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Abstract  

Dengue is a viral disease of expanding global incidence without cures. Here we present a drug repositioning system 

(DenguePredict) leveraging upon a unique drug treatment database and vast amounts of disease- and drug-related 

data. We first constructed a large-scale genetic disease network with enriched dengue genetics data curated from 

biomedical literature. We applied a network-based ranking algorithm to find dengue-related diseases from the 

disease network. We then developed a novel algorithm to prioritize FDA-approved drugs from dengue-related 

diseases to treat dengue. When tested in a de-novo validation setting, DenguePredict found the only two drugs tested 

in clinical trials for treating dengue and ranked them highly: chloroquine ranked at top 0.96% and ivermectin at top 

22.75%. We showed that drugs targeting immune systems and arachidonic acid metabolism-related apoptotic 

pathways might represent innovative drugs to treat dengue. In summary, DenguePredict, by combining 

comprehensive disease- and drug-related data and novel algorithms, may greatly facilitate drug discovery for dengue. 

Introduction 

Dengue is the most common vector-born viral infection in humans and the most rapidly spreading viral disease 

globally. Over 40% of the world’s population live in dengue-endemic areas, and about 50 to 100 million people are 

infected with the dengue virus every year. Currently, there are no curative drugs for dengue [1-3]. Therefore, cost-

effective approaches are needed to rapidly discover innovative drug treatments for it. Drug repositioning is a drug 

discovery strategy that seeks to renew failed drugs or expand indications for approved drugs [4]. Currently, 

computational drug repositioning has not yet been applied to the search for drug treatments for dengue [5].   

Disease genetics provide strong evidence to connect genes to human diseases. Variations in several genes have been 

shown to influence susceptibility and resistance to the dengue virus, as well as disease progression and severity [6-9]. 

These genes are involved in multiple genetic pathways associated with dengue as well as many other diseases. We 

hypothesize that diseases that share high genetic relevance with dengue may offer insights into disease biological 

basis and provide unique opportunities in developing effective drug treatments for dengue. Here we present a drug 

repositioning system (DenguePredict) that first finds diseases that are genetically related to dengue and then use 

dengue-related diseases as a window into understanding the biology of dengue and discovering drug candidates to 

treat it. Our study is different from current disease genetics-based drug discovery studies, which often directly infer 

drug targets from disease-associated genes [10-11]. To directly translate disease genetics into therapeutics, we need 

to know that disease-associated genes are involved in disease pathogenesis. However, the genetic basis of many 

diseases, including dengue, still remains unknown and the effect size of many disease-associated genes, for instance 

disease-associated genes discovered through genome-wide association studies (GWAS), is generally modest. Here 

we present an alternative strategy to circumvent these obstacles. We use disease genetics data as merely a starting 

point to infer interconnections among thousands of diseases and then develop a novel drug repositioning strategy to 

infer drug treatments based on these genetically related diseases and their associated drug treatments. Our intuition 

is that if two diseases share high genetic relevance, it is likely that these two diseases are related in pathophysiology 

even though the exact biology may remain unknown, therefore drugs that are effective in treating one disease may 

treat the other.  

DenguePredict is a computation-based drug repositioning system. Computational drug repositioning approaches can 

be classified as drug-based, disease-based, and both [12-14]. Drug-based approaches leverage upon known drug 

molecular structures or functions such as chemical structure and properties, molecular docking, gene expression and 

drug side effects [15-21]. It was recognized that drug screens based on existing drugs might fail to identify new 

therapeutic mechanisms [22].  On the other hand, disease-based approaches put less emphasis on existing drugs and 

focus more on disease mechanisms and interrelationships, therefore have potential in discovering truly innovative 
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drugs. Disease-based approaches used disease-related data ranging from genome [10-11, 19-20] to phenome [23-

27]. Many drug repositioning systems used well-established computational and statistical algorithms, including 

regression/classification, machine learning, network analysis, and text mining [14]. The keys to the success of a 

computational drug repositioning system include both the unique datasets included in the system as well as 

innovative ways in integrating various disease- and drug-related data towards specific problems (i.e. specific 

diseases or drugs). 

