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Abstract 

Accurate temporal identification and normalization is imperative for many biomedical and clinical tasks such as 

generating timelines and identifying phenotypes. A major natural language processing challenge is developing and 

evaluating a generalizable temporal modeling approach that performs well across corpora and institutions. Our 

long-term goal is to create such a model. We initiate our work on reaching this goal by focusing on temporal 

expression (TIMEX3) identification. We present a systematic approach to 1) generalize existing solutions for 

automated TIMEX3 span detection, and 2) assess similarities and differences by various instantiations of TIMEX3 

models applied on separate clinical corpora. When evaluated on the 2012 i2b2 and the 2015 Clinical TempEval 

challenge corpora, our conclusion is that our approach is successful – we achieve competitive results for automated 

classification, and we identify similarities and differences in TIMEX3 modeling that will be informative in the 

development of a simplified, general temporal model.  

Introduction 

Accurate temporal identification and normalization is imperative for many biomedical and clinical tasks including 

generating timelines
1
, identifying phenotypes

2
, and creating problem lists

3
. Natural language processing (NLP) can 

help enrich event, phenotype, and problem detection by providing temporal context to event descriptions extracted 

from clinical texts. A major NLP challenge is developing and evaluating a generalizable temporal modeling 

approach that performs well across corpora and institutions. Few NLP system studies evaluate the generalizability of 

clinical temporal models and information extraction approaches that were developed for a particular use case or 

institution. To date, several NLP community challenges - 2015 Clinical TempEval
4
, based on the THYME corpus

5
, 

2012 i2b2
6
, and the 2014 ShARe/CLEF eHealth challenges

7
 - have attempted to encourage benchmarking and 

system evaluation for temporal extraction by applying adapted versions of the TimeML model
8
 to clinical texts of 

various report types from different institutions (Beth Israel Deaconess Medical Center, Partner’s Healthcare, and 

Mayo Clinic). The TimeML model enables automated temporal reasoning from text by defining a number of 

components, of which three components are central: events (e.g., diseases), time expressions (TIMEX3s, e.g., 

dates), and time relations (e.g. disease after date). Through this, it is possible to order events in time with respect to 

each other, and with respect to time expressions in the texts. Correctly identifying time expressions within a 

temporal reasoning system is necessary to capture specific mentions of time, and thus enable time anchoring and 

positioning of relevant events from narratives. These community challenges have established the state-of-the-art 

performance for NLP identification of these three core components in the adapted TimeML models.  

For temporal modeling, overall performance has been published for each community challenge; however, there are 

few studies reporting system performance across different clinical corpora, and there has not been any in-depth 

analysis of performance on different temporal model subtypes. Our long-term goal is to create a generalizable 

temporal reasoning model that leverages and simplifies existing models. We initiate our work on reaching this goal 

by focusing only on TIMEX3 identification. In particular, we present a systematic approach to 1) generalize existing 

solutions for automated TIMEX3 span detection, and 2) assess similarities and differences in different instantiations 

of TIMEX3 models applied on different clinical corpora. 

In the aforementioned challenges, successful approaches for TIMEX3 span detection, that is, correctly identifying 

and extracting specific mentions of time expressions in text such as “tomorrow”, “14 April 1998”, “for two weeks”, 

have either employed rule-based systems or machine learning approaches using lexical and syntactic features in 

combination with rule-based information. In the 2012 i2b2 challenge, the top performing approaches resulted in F1 

scores between 0.8-0.91 for overlapping TIMEX3 spans
6
. The results in the 2014 ShARe/CLEF eHealth challenge 
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were lower: 0.37 overlap F1
7
. Our research lab, the Biomedical Language Understanding Laboratory (BluLab), 

recently participated in the 2015 Clinical TempEval challenge
9
. Similar to other successful, high-performing NLP 

approaches, we developed a machine learning approach using local contextual features and information from a rule-

based system to identify TIMEX3 spans.  Our team ranked first on the TIMEX3 span detection task in this 

challenge, resulting in an overall exact F1 of 0.72. However, official scores in these challenges only report overall 

results for TIMEX3 detection. Moreover, to our knowledge, there are few studies reporting system performance 

across different clinical corpora, along with an in-depth analysis of similarities and differences in TIMEX3 

annotations.  

