias direction. This estimated 

bias was subtracted from the decoded velocity at each moment to command subsequent 

cursor movements (Fig. 2C).

Decoder calibration using RTI

Shifts in PDs, if ignored, can result in a rotational perturbation in cursor motion (fig. S1C) 

(28) or a “shearing” effect on the cursor’s velocity toward and opposite its contribution to 

the decoder (fig. S1D). The PDs across blocks from participant T7’s trial day 293 illustrate 

the prevalence and magnitude of PD nonstationarities (Fig. 1C and fig. S3). To verify that 

the measured PD of each unit in each block is closer to the model used for that unit in the 

updated decoder (represented by the two-dimensional vector in the corresponding row of the 

H matrix; see Materials and Methods) than it would have been with the original decoder in 

the session, we compared the angular difference between the actual vs. the used PDs of all 

the units used in the decoder in each block to the angular differences that would have been 

obtained if the decoder were never recalibrated after the first block (actual vs. original PDs). 

In this example session, the mean actual vs. used PD angle difference (34.1 ± 1.5 Hz) was 

significantly smaller than the mean actual vs. original PD angle difference (45.5 ± 1.7 Hz) 

(paired t test: t = 7.67, df = 637, P < 10−13) (Fig. 1E). Thus, the current PDs are much closer 

to their modeled PDs in the updated decoders than they are to the original PDs in the 

session; that is, PDs tend to change gradually over time, supporting the utility of periodic 

decoder recalibration.
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To keep the decoder calibrated during practical BCI use, we introduced a method by which 

closed-loop calibration can be applied even when the person selects his or her own targets 

among an unlimited array of possibilities: RTI-based decoder calibration. In RTI calibration, 

the users’ intended directions at each moment were retrospectively inferred on the basis of 

their subsequently selected targets (Fig. 3A), using some simple heuristics to determine 

which parts of each trajectory were most likely to correspond to true movement intent (see 

Materials and Methods). As with standard closed-loop calibration, these assumed movement 

intentions were then mapped to the neural activity recorded during typing. To verify that 

RTI decoder calibration preserves neural control quality despite nonstationarities in PDs, 

and that our heuristic assumptions about the person’s intended movement directions and 

times work as well as in a standard calibration task with presented targets, we compared the 

quality of neural control during typing using an RTI decoder versus using a standard 

decoder. After two to four blocks of neural typing using the standard decoder (mean, 16.4 

min; range, 5.5 to 45.8 min), the data acquired during typing were used to calibrate an RTI 

decoder. Then, the participant was asked to type for the remainder of the session using an 

RTI decoder for neural control (mean, 21.0 min; range, 2.2 to 94.5 min). Across 19 sessions 

from all four participants, the quality of neural control, as measured by the number of 

correct characters typed per minute (CCPM), was as high using the RTI decoder (mean, 12.0 

CCPM) as the standard decoder (11.4 CCPM); the mean within-session difference was 0.60 

± 0.58 (SEM) CCPM. Furthermore, session by session, the CCPM using the RTI decoder 

correlated significantly with the CCPM using the standard decoder (Pearson’s correlation 

coefficient r = 0.90; P < 10−6, based on a null distribution obtained by shuffling the session 

pairings 1 million times) (Fig. 3B). Thus, RTI calibration yields decoders that maintain 

neural control in each session for each participant at the same level as standard decoder 

calibration using explicitly prescribed targets.