There are three key components in DenguePredict. First DenguePredict contains a comprehensive drug-disease 

treatment relationship knowledge base (TreatKB) that we recently constructed from multiple heterogeneous and 

complementary data resources using advanced computational techniques including natural language processing, text 

mining and data mining [28-30]. TreatKB includes 9,216 drug-disease treatment pairs extracted from FDA drug 

labels, 111,862 pairs extracted from the FDA Adverse Event Reporting System (FAERS), a database supporting the 

FDA's post-marketing drug safety surveillance, 34,306 pairs extracted from 22 million published biomedical 

literature abstracts, and 69,724 pairs extracted from 171,805 clinical trials. All together, TreatKB contains 208,330 

drug-disease treatment pairs for 2484 drugs and 24,511 diseases. Second, we used disease genetics data from both 

the Online Mendelian Inheritance in Man (OMIM), a comprehensive database of human genes and genetic 

phenotypes [31], and the Catalog of Published Genome-Wide Association Studies from the US National Human 

Genome Research Institute (NHGRI), an exhaustive source containing the description of disease-/trait-associated 

single nucleotide polymorphisms (SNPs) from published GWAS data [32]. We then enriched these disease genetics 

data by manually curating dengue-associated genes from published biomedical literature. Third, we used a novel 

signal prioritization algorithm that we recently developed [25] to find candidate drugs from dengue-related diseases. 

 

Materials and methods 

DenguePredict is depicted in Fig. 1 and consists of the following steps: (1) we constructed an integrated genetic 

disease network (GDN) using disease-gene associations and protein-protein interaction data from multiple large data 

resources. We applied a network-based ranking algorithm to find dengue-related diseases from GDN; (2) we 

examined what kinds of diseases and genetic pathways were enriched among top-ranked diseases; (3) we developed 

a drug repositioning approach to systematically transfer drugs from dengue-related diseases to treat dengue itself. 

We evaluated DenguePredict using the only two drugs that have been tested in clinical trials for the treatment of 

dengue; and (4) in order to better understand the top-ranked repositioned drug candidates, we determined which 

classes of drugs were enriched and which common genetic pathways these drug candidates target. 
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Fig.1. The drug repositioning and analysis pipeline of DenguePredict.  

 

1. Construct an integrated genetic disease network (GDN) and find dengue-related diseases from GDN 

1.1 Construct GDNs 

We used disease-gene association data from three data resources to construct GDN. The first resource is the OMIM 

database [31]. We downloaded the OMIM database and mapped gene names to their corresponding approved human 

gene symbols as defined by the HUGO Gene Nomenclature Committee (HGNC) [33]. We extracted a total of 

15,462 disease-gene pairs, representing 5,983 diseases and 8,831 genes.  
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The second source is the GWAS Catalog [32]. We mapped SNPs to their associated strongest genes, which were 

subsequently mapped to their corresponding approved human gene symbols as defined by the HGNC. In total, we 

obtained 22,470 disease/trait-gene pairs, representing 881 diseases/traits and 8,689 genes.  

The third source is the published biomedical literature. We manually curated dengue-related biomedical literature 

and enriched dengue-associated genes included in OMIM and the GWAS Catalog. We classified curated dengue-

gene pairs into genetics-based (to enrich data in OMIM) and genomics-based (to enrich data in the GWAS Catalog). 

Due to the intensive manual effort, we only curated dengue-associated genes from literature. 

We first built two sub-networks separately using disease-gene associations from OMIM (GDN_OMIM) and the 

GWAS catalog (GDN_GWAS). We then integrated them into one network. On both sub-networks, two diseases 

were connected if their associated genes (proteins) interacted. The edge weights were determined by the numbers of 

protein-protein interaction (PPI) pairs between two diseases. The PPI data was obtained from the STRING database 

[34]. From the STRING database, we obtained a total of 4,137,054 human PPI pairs representing 17,756 human 

proteins. In building the integrated GDN, we mapped nodes in GDN_OMIM to the nodes in GDN_GWAS if the 

nodes represented the same diseases. The mapping was done based through the unified medical language system 

(UMLS) Concept Unique IDs (CUIs) [35].  The fact that only 29 diseases mapped between OMIM and GWAS 

Catalog demonstrate that the diseases in these two databases are largely complementary and that our mapping 

algorithm needs further improvements. For comparison, we also generated ten random networks by randomly 

shuffling the edges of the real GDN while maintaining the proportion of edges between diseases. The summary 

statistics of GDN and the two sub-networks are shown in Table 1. 