Methods 

We performed our study on two corpora
1
: the 2015 Clinical TempEval corpus, and the 2012 i2b2 challenge corpus. 

The Clinical TempEval corpus was created within the THYME project
5
 consisting of 440 clinical notes and 

pathology reports for colon cancer patients from the Mayo clinic (in total 293 documents for training, 147 for test). 

The i2b2 corpus consists of 310 discharge summaries (190 training, 120 test) from Partners Healthcare and the Beth 

Israel Deaconess Medical Center. We chose these two corpora for this study because they employ similar, but not 

identical, temporal models, and were specifically developed for temporal reasoning evaluation. Three main steps 

were employed: 1) TIMEX3 model mapping, with the aim of generating a common, comparable model, 2) state-of-

the-art TIMEX3 classification assessment, with the aim of evaluating top performing TIMEX3 system approaches 

across corpora, and 3) qualitative error analysis, feature ablation evaluation and TIMEX3 type characterization, with 

the aim of completing an in-depth analysis. 

Common TIMEX3 type model  

In our attempt to characterize and analyze similarities and differences in separate instantiations of TIMEX3 models 

applied on different corpora, the first step was to create a common TIMEX3 type model. The two corpora employ 

slightly different TIMEX3 definitions and types. The Clinical TempEval corpus contains six TIMEX3 types: DATE, 

TIME, DURATION, PREPOSTEXP, QUANTIFIER and SET, in contrast to the i2b2 corpus which defines four 

types: DATE, TIME, DURATION and FREQUENCY. To enable comparison and analysis, we map the more fine-

grained Clinical TempEval TIMEX3 types to the i2b2 types in the following way: PREPOSTEXP annotations are 

merged to DATE, and QUANTIFIER and SET annotations are merged to FREQUENCY. Examples are provided in 

Table 1. For our experiments, we maintained the training and test splits from each respective challenge corpus. 

Table 1. Mapped TIMEX3 types and examples from the 2012 i2b2 and THYME annotation guidelines. 

TIMEX3 type Example 

DATE 05-04-1998, 29, February 2005, next week 

     PREPOSTEXP Postoperative 

DURATION the first few days, the next 12 hours 

FREQUENCY several times a day, daily 

     QUANTIFIER twice 

     SET three times weekly 

TIME 5.30 PM 

 

Time expression extraction using ClearTK 

To generalize existing solutions for automated TIMEX3 span detection, we applied the top-performing TIMEX3 

span detection approach from the 2015 Clinical TempEval challenge
9
. This is a UIMA-based machine learning 

solution using the ClearTK framework
10

. A separate support vector machine (SVM: Liblinear) sequence label 

classifier (CleartkSequenceAnnotator) was created for each TIMEX3 type, where parameter setting (C-value) was 

determined by a grid search on a subset of the training data and set manually on the final model. The data was 

preprocessed with cTAKES v. 3.2 to extract lexical, morphological, and syntactic features
11

. For the TIMEX3 types, 

gazetteer information specific to each type was also added as features, based on an adapted version of HeidelTime
12

. 

A Begin-Inside-Outside chunking representation was used, with the following features: the current token, the current 

token with the two last characters stripped (decades ! decad), part-of-speech tag, numeric type (e.g. digit , 

                                                
1
 University of Utah Institutional Review Board approval was obtained for using these corpora for research 
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alphanumeric), capital type (e.g. all in upper case, mixed case), lower case, context tokens
2
, and whether or not the 

token is found in the TIMEX3 type-specific gazetteer. Compared to the successful approaches in the 2012 i2b2 

challenge that used machine learning, this approach is similar, but not identical – for instance, Xu et al.
13

 employed 

the conditional random fields (CRF) algorithm and slightly different features. Roberts et al.
14

 used CRF for TIMEX3 

boundary detection and SVM for type classification. Most other solutions were entirely rule-based
6
. 