Because CCPM reflects the net typing rate, it is a practical measure of the BCI’s utility for 

the participant. However, CCPM does not translate directly into quality of neural control 

because the virtual keyboards used here permit word prediction, each selection of a word in 

the radial keyboard requires the selection of the right arrow, and words that are not in the 

dictionary require two selections per letter (14). Thus, we also computed the number of 

correct selections per minute (CSPM), regardless of the number of characters that resulted 

from those selections (Fig. 3C). For the radial keyboard, in which all of the possible targets 

have the same size, this metric can also be translated into extrapolated bitrate (eBR), the 

number of bits of information conveyed per second (17, 32) “extrapolated” to a virtual 

keyboard. Using CSPM, the quality of neural control was again as high using the RTI 

decoder (mean, 15.0 CSPM) as using the standard decoder (14.6 CSPM); the mean within-

session difference was 0.41 ± 0.48 (SEM) CSPM. Session by session, the CSPM using the 

RTI decoder was significantly correlated with the CSPM using the standard decoder 

(Pearson’s correlation coefficient r = 0.96; P < 10−6). Again, these results suggest that RTI 

decoders perform just as well as standard decoders at maintaining typing rates while 

eliminating the need for disruptive calibration tasks with prescribed targets.

To verify the utility of RTI calibration in adapting the decoder to known PD shifts, we 

created a set of 80 simulated neurons with known PDs and a decoder whose model initially 
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matched those PDs. Then, we shifted the PDs of 25, 50, 75, or 100% of the simulated 

neurons by random amounts in random directions, and tested whether RTI calibration was 

able to bring the decoder’s observation model closer to the actual changed PDs and rescue 

simulated neural control. In the 25 and 50% random perturbation conditions, RTI was 

always (across 20 runs of each) able to closely match the model to the shifted PDs and 

rescue neural control within one to two simulated 3-min blocks (fig. S4). In the 75% 

perturbation condition, RTI successfully rescued the decoder and simulated control in 17 of 

the 20 runs. In the 100% random condition, RTI usually failed, as expected; however, in 2 of 

the 20 runs, the cursor was able to get to four of the targets by chance in the first block (the 

perturbations, although large for each individual simulated neuron, happened to offset each 

other enough to result in a fairly low decode error). These target acquisitions allowed RTI 

calibration to take place and initiated a feedback loop that brought the model estimate closer 

to the true PDs after the first calibration, thereby allowing more targets to be acquired in the 

next block and allowing the next RTI calibration to improve the model estimate further, and 

so on; within four simulated blocks, this cascade resulted in perfect simulated control. Thus, 

RTI calibration robustly tracks shifting PDs in small perturbation conditions, and sometimes 

even in moderately large perturbation conditions, as long as at least some targets are able to 

be reached. Note that the simulation had no capacity for error correction or local learning 

(28), but instead always “aimed” directly toward the target. Thus, a BCI user might be even 

better at compensating for a poor decoder by using these additional strategies.

Self-paced typing—To test whether the combination of mean tracking, bias correction, 

and RTI decoder calibration allows for stable neural decoding for long periods of practical 

BCI use, we ran five longer (1 to 2+ hours) self-paced typing sessions with the radial 

keyboard, three with participant T6 (Fig. 4 and movie S1) and two with participant T7 (fig. 

S5). (Participants S3 and T2 were no longer in the trial.) After the standard decoder 

calibration procedure, the participants typed for as long as they wanted, pausing and 

unpausing the BCI whenever they desired by selecting a specific sequence of two wedges. In 

each of these sessions, typing rates remained as high as they started throughout the entire 

period of self-paced typing: there was no significant decay in typing rate over time, as 

measured by a linear regression between time and CSPM (Fig. 5, A and B).

To verify that these self-calibration methods were necessary for the long-term stability of 

neural control, we also performed a session with each participant in which mean tracking, 

bias correction, and RTI decoder calibration were all turned off (Fig. 5, C and D). In both of 

these control sessions, the typing rates declined significantly over the same 1- to 2-hour time 

scales, as measured by a linear regression between time and CSPM (T6: r = −0.85, P < 

0.001; T7: r = −0.87, P < 10−6; Pearson’s correlation coefficient).