Network Nodes (diseases) (n) Edges (n) 

GDN_OMIM 4,848 882,751 

GDN_GWAS   856 200,758 

GDN 5,675 1,083,538, including 29 inter-network edges 

Table 1. Numbers of nodes and edges for two sub-networks and the integrated GDN. 

 

1.2 Find diseases that share high genetics with dengue from GDN 

Recently we develop network-based ranking algorithms to prioritize genes for a given disease [27, 36], to prioritize 

diseases for a given disease [25], and to prioritize diseases for a given microbial metabolite [37].  In this study, we 

applied these network-based ranking algorithms to find diseases that share high genetics with dengue. The iterative 

ranking algorithm is defined as: p
t+1
= (1− r)Wp

t
+ rp

0
, wherein W is the column-normalized adjacency matrix of 

the integrated GDN (the equal transition probability between GDN_OMIM and GDN_GWAS) and p
t
 is a vector in 

which the i-th element held the normalized ranking score of disease i at t-th iteration. The initial probability vector 

p
0

 contains dengue with a probability of 1.0. Other diseases are then ranked according to the steady-state probability 

vector, which is obtained by iterating the algorithm until the change between p
t+1

 and p
t
 is less than 10

-6
. 

2 Analyze top-ranked diseases that share a high degree of genetic similarity with dengue 

2.1 Analyze disease classes among ranked dengue-related diseases 

To systematically understand dengue-related diseases, we examined disease classes enriched among top-ranked 

diseases retrieved from GDN with dengue as the input. We classified these diseases into sixteen categories using the 

10th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD10) [38]. 

The ICD10 includes 22 highest-level disease classes. We used 16 of the 22 chapters and excluded six non-specific 

disease classes such as “Codes for special purposes," and “Injury, poisoning and certain other consequences of 

external causes."  Since the terms used in ICD10 are often different from those in GDN, we mapped disease terms in 

ICD10 to their synonyms through UMLS CUIs [35]. We retrieved a list of ranked dengue-related diseases from 

GDN. For diseases at 10 different ranking cutoffs (top 10%, 20%, … 100%), we calculated percentages of the 

sixteen disease classes among them. 

2.2 Analyze genetic pathways shared among ranked dengue-related diseases 

To gain insights into common mechanistic relationships shared among dengue-related diseases, we analyzed genetic 

pathways associated with them. Functions of highly enriched pathways might provide insights into common 

molecular mechanisms shared among dengue-related diseases.

 

First, we retrieved disease-associated genes from 

OMIM and from the GWAS catalog. We ranked each gene based on how many of the dengue-related diseases it was 
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associated with as well as the ranking scores of those diseases: Rgene = Rdisease_ i
i=1

n

∑ , where n is the number of 

dengue-related diseases that the gene is associated with and Rdisease_i is the disease ranking score (as determined by 

the network-based disease ranking algorithm described above).

 

We then analyzed gene-associated pathways using 

pathway data from the Molecular Signatures Database (MSigDB), a collection of 10,295 annotated genetic pathways 

or gene sets from multiple sources [39]. We ranked these pathways based on the number of genes associated with 

dengue-related diseases as well as the rank scores of those genes: Rpathway = Rgene_ i
i=1

n

∑ , where n is the number of 

genes that the pathway contains and Rgene_i is the gene ranking score as determined above. We compared top-ranked 

pathways for GDN to those for random GDNs in order to identify pathways enriched for dengue-related diseases.  

3 Reposition drugs associated with dengue-related diseases to treat dengue 

3.1 Drug repositioning algorithm  

We ranked FDA-approved drugs by the number of dengue-related diseases that they could treat as well as the 

ranking scores of those diseases. The drug prioritization algorithm is defined as: Rdrug = Rdisease_ i
i=1

n

∑ , wherein n is 

the number of dengue-related diseases that can be treated by a drug and Rdisease_i is the disease ranking score (as 

determined by the network-based disease ranking algorithm described above). 