Three SVM models were trained using the datasets: 1) i2b2 training data, 2) Clinical TempEval training data, and 3), 

merged model with the two training data sets combined. System performance was evaluated on the i2b2 test data 

and the Clinical TempEval test data releases, using exact and overlapping precision, recall, and F1 as main outcome 

measures. We used the official evaluation script provided in the 2015 Clinical TempEval challenge
3
. 

Qualitative error analysis, feature ablation evaluation and TIMEX3 type characterization 

A qualitative error analysis to identify commonalities and differences was performed. We analyzed true positives on 

the results obtained by training a model on one corpus and evaluating on the other, to identify commonalities 

between the corpora and to characterize “core” TIMEX3 types. We also analyzed false positives and negatives, to 

identify and characterize differences between the annotations. Error analysis was performed on exact match only. 

Additionally, we performed a feature ablation study on the results obtained by this training/testing setup as well as 

on the results obtained when training a merged model with both corpora, evaluated on each test set. We built 

separate models with one feature removed each time, to identify which features seem to contribute the most for this 

task (i.e., if results are worse when removing one feature compared to using all features, this is an indication of an 

important feature).  

Results 

We present classification results on the i2b2 and Clinical TempEval test sets and results from the qualitative error 

analysis. First, we evaluate performance on within-corpus models. Second, we analyze performance on the two test 

sets on applied on the model trained on 1) i2b2 training data, 2) Clinical TempEval training data, and 3) merged 

training data. Finally, we present results from the qualitative error analysis, feature ablation evaluation and TIMEX3 

type characterization, using the outputs from applying each test set on the model created from the other corpus’ 

training data. Overall corpus statistics are presented in Table 2.  

 

Table 2. TIMEX3 count (prevalence) statistics per type and corpus - Clinical TempEval and 2012 i2b2 datasets. 

TIMEX3 Type Clinical TempEval i2b2 

 Training data Test data Training data Test data 

DATE 2892 (75.7%) 1594 (76.7%) 1640 (69.4%) 1222 (67.1%) 

DURATION 434 (11.4%) 200 (9.6%) 406 (17.2%) 341 (18.7%) 

FREQUENCY 377 (9.8%) 225 (10.9%) 249 (10.5%) 197 (10.9%) 

TIME 118 (3.1%) 59 (2.8%) 69 (2.9%) 60 (3.3%) 

Total 3821 (100%) 2078 (100%) 2364 (100%) 1820 (100%) 

 

Temporal Information Extraction using ClearTK 

In Table 3, classification results on the two test datasets when applied on the model built from their corresponding 

training data are shown, strict and overlap. Results for the majority TIMEX3 type DATE are best overall. Results for 

DURATION and FREQUENCY are considerably higher when using overlapping evaluation criteria, in particular 

for DURATION, from 0.60 to 0.76 F1 for i2b2, and from 0.47 to 0.70 for Clinical TempEval. Precision is 

considerably higher for FREQUENCY when using overlapping evaluation, from 0.71 to 0.84 for i2b2 and 0.56 to 

0.78 for Clinical TempEval. Results for the least frequent TIMEX3 type TIME differ between the corpora: for the 

                                                
2
 different context windows of surrounding tokens were employed for each TIMEX3 type as a result of experiments on the 

Clinical TempEval training data: 5 preceding, 3 following for DATE, 3/3 for TIME, 4/4 for DURATION and 5/3 for 

FREQUENCY  
3
 http://alt.qcri.org/semeval2015/task6/index.php?id=software 
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i2b2 corpus, precision is high when using overlap evaluation, but results are low overall for the Clinical TempEval 

corpus.  