Neural typing rapidly deteriorated with the self-calibration methods turned off for 

participant T7. We therefore used the remaining time in the session to test whether neural 

control could be rescued by reinstating them (Fig. 5D). In the first rescue block, both 

interblock mean tracking and bias correction were reinstated. Typing was again possible 

(CCPM, 5.41; CSPM, 11.6), and, in fact, the typing rate exceeded that of the first typing 

block (CCPM, 3.5; CSPM, 5.4), suggesting that neural control was already impaired by 

nonstationarities in the minutes between the end of the standard decoder calibration period 
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and the end of the first typing block when the self-calibration methods were turned off. 

Then, an RTI decoder was calibrated using only the data collected in the first rescue block, 

and this decoder was used in the second rescue block; the typing rate remained high (CCPM, 

8.6; CSPM, 11.1). In the final rescue block, the standard decoder was used again, with bias 

correction and interblock mean tracking still on, and the typing rate still remained high 

(CCPM, 10.0; CSPM, 13.5). Thus, in all three of these “rescue” blocks, neural control was 

indeed rescued by reinstating the self-calibration methods. Furthermore, mean tracking and 

bias correction in the first rescue block were sufficient to bring neural control back to a level 

that allowed RTI calibration to function properly, as judged by its ability to maintain neural 

control in the second rescue block.

Multiday self-calibration—Last, we tested whether the combination of mean tracking, 

bias correction, and RTI decoder calibration allowed for stable neural decoding across 

multiple days of practical BCI use. Participant T6 (participants T2, S3, and T7 were no 

longer in the trial) free-typed using the BrainGate BCI, pausing and unpausing the system 

when she desired, across six sessions spanning 42 days, without the need for any instructed-

target calibration tasks after the first decoder was initialized on the first day of the series 

(Fig. 6). Typing speeds were maintained across the series of sessions at levels similar to or 

higher than the first block of the first session.

DISCUSSION

Neural signal nonstationarity (variation over time) is a major challenge for the translation of 

intracortical BCIs. Beyond physiological dynamics and plasticity, (apparent) changes in 

directional tuning and baseline rates can be large and sudden, likely largely attributable to 

non-physiological events, such as environmental noise and movement of the brain relative to 

the electrode (18). There are important differences in methodology between nonhuman 

primate (NHP) and human recordings that might contribute to these events being more 

numerous and problematic in humans (15–23). For example, NHP electrode arrays have 3-

cm wire bundles, whereas human electrode arrays have 13-cm wire bundles, making them 

more susceptible to picking up noise before amplification; human brains are larger, as is the 

intracranial (epidural, subdural, and subarachnoid) space, particularly in older humans, and 

therefore the human brain moves more within the skull relative to the NHP brain; and most 

NHP recordings are conducted in a controlled, noise-reduced laboratory setting, whereas our 

human intra-cortical recordings are conducted in the participant’s home with many potential 

sources of distraction and environmental noise—a deliberate choice, because that is the 

setting in which BCIs will ultimately be used.

To overcome the problems caused by neural signal nonstationarities in a practical BCI use 

setting, we have devised and implemented a method for RTI-based decoder calibration, 

which maps neural activity to movement intentions that are inferred retrospectively from the 

user’s self-selected targets. RTI decoders performed as well as standard decoders calibrated 

using explicit routines with predefined targets. With the combination of RTI calibration, 

adaptive feature mean tracking during pauses in neural control, and velocity bias correction 

during neural control, participants were able to use a self-paced point-and-click 

communication BCI for long periods of time (~2 hours on multiple days) without 
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degradation in neural control and without the need for disruptive calibration routines or 

technician intervention. In sessions with the three self-calibration methods turned off, neural 

control declined significantly over ~2-hour time scales.