3.2 De-novo validation using dengue drugs tested in clinical trials   

The inputs to the drug prioritization algorithm are a ranked list of dengue-related diseases (output from the disease 

ranking algorithm) and their associated drug treatments as determined by the drug-disease treatment pairs from four 

TreatKBs. Since the inputs contain neither dengue nor dengue-related treatment information, thereby our evaluation 

is in fact a de novo validation approach. Since no FDA-approved drugs are currently available for the treatment of 

dengue, we used drugs that have been tested in clinical trials for evaluation. We retrieved a total of 101 dengue-

related clinical trials from ClinicalTrials.gov (www.clinicaltrials.gov). While most of these trials test vaccines, five 

trials tested five different drugs: chloroquine (NCT00849602), ivermectin (NCT020445069), balapiravir 

(NCT01096576), celgosivir (NCT01619969), and uv-4B (NCT020661358). Among these five drugs, only 

chloroquine and ivermectin are FDA-approved drugs: chloroquine approved for treating malaria and amebiasis, and 

ivermectin approved for treating onchocerciasis and strongyloidiasis. For our drug repositioning purpose, ue used 

the two FDA-approved drugs (chloroquine and ivermectin) as the gold standard. We calculated the rankings of these 

two drugs among all FDA-approved drugs. The higher these two gold standard drugs were ranked, the better the 

ranking algorithm was. We compared the rankings of these two drugs derived from GDN to those from ten 

randomly generated GDNs. In addition, we also compared the performances across the four different TreatKBs .  

4 Analyze top-ranked drug candidates  

4.1 Analyze drug classes among ranked drug candidates 

We examined which classes of drugs were enriched among top-ranked repositioned drug candidates. We classified 

drugs using drug classes defined by the Anatomical Therapeutic Chemical (ATC) classification system [40]. The 

ATC system consists of 13 first-level codes, which were further classified into 94 second-level codes, 267 third-

level codes, 882 fourth-level codes, and 4,580 fifth-level codes, which are individual drugs. We experimented 

classifying drugs using different level ATC codes and found that the third level ATC codes provided sufficient but 

not too fine-grained granularity.  

4.2 Analyze genetic pathways targeted by repositioned drug candidates 

To understand the common mechanisms of action underlying top-ranked repositioned drug candidates, we analyzed 

genetic pathways targeted by these drug candidates. The method for drug pathway analysis was similar to that used 

for disease pathway analysis as described above, except that the drug-target gene association data was from 

DrugBank [41]. We compared top-ranked pathways based on GDN to those based on random GDNs in order to 

identify pathways enriched for repositioned dengue drug candidates. Functions of these enriched pathways might 

provide insights into common molecular mechanisms targeted by drug candidates. We performed literature search 

for supporting evidence that these enriched pathways might be targeted for dengue treatments. 
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Results  

1. Infectious and parasitic diseases, neoplasms, and diseases of the digestive system are enriched among top-

ranked dengue-related diseases 

Using dengue as the input, we retrieved a ranked list of 4729 diseases from GDN. The disease class “Certain 

infectious and parasitic diseases” was highly enriched among top-ranked diseases: 9.73% among top 10% ranked 

diseases as compare to 1.46% among all diseases. This is expected, since dengue is known to share genetics with 

other infectious diseases such as malaria, mycobacterium tuberculosis, and HIV [42-44]. Therefore, the enrichment 

of this disease class among diseases retrieved from GDN roughly served as a positive control in validating both 

network construction and disease ranking algorithms. Interestingly, two other disease classes “Neoplasms” and  

“Diseases of the digestive system” were also significantly enriched among top-ranked diseases. For comparison, 

none of the sixteen disease classes were enriched when the randomly generated GDNs were used (data not shown). 
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Fig.2. Three ICD10AM disease classes were enriched among top-ranked diseases retrieved from GDN. 

2. Immune-related pathways may be the common mechanisms underlying dengue and its related diseases  

Fig.3 shows the top fifteen enriched pathways and their percentages among all retrieved pathways. Among these 

enriched pathways, at least nine pathways are involved in human immune system, including “REACTOME 

IMMUNE SYSTEM,” “KEGG FC EPSILON RI SIGNALING PATHWAY,” and “REACTOME ADAPTIVE 

IMMUNE SYSTEM.”  Experimental and observational findings in past years suggest that immune system-related 

mechanisms are involved in dengue pathophysiogenesis. Dengue fever is characterized by thrombocytopenia and 

vascular leak with altered plasma cytokine profiles.
 