Table 3. Classification results for the mapped TIMEX3 types on the Clinical TempEval (CTE) and the i2b2 test 

datasets using the top-performing 2015 Clinical TempEval approach on the corresponding corpus training data. 

P=precision, R=recall. 

 

TIMEX3 type strict - CTE/i2b2 overlap - CTE/i2b2 

  P R F1   P     R    F1   

span               0.80/0.79 0.66/0.70 0.72/0.74 0.92/0.93 0.76/0.81 0.83/0.87 

class                       0.78/0.77 0.65/0.69 0.71/0.72 0.88/0.87 0.74/0.78 0.80/0.82 

DATE                    0.82/0.80 0.76/0.78 0.79/0.79 0.90/0.89 0.83/0.86 0.86/0.88 

DURATION         0.55/0.65 0.41/0.55 0.47/0.60 0.81/0.83 0.61/0.70 0.70/0.76 

FREQUENCY      0.56/0.71 0.25/0.46 0.35/0.56 0.78/0.84 0.36/0.54 0.49/0.66 

TIME                     0.42/0.6 0.08/0.25 0.14/0.35 0.42/0.92 0.08/0.38 0.14/0.54 

 

To further analyze differences and commonalities, the two test sets were also evaluated on all three created models. 

The least frequent TIMEX3 type (TIME) is not included since the number of training instances is insufficient. Not 

surprisingly, results are worst when applying each test set on the model created from the other corpus (e.g. training 

on Clinical TempEval and testing on i2b2), Figure 1. Specifically, results for DATE drop from 0.79 strict F1 (0.88 

overlap F1) to 0.53 (0.61) on the i2b2 corpus, and from 0.79 (0.86) to 0.44 (0.57) on the Clinical TempEval corpus. 

For DURATION and FREQUENCY, the drop is from 0.60 (0.76) to 0.23 (0.44) and 0.56 (0.66) to 0.11 (0.18) on 

the i2b2 corpus. On the Clinical TempEval corpus, the drop is from 0.47 (0.70) to 0.31 (0.53) for DURATION and 

from 0.35 (0.49) to 0.06 (0.10) for FREQUENCY. Moreover, creating a merged model from the two training sets 

did not improve overall results for either test set (0.69 overall span strict F1 when evaluated on the i2b2 test set, and 

0.69 when evaluated on the Clinical TempEval test set). However, results for DURATION on the Clinical 

TempEval test set are slightly improved when applied on the merged model (0.51 strict F1, 0.76 overlap). 

  
 

Figure 1. Classification results per TIMEX3 type DATE, DURATION and FREQUENCY, strict and overlap. Three 

models: i2b2 model, Clinical TempEval (CTE) model, and merged (the two training sets combined) model, each 

evaluated on the i2b2 and CTE test sets.  
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Qualitative error analysis, feature ablation evaluation and TIMEX3 type characterization 

We perform a qualitative error analysis on true positives, false negatives, and false positives (exact match) from the 

system output of each test set applied on the model created from the other corpus’ training data. This way, we are 

able to characterize corpus-specific annotations, and also commonalities between the two corpora. 

 
Figure 2. Venn diagram depicting error types and examples for each test set, based on system predictions for the 

i2b2 test set applied on the model built on the Clinical TempEval training data, and vice versa. 

 

Most true positives on both test sets for DATE cover explicit dates such as “9 November, 2010”. These are also the 

most common DATE annotations in both corpora. However, DATE annotations such as “today”, “this time”, “many 

years ago”, “the same time” are also correctly classified in both test sets. For DURATION and FREQUENCY, 

common annotations include expressions like “several years” and “every x hours”. Examples are given in Figure 2. 