In one session in which the ability to type rapidly disappeared with the self-calibration 

methods turned off, reinstating them rescued neural control and restored the person’s ability 

to type. In this session, the rescue block using the RTI decoder did not have higher 

performance than the two rescue blocks using the standard decoder that had been calibrated 

an hour earlier, suggesting that nonstationarities in PDs (which are mitigated by RTI 

calibration) did not have as catastrophic an effect on performance at these time scales as 

nonstationarities in baseline rates (which are mitigated by bias correction and between-block 

mean tracking). This result might partially be explained by the fact that PD shifts have an 

upper bound (180°), and perturbations in decoded PDs can partially be accommodated 

physiologically through re-aiming and neural plasticity (15, 28), whereas baseline shifts are 

unbounded and thus might not always be possible to accommodate. Although freezing the 

decoder’s tuning model and allowing the user to compensate for shifting PDs is a possible 

option, it would be preferable to relieve the user of this burden by instead adapting the 

decoder to shifting PDs using RTI.

The fastest point-and-click BCI-enabled typing rate previously reported by a person with 

tetraplegia was roughly 10 CCPM (14), sustained for a few minutes at a time, using a 

decoder that was calibrated using an explicit calibration task at the start of each session. 

Here, typing rates at least this fast, and up to ~2.5-fold faster, were sustained for much 

longer periods (1 to 2 hours across multiple days) without the need for intervening 

calibration tasks. These methods can be extended to other types of decoding algorithms and 

thus should provide for stable control as algorithms for neural decoding continue to evolve. 

They can also be extended to other point-and-click–based neurally controlled computer 

applications and could thereby potentially allow a BCI user to control a computer 

indefinitely without the need for disruptive calibration routines, an essential goal for the 

translation of current investigational BCIs to real-world application. With additional 

constraints on the assumptions of the intended movements, similar approaches could also 

conceivably be extended to multidimensional neural control, such as prosthetic and robotic 

arm reach and grasp (7, 8) or functional electrical stimulation of the person’s own limbs 

(33–35).

There are likely to be additional refinements that will further enhance the performance of 

RTI calibration. For example, the person’s intended cursor movement direction at each 

moment was assumed to have been directly toward the next selected target (7, 8, 24–28). 

However, more sophisticated methods could be incorporated that improve the estimate of 

the person’s true aiming direction by, for example, iteratively recomputing the aiming 

direction and tuning models until they converge (28) or estimating and taking into account 

the person’s internal model of the cursor’s expected behavior under neural control (36, 37). 

Also, the selection of particular segments of data to be included in filter calibration was 

based on a few simple heuristics in our study, but could conceivably be refined by taking 

into account information that can be inferred from the neural signals about the person’s 

attentional state, intention to move, or error signals in local field potentials (38–43). Finally, 
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the time constants and other parameters determining the behavior of each of our methods 

have been hard-coded to values that were anecdotally found to work well across many 

sessions and several participants. Although these techniques are relatively robust to precise 

parameter settings, it would be beneficial to create an objective, data-driven method by 

which they can automatically be set for an individual user, perhaps each day, based on the 

recent history of the specific kind of nonstationarity that each method is intended to 

mitigate. Similar methods and refinements could also be extended to the self-calibration of 

the click decoder.

RTI provides an unobtrusive way to reap the benefits of adaptive decoder calibration, 

allowing as much data as desired (collected during ongoing, practical BCI use) to be added 

to the decoding model. When the neural signals are stable over long periods of time, 

continually adding more calibration data would improve the accuracy of the tuning model 

and enable more complex tuning models to be used without as much risk of overfitting. 

When the neural signals are not stable, the decoder could be continually recalibrated using 

only the most recent and relevant closed-loop data. This process could be aided by tracking 

nonstationarities in the recorded signals and selecting the optimal window and weighting of 

calibration data based on the history of each unit’s activity. Together, these self-calibration 

methods should allow the tuning model to remain accurate and up-to-date indefinitely 

during ongoing, practical BCI use, helping to bring intracortical BCIs closer to extended 

clinical utility.