Suggested immune mechanisms include platelet activation and 

apoptosis modulating monocyte inflammatory responses, increased levels of mediators like tumor necrosis factor-α 

and interleukin-1β  [45], interplay between plasmablasts, platelets, and complements [45], disruption of the 

interaction of Daxx and NF-kB to induce CD137-mediated apoptosis [47], immunodominance changes [48], the 

involvement of Notch signaling pathways to modulate host adaptive immune response and altered profiles of 

cytokines produced by cross-reactive T cells [49].  
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Fig.3. Fifteen top-ranked pathways and their percentages among all retrieved pathways from GDN or random GDNs. 
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Four cancer-related pathways were also enriched, including “KEGG PATHWAYS IN CANCER,” “KEGG 

ENDOMETRIAL CANCER,” “KEGG PROSTATE CANCER,” and “KEGG COLORECTAL CANCER.” The 

same enrichment for cancers was observed in above disease class enrichment analysis. However, we could not find 

literature evidence supporting the direct relationship between dengue and cancers.  Since immunopathogeneis are 

known to be involved in many cancers and dengue, common immune mechanisms may underlie both dengue and 

cancers. Studies have shown that carica papaya leaves exhibits both anti-tumor activity and immunomodulatory 

effects in dengue [50-51]. In summary, by systematically analyzing genetic pathways involved with dengue-related 

diseases, we can gain deeper insights into molecular mechanisms underlying dengue and its related diseases. 

3.  DenguePredict found the two clinical trial dengue drugs and ranked them highly  

As shown in Table 2, DenguePredict consistently ranked chloroquine highly (ranging from top 0.96% to 5.98%). 

Ivermectin was ranked lower than chloroquine, but still significantly higher than those derived with random GDNs. 

Comparing across four TreatKBs, DenguePredict using the MEDLINE-based TreatKB performed the best, with 

chloroquine ranked at 0.96% and ivermectine at 22.75%. Combining drug-disease treatment pairs from all four 

databases did not improve the performance (data not shown). The fact that we ranked both chloroquine and 

ivermectin highly demonstrated the validity of our repositioning strategy. The output of DenguePredict is a list of 

FDA-approved drugs ranked based on their likelihood for treating dengue.   

TreatKB GDN GDN_Random Improvment (%) 

Chl Iver Chl Iver Chl Iver 

FDA-approved 4.65% 54.85% 20.85% 77.32% 348.38% 40.97% 

Post-market 5.98% 43.04% 24.69% 61.75% 312.87% 43.47% 

ClinicalTrials 5.83% 56.76% 18.56% 72.91% 218.35% 28.45% 

MEDLINE 0.96% 22.75% 8.37% 37.00% 771.88% 66.64% 

Table 2. Drug reposition evaluation across four different TreatKBs. 

4. Immune system-related drugs are highly enriched among top-ranked repositioned drug candidate   

The top 10 ranked repositioned drug candidates using the four TreatKBs are shown in Table 3. Drugs that were 

consistently ranked highly across four TreatKBs include many corticosteroids (i.e. methylprednisolone, 

dexamethasone, prednisone, and prednisolone).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Top 10 drug candidates repositioned from four TreatKBs.  

 

We examined which classes of drugs were enriched and analyzed genetic pathways associated with highly-ranked 

drug candidates. As shown in Fig. 4, the most enriched (more than 25-fold enrichment as compared to random 

GDNs) drug class was “Other analgesics and antipyretics.” This finding is consistent with the current symptomatic 

and supportive treatment for dengue using analgesic-antipyretic therapy for the relief of lethargy, malaise, and fever 

associated with the disease [2]. The second most enriched drug class was “anti-inflammatory and anti-rheumatic 

products” (15-fold enrichment), which includes corticosteroids. Corticosteroids are potent anti-inflammatory agents 

with a wide range of effects on the immune system. Observational studies have suggested that corticosteroids may 

benefit people with dengue-related shock and may prevent disease progression [52]. Our study provides independent 

mechanistic evidence supporting treatment benefits of corticosteroids in the treatment of dengue.  