However, the differences outweigh the commonalities between the corpora, as evidenced by the results. The Clinical 

TempEval DATE annotations contain a larger number of pre-/post-operative expressions that are not covered in the 

i2b2 corpus, as well as relative DATE instances such as “recent” and “now”. The i2b2 corpus, on the other hand, 

contains more DATE expressions typical for the document type (discharge summaries), such as “day of life x”, 

“hospital day x”, “day of delivery”, “day of transfer”, “the time of discharge”, that are not covered in the TempEval 

model. This is reflected also in the false positive results: when evaluating the i2b2 test data annotations on the 

Clincal TempEval model, expressions such as “currently”, “recent”, “intraoperatively”, “the future”, “the time”, 

“that time” are erroneously predicted as DATEs. 

For DURATION, the i2b2 corpus contains expressions such as “>48 hours”, “the entire night”, “one months time”, 

“overnight”, “the next several hospital days” that are missed by the Clinical TempEval model, while the i2b2 model 

fails to represent Clinical TempEval DURATION annotations such as “quite a few years”, “a while”, “lifelong”, 

“overnight”. 
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The i2b2 FREQUENCY annotations contain expressions not covered in the Clinical TempEval model, such as 

“q24”, “QID”, “qhs”, “bid”, “x 1”, while expressions such as “per day” and “xx/min” are common in the Clinical 

TempEval FREQUENCY annotations. 

In addition to the lexical variations in the two corpora, the feature ablation analysis reveals that surrounding words 

are the most informative feature for all TIMEX3 types both when evaluating a trained model built on one corpus 

using the other test set, and when evaluating the merged model on each test set, Table 4. All other features have 

limited individual impact overall. 

Table 4. Feature ablation study for error analysis. Each feature was removed when building the TIMEX3 model, 

keeping all remaining features. Results are presented for the TIMEX3 types DATE, DURATION and 

FREQUENCY, once when building a model on one corpus (Clinical Tempeval (CTE) or i2b2) and evaluating on the 

other (cross-corpus), and once when building a model with both training sets (merged).  

 DATE F1 DURATION F1 FREQUENCY F1 

 

cross-corpus 

CTE/i2b2 

merged 

CTE/i2b2  

cross-corpus 

CTE/i2b2  

merged 

CTE/i2b2  

cross-corpus 

CTE/i2b2  

merged 

CTE/i2b2  

all features 0.53/0.44 0.77/0.76 0.23/0.31 0.51/0.51 0.11/0.06 0.32/0.47 

-current token 0.48/0.48 0.73/0.69 0.18/0.23 0.28/0.39 0.07/0.08 0.22/0.46 

-gazeteer 0.54/0.33 0.76/0.76 0.18/0.26 0.51/0.50 0.11/0.05 0.33/0.47 

-pos 0.50/0.41 0.77/0.76 0.29/0.32 0.51/0.50 0.1/0.05 0.35/0.45 

-context 0.38/0.16 0.58/0.46 0.00/0.04 0.04/0.03 0.00/0.07 0.11/0.33 

-capitaltype 0.53/0.44 0.77/0.76 0.23/0.31 0.49/0.50 0.10/0.06 0.33/0.46 

-numerictype 0.51/0.42 0.77/0.76 0.23/0.30 0.51/0.51 0.11/0.06 0.33/0.49 

-lowercase 0.54/0.44 0.77/0.76 0.24/0.29 0.50/0.50 0.11/0.05 0.32/0.45 

-ngram2 0.53/0.43 0.77/0.76 0.23/0.32 0.52/0.50 0.11/0.06 0.33/0.47 

 

Discussion and Conclusion 

In this study, we present a systematic, simplistic, and scalable approach to 1) generalize existing solutions for 

automated TIMEX3 span detection, and 2) assess similarities and differences in different instantiations of TIMEX3 

models applied on different clinical corpora.  

Retraining and applying the top-performing TIMEX3 span detection solution from the 2015 Clinical TempEval 

challenge on the i2b2 corpus produces competitive results: 0.74 strict F1 and 0.87 overlapping F1. The top ten 

performing systems in the 2012 i2b2 challenge resulted in strict F1
4
 between 0.67-0.80 and overlapping F1 between 

0.8-0.91
6
. Combining the two training data sets to create a merged model slightly decreases overall results when 

evaluating on each test set, but results for DURATION on the Clinical TempEval test set are improved, indicating 

that the addition of new training data from a different corpus was informative.  