MATERIALS AND METHODS

Study design

Permission for these studies was granted by the U.S. Food and Drug Administration 

(Investigational Device Exemption) and the Partners Healthcare/Massachusetts General 

Hospital (participants S3 and T2), Providence VA Medical Center (participant T7), or 

Stanford University (participant T6) Institutional Review Board. The four participants in this 

study were S3, a woman with tetraplegia and anarthria resulting from brainstem stroke; T2, 

a man with tetraplegia and anarthria resulting from brainstem stroke; T6, a woman 

diagnosed with ALS; and T7, a man with ALS (table S1). Each was enrolled in a pilot 

clinical trial of the BrainGate2 Neural Interface System (NCT00912041). They were 

implanted with one or two 96-channel silicon microelectrode arrays (Blackrock 

Microsystems) in the dominant hand/arm knob area of motor cortex (44), as previously 

described (4, 6). All four participants contributed sessions to the RTI calibration 

comparisons; participants T6 and T7 additionally contributed to the self-paced typing 

sessions (which occurred after participants S3 and T2 exited the trial); and participant T6 

additionally contributed to the multiple-day self-calibration sessions (which occurred after 

participants S3, T2, and T7 exited the trial). The participants’ residual movement abilities 

varied widely.

The questions asked in this study were whether RTI decoder calibration worked as well as 

standard decoder calibration, and whether the suite of three self-calibration methods can 

maintain neural control for long periods of self-paced, practical BCI use. Neural control was 

assessed by CCPM or CSPM. Participants (but not the technicians running the sessions) 
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were blinded as to whether each self-calibration method was turned on or off in each self-

paced typing session. Because of the nature of the clinical trial, the frequency of research 

sessions that each participant contributed to this study depended on the amount of session 

time available relative to other ongoing BrainGate research sessions (each participated in 

one to three sessions per week, of which the current study was one of several concurrent 

studies). For the RTI versus standard decoder performance comparisons, all sessions were 

included in which at least one block of typing occurred using each type of decoder. Sessions 

of a given type began when the necessary software development was completed, and ended 

for each participant when he or she exited the BrainGate clinical trial or when at least two 

self-paced typing sessions and one control session were collected for that participant 

(whichever occurred first). The number of sessions for each participant thus varied across 

session types (table S2). For the multiday self-calibration series with participant T6, data 

collection ended when click decoding became unreliable, causing typing rate to decline.

Research session design

In each 3- to 4-hour recording session, neural signals were common-average–referenced 

(41) (fig. S6) and noncausally filtered (45), and threshold-detected action potentials and (in 

participant T6) the amount of power in the spike band were computed in each 20- to 100-ms 

bin for each channel. To calibrate the “standard” directional and click decoders, mean-

subtracted neural features were mapped to movement intentions that were inferred to be 

directly toward the next presented target in an open-loop and then closed-loop center-out-

back task (24). In closed-loop neural control, intended movements were decoded from the 

incoming neural features and translated in real time into the movement of the cursor using a 

steady-state Kalman filter (5, 46, 47). In most sessions, a linear discriminant analysis 

classifier running in parallel with the Kalman filter was used to decode neural cursor 

“clicks” (6, 13). Signal acquisition, feature preprocessing, decoder calibration, and session 

design are in Supplementary Materials and Methods.

After the standard decoder was calibrated, the task was switched to a neurally controlled 

point-and-click QWERTY or radial communication interface (14), initially using the 

standard decoder for neural control. Once sufficient data were acquired in the typing task, an 

RTI decoder was calibrated on the neural data acquired during typing. Then, the person was 

asked to continue typing, now using this RTI decoder for neural control. The RTI decoder 

was updated after every block using a sliding window of data spanning the most recent 20 

min to 1 hour of free-typing.