Rank FDA-approved Post-market ClinicalTrials MEDLINE 

1 Methylprednisolone Dexamethasone Chlordiazepoxide Nitric oxide 

2 Betamethasone Prednisolone Bevacizumab Heparin 

3 Triamcinolone Nitric oxide Cisplatin Methotrexate 

4 Dexamethasone Prednisone Paclitaxel Celecoxib 

5 Prednisolone Fentanyl Carboplatin Prednisolone 

6 Prednisone Methylprednisolone Gemcitabine Iron 

7 Cortisone Aspirin Doxorubicin Adenosine 

8 Hydrocortisone Methotrexate Dexamethasone Vitamin c 

9 Fluorouracil, 5-fu Acetaminophen Cyclophosphamide Indomethacin 

10 Mometasone Celecoxib Prednisone Resveratrol 
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Fig. 4. The 25 most enriched (>=2 fold enrichment) drug classes for repositioned drug candidates. 

5. Repositioned drug candidates mainly target apoptosis- and immune-related pathways 

Fig. 5 shows top 21 enriched pathways for repositioned drug candidates. The pathway involved in arachidonic acid 

metabolism showed 28-fold enrichment as compared to random networks. Arachidonic acid (AA) is a lipid second 

messenger generated by hydrolysis of membrane phospholipids via phospholipase A2 (PLA2). Malewicz et al. 

reported that dengue virus was able to activate PLA2 and generate AA [53]. Jan et al. showed that AA, superoxide 

anion, and NF-kappa B are sequentially involved in dengue virus-triggered apoptotic pathways in human 

neuroblastoma cells and that inhibition of PLA(2) activity by the PLA(2) inhibitors diminished DEN-2 virus-

induced apoptosis [54]. Many of these top enriched pathways are related to immune systems, including natural killer 

cell mediated cytotoxicity, complement pathway, immunoregulatory interactions, and B lymphocyte pathways. This 

is consistent with the pathway analysis for dengue-related diseases. In summary, our study indicates that 

repositioned drug candidates that target arachidonic acid metabolism and/or immune systems might benefit people 

with dengue. While we did not perform literature search for all other enriched pathways, further investigating these 

pathways may generate novel hypotheses for dengue drug discovery.   
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Fig. 5. Top pathways that were targeted by repositioned drug candidates.  
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Discussion 

By leveraging upon vast amount of knowledge of disease genetics, drug targets, protein interactions, and drug 

treatments, DenguePredict effectively ranked the only two drugs currently under clinical trial for the treatment of 

dengue highly. Our approach also suggested potential genetic pathways involved in disease mechanisms and 

mechanisms of actions of the drug repositioning candidates, which warrants further investigation. DenguePredict is 

highly generalizable and can easily be retargeted to find drug candidates for other genetic diseases. We expect that 

its performance will vary among specific diseases and critically depends on the data (both available disease genetics 

and drug treatments) included for each disease.  

We were unable to compare DenguePredict to existing computational drug repositioning systems since these 

systems did not include dengue in their study. For example, in a recent study, Gottlieb et al used disease-disease 

similarities and drug-drug similarities from multiple databases to construct a classifier (PREDICT) to determine 

treatment associations between 593 drugs and 313 diseases [24]. While PREDICT is among currently most 

comprehensive drug repositioning systems, dengue was not included. On the other hand, DenguePredict included 

significantly more drugs and diseases: 5,675 diseases on GDN; 2,484 drugs and 24,511 diseases in TreatKBs. 

Our study can be further improved in several aspects. First, we can further reprioritize the generated ranked list of 

repositioned drug candidates by their costs.  Dengue is most prevalent in developing countries; therefore costs of 

drugs needs to be considered. Second, our study generated lists of putative genetic pathways that might be involved 

with dengue-related diseases and drug candidates, however these candidates will evolve as new disease-associated 

genes are discovered.  For example, as new genes are discovered for dengue or other diseases, more diseases will be 

linked to dengue from the updated genetic network. Third, we validated our repositioning algorithm using the two 

clinical trial dengue drugs. Due to the small size of our testing data, we are still uncertain about the precision of top-

ranked drug candidates. Experimental or clinical studies are needed to test those candidates.  
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