Enabling characterization and analysis of commonalities and differences between different time expression 

instantiations by evaluating system output errors from a model trained on one corpus and evaluating on another is 

informative. In particular, this method reveals that some TIMEX3 expressions can be accurately covered across the 

two corpora, in particular for the majority type DATE. The main differences between the studied corpora can be 

categorized into two types: lexical (and document-type specific) variants (e.g. “qid”) and structural (document type). 

Further, the feature ablation study sheds light on the informativeness of individual features, where surrounding 

tokens provide context that is clearly crucial for improved performance. 

Rule-based systems were successful in the TIMEX3 span extraction subtask of the 2012 i2b2 challenge. Such 

systems generally produce high recall, while machine learning-based systems generally produce high precision 

results. Given the new knowledge about lexical variants for different TIMEX3 types in different corpora, we also 

want to study how to incorporate this information and how to best make use of a combination approach for all 

elements needed in a temporal reasoning solution. 

                                                
4
 results for strict matching were recalculated using the official 2012 i2b2 evaluation script on system submission outputs 

provided by the challenge organizers 
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Contributions and limitations 

The main contribution of our approach is that it is systematic and simple in acquiring and building a high-

performing task model for TIMEX3 classification. Moreover, our results do not necessarily depend on the system 

approach for TIMEX3 detection - one could choose to apply any of the previous successful machine learning-based 

approaches for comparison or further development. Second, we achieve competitive results for automated 

classification on a new corpus. Third, we identify similarities and differences in TIMEX3 modeling which could be 

informative in the development of a simplified, general temporal model. Finally, our in-depth analysis identifies 

lexical variants of time expressions that could be useful for several clinical information extraction use-cases and 

feature engineering.  However, we are planning to tackle the following potential future points: 

Our proposed approach is evaluated only on two corpora annotated with similar temporal models. Other models 

have been proposed for the clinical narrative domain, such as the Temporal Constraint Structure
15

. Applying our 

proposed approach on this model would probably require more mapping steps, as well as access to annotated 

documents for system development and assessment. An alternative approach to our mapping strategy could be to 

keep more granular types separate and build hierarchical structures (e.g. PREPOSTEXP is-a DATE) instead of 

mapping to broad TIMEX3 types – this way, one would get a richer representation while still keeping a 

generalizable overall model. 

Document structure information, such as sections, is not taken into consideration when mapping annotations or for 

the feature engineering of the machine learning models, which is a central part of clinical narratives. We plan to 

incorporate this information in future extensions.  

Our analysis of commonalities and differences is performed only on exact matched expressions: a richer overall 

picture would be obtained if also studying overlapping annotations. For successful unification of annotations, more 

training data, hierarchical ontologies, and annotation layers are needed, in particular for a more accurate and detailed 

analysis and model of less frequent types, such as FREQUENCY and TIME. The feature ablation study reveals that 

surrounding words are the most informative features. We intend to further study the impact of different context 

window sizes, and also whether the contextual information could be de-lexicalized in some way, to address 

generalizability across document types. 

We will continue our work on developing a simplified, common temporal reasoning model for core elements needed 

in a full-scale temporal reasoning system. As a first step, we will employ our suggested approach on other available 

annotated corpora for further analysis and development. In particular, we plan to use the 2014 ShARe/CLEF eHealth 

corpus that contains disorder mention annotations along with semantic attributes, including time expression 

annotations. Since this corpus was created with a focus on disorder annotations, not overall temporal information, 

we expect that our proposed approach will have high coverage on extracting relevant time expressions, but that 

tailoring will be necessary for disorder context. We will also extend our work to include temporal expression 

normalization, as well as event span and attribute classification, and temporal relations.  
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