In later sessions with participants T6 and T7, sessions began with the standard calibration 

tasks, and then the technician initiated the self-paced typing task, allowing the participant to 

control the pace of the rest of the session. The participant was able to pause typing by 

selecting the right arrow and then the wedge containing the function “PAUSE.” Each pause 

initiated a file break and an RTI decoder calibration, and then the participant could resume 

typing when she or he was ready by selecting the right arrow and then the wedge containing 

the function “UNPAUSE.” When all three self-calibration methods were turned off, as in the 

other self-paced typing sessions, the participant continued typing until session time ran out, 

or until they no longer had enough neural control to type, pause, or unpause on their own. 
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T7 lost the ability to type early in the control session, which gave us an opportunity to test in 

the remaining time whether turning the self-calibration back on would help to rescue neural 

control. First, bias correction and between-block feature tracking were reinstated, and then, 

after a block of self-paced typing, an RTI decoder was built using only the data collected in 

that last typing block. The participant typed using this RTI decoder, paused when he desired, 

and then the original decoder was reinstated (with bias correction and mean tracking still on) 

for one last block.

Finally, in a series of sessions with participant T6 (participants S3, T2, and T7 were no 

longer in the trial), we tested whether these self-calibration methods allow for stable neural 

decoding across multiple days of practical BCI use. In the first session, the standard 

calibration task was used to initialize the decoder. This standard decoder was used in the 

first radial keyboard block. After that, an RTI decoder was calibrated during every self-

timed pause, using the data acquired during the previous 20 min to 1 hour of free typing. 

Each session after the first was initialized with the previous session’s last RTI decoder.

RTI decoder calibration

To calibrate the RTI decoder, the person’s intended movement direction was retrospectively 

assumed to have been directly toward his or her next selected target; then, similar to 

standard closed-loop calibration with presented targets, these retrospectively inferred 

intended directions were mapped to the corresponding neural data. Unlike in standard 

calibration, however, the timing of the person’s intended movements was self-paced and 

therefore unknown. We estimated which time periods were most likely to correspond to the 

user’s intent to move the cursor with the following heuristics: (i) use only the last 5 s 

preceding each target selection; (ii) use only those time bins in which the cursor moved 

closer to the next selected target; and (iii) remove bins from calibration in which the cursor 

was within a certain distance or temporal window of the next selected target (Fig. 3A; 

Supplementary Materials and Methods).

Adaptive feature mean tracking and bias correction

Nonstationarities in baseline rates were mitigated by updating our estimate of the baseline 

rate of each channel based on its mean rate in the most recent block, and subtracting that rate 

from the ongoing rate before sending each channel’s neural data to the decoding algorithm. 

In the self-paced typing sessions, baseline rate and variance estimates were also updated 

between blocks of neural control using a recursively defined running estimate (48). Within 

blocks of neural control, we also iteratively estimated and subtracted out the velocity bias 

directly by computing an exponentially weighted running mean of all decoded velocities 

whose speeds exceeded a predefined threshold, set to the 66th percentile of the decoded 

speeds estimated during the most recent filter calibration (Fig. 2). Details of feature tracking 

and bias correction are in Supplementary Materials and Methods.

Statistical analysis

Typing rate was quantified as CCPM and CSPM, each measured over the entire continuous 

block of typing. In the free-typing blocks, the intended text was assumed to have been the 

final text (each selection that was undone by backspacing was assumed to have been 
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unintended; thus, each backspace removed a character or selection from the total count when 

computing CCPM and CSPM). In the radial keyboard, in which all of the possible targets 

have the same size, CSPM was also translated into eBR, the number of bits of information 

conveyed per second (17, 32) extrapolated to a virtual keyboard. Two-tailed paired t tests 

were used to test for significant differences in the paired quantities shown in scatterplots, 

after confirming that the paired differences were normally distributed. Sample estimates are 

given as means ± SEM. P values for Pearson correlation coefficients were obtained by 

comparing the measured value to a null distribution obtained by shuffling the pairings 

1,000,000 times.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Neural signal nonstationarities
(A) Session timeline. Following an open-loop reference and decoder initialization block, a 

standard decoder was calibrated using several closed-loop center-out blocks, each lasting 3 

to 5 min. Using the standard decoder, the participant then typed words, phrases, sentences, 

and/or paragraphs in either a QWERTY or a radial virtual keyboard. An RTI-based decoder 

was calibrated using only the neural data acquired during typing, and the participant 

continued typing using an RTI decoder until the end of the session. (B) Mean threshold 

crossing rates in each block of an example session (participant T7’s trial day 293), showing 

each channel that was used by the decoder for at least one block in the session. Blocks are 

labeled as in (A). Every third channel is labeled with its electrode number (in this session, 

80 of 192 possible channels were selected for decoding in each block). For better 

visualization of the dynamic range of rate changes across blocks, rates are capped at 50 Hz 

(the highest actual whole-block baseline rate in this session was 68.3 Hz). (C) Directional 

tuning of the same channels in (B), obtained by regressing firing rates against target 

directions. Color represents the estimated PD, and the brightness of the color is proportional 

to the channel’s normalized modulation index. (The same PDs are shown in polar 

coordinates in fig. S3.) (D) The difference between each unit’s baseline rate in each block 
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(“actual”) and the rate used by the decoder in that block (“used”; that is, the previous block’s 

baseline rate) is plotted against the difference between that unit’s baseline rate in that block 

and its rate in the first block (“original”), which would have been used by the decoder for 

the whole session if features were not being updated. (E) The angular difference between 

each unit’s measured PD in each block and the tuning model used by the decoder for that 

unit in that block (“actual vs. used”) is plotted against the angular difference between the 

measured PD in that block and in the first block (“actual vs. original”), which would have 

been the tuning model if the decoder were never recalibrated after the first block.
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Fig. 2. Bias correction
(A) Representative example of bias estimation, from 800 s into the first typing block of 

participant T7’s first self-paced typing session (trial day 293). At each moment in time, the 

direction and magnitude of the velocity bias (red arrow) were estimated by computing an 

exponentially weighted running mean of all decoded velocities (grayscale dots) whose 

speeds exceeded the 66th centile of the speed distribution (red dashed circle) computed from 

the previous filter build. This threshold was empirically found to be high enough to exclude 

low-velocity movements generated in an effort to counteract existing biases. The shading of 

each dot represents time, with darker dots occurring closer to the present moment [the end of 

the highlighted period in (C)]. (B) Effect of bias correction at the same moment displayed in 

(A). The location of the cursor is represented as a black dot. The location of the 

(retrospectively inferred) target is a blue dot. The red arrow represents the estimated bias at 

that moment in time [same as in (A)]. The purple arrow indicates the decoded cursor 

velocity at that moment before bias correction. The blue arrow indicates the bias-corrected 

velocity. (C) Effect of bias correction on this entire block of typing. (Top) Velocity traces 

with the estimated bias (black traces) added in. The gray box indicates the time interval 

when individual velocity samples are displayed in (A). (Bottom) Actual cursor velocities 

that occurred in session, bias correction having been continuously applied in real time.
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Fig. 3. RTI decoder calibration
(A) To obtain a tuning model from data acquired during neural control in a practical BCI 

application, such as a virtual keyboard (14), the user’s intended movement direction is 

retrospectively inferred to be directly toward the next selected target (white arrows). The 

white curve reflects the portion of the preceding cursor trajectory assumed to result from the 

person’s movement intent and is used toward RTI decoder calibration. The red dashed 

segments of the trajectory are excluded from decoder calibration. The intended direction 

vectors are regressed against the corresponding neural activity to calibrate the RTI decoder. 

(B) Typing performance using the RTI decoder versus the standard decoder, measured using 

the number of CCPM. Data are from 19 sessions across four participants, including 5 self-

paced typing sessions (3 from participant T6 and 2 from participant T7, shown in unfilled 

Jarosiewicz et al. Page 20

Sci Transl Med. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



markers). The within-session correlation coefficient r and its corresponding P value are 

shown in plot. (C) Typing performance using the RTI decoder versus the standard decoder, 

measured using the number of CSPM. For the radial keyboard, this metric can be translated 

into extrapolated bitrate (eBR = CSPM × log2(N − 1)/60, where N = 8 targets). The eBR 

scale only applies to the radial keyboard sessions, not to the two sessions in which the 

QWERTY keyboard was used (*); for the QWERTY keyboard, eBR could not be computed 

easily because of the large variability in the size of the targets. Within-session correlation 

coefficient and P value are shown in plot. P values in (B) and (C) were obtained by 

comparing the measured value to a null distribution obtained by shuffling the pairings 

1,000,000 times.
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Fig. 4. Example of self-paced typing session for participant T6 on trial day 668
In the self-paced typing sessions, participants were able to pause typing when they wanted 

by selecting the right arrow in the radial keyboard and then the wedge containing “PAUSE.” 

Each pause initiated a file break and RTI decoder build, and then neural control was restored 

to allow the user to resume when desired, by selecting the right arrow and “UNPAUSE.” 

Until the unpause sequence was selected, no other wedges were active. (A) Photograph of 

the radial keyboard interface (left) with the PAUSE button about to be selected, and the 

notebook showing the text typed in this session (right). (B) Length of each block of typing, 

the number of CCPM and CSPM in that block, and the text entered (the vertical lines in the 

text of the last block indicate an “ENTER” character, which starts a new paragraph). In this 

session, an RTI decoder was calibrated during each of the self-timed pauses using all typing 

data acquired up to that point, except the last RTI decoder used only the previous three 

typing blocks. Note that the fastest typing rate in this session was achieved in the last typing 

block. The blurred words, represented by underscores in B, were redacted at the request of 

the participant.
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Fig. 5. All self-paced typing sessions: Summary of typing rates over time
Each session is depicted in a single hue, with darker bars indicating the time and duration of 

the self-paced blocks of typing in which a standard decoder was used, and lighter bars 

indicating the blocks in which an RTI decoder was used. Self-paced blocks of typing using 

an RTI decoder in that same session are depicted in bright colored bars of the same hue. (A) 

Three self-paced typing sessions for participant T6. (B) Two self-paced typing sessions for 

participant T7. (C) One session with T6 in which bias correction, feature tracking, and RTI 

decoder calibration were all turned off. Linear regression between time and CSPM: 

Pearson’s correlation coefficient r = −0.85, P < 0.001. (D) One session with T7 in which 

bias correction, feature tracking, and RTI decoder calibration were all turned off (black 

bars). Linear regression between time and CSPM: r = −0.87, P < 10−6. In this session, T7 

was unable to type at all in the third block; this occurred early enough in the session to test 

whether neural control could be rescued by reinstating the self-calibration methods 

(brackets). In the first and third rescue blocks, both bias correction and interblock feature 

tracking were reinstated, but the standard decoder was used (dark green bars). In the second 

rescue block (light green bar), an RTI decoder was used that was calibrated using data from 

the first rescue block.
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Fig. 6. Self-calibration across multiple sessions for participant T6
Data are in the same format as Fig. 5 (the dark bar indicates the block in which a standard 

decoder was used, and the light bars indicate blocks in which an RTI decoder was used). 

The dots above the bars and the diamonds below the bars indicate typing periods during 

which the cursor’s speed gain or click decoder threshold, respectively, were manually 

adjusted by the technician; in the last two sessions of this series, there was no technician 

intervention once typing started. Using the self-paced radial keyboard, participant T6 typed 

whatever she wished across six sessions spanning 42 days, pausing and unpausing the BCI 

whenever she wanted, without needing to perform any explicit calibration tasks after the 

first day. The first block of the first session in this series (participant T6’s trial day 759) used 

a standard decoder calibrated earlier that day; after that, an RTI decoder was calibrated 

during every user-timed pause in neural control using the data acquired during the previous 

20 to 60 min of typing. Each session after the first was initialized with the previous session’s 

last RTI decoder.
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