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Abstract

Targeted cancer drugs are often associated with unexpectedly high cardiovascular (CV) adverse events. Systematic

approaches to studying CV events associated with targeted anticancer drugs have high potential for elucidating the

complex pathways underlying targeted anti-cancer drugs. In this study, we built tcTKB, a comprehensive CV toxicity

knowledge base for targeted cancer drugs, by extracting drug-CV pairs from five large-scale and complementary data

sources. The data sources include FDA drug labels (44,979 labels), the FDA Adverse Event Reporting System (FAERS)

(4,285,097 records), the Canada Vigilance Adverse Reaction Online Database (CVAROD) (1,107,752 records), pub-

lished biomedical literature (21,354,075 records), and published full-text articles from the Journal of Oncology (JCO)

(13,855 articles). tcTKB contains 14,351 drug-CV pairs for 45 targeted anticancer drugs and 1,842 CV events. We

demonstrate that CV events positively correlate with drug target genes and drug metabolism genes, demonstrating

that tcTKB in combination with other data resources, could facilitate our understanding of targeted anticancer drugs

and their associated CV toxicities.

Introduction

Treatment outcomes in cancer patients have dramatically improved since the introduction of targeted drugs. However,

targeted drugs are often associated with unexpectedly high cardiovascular (CV) toxicities in cancer patients [1-2].

The mechanisms by which targeted drugs exert their toxic effects on heart and vasculature in cancer patients are not

well-understood [3-4]. To ensure safe personalized cancer treatment, research efforts are needed to understand CV

toxicities associated with targeted drugs. Systematic and integrated approaches to studying CV events associated with

targeted drugs have high potential for elucidating the complex pathways underlying anti-cancer drugs, identifying the

on- and off-targets of undesirable CV events, and predicting unknown CV toxicities [5-7]. However, systematic study

of targeted drug-induced CV toxicities has been hampered by the lack of a comprehensive and machine-understandable

knowledge base of drug-CV associations. The relevant knowledge is instead buried throughout multiple disparate and

complementary information sources in varying formats. It was recently demonstrated that 39% of serious events

associated with targeted cancer drugs were not reported in clinical trials and 49% were not described in FDA drug

labels [8].Therefore, in order to build a comprehensive knowledge base of CV toxicities associated with targeted

drugs, it is important to extract knowledge from multiple complementary data sources.

Recently, we extracted targeted anticancer drug-associated CV events from the U.S FDA Adverse Event Reporting

System (FAERS) (4,285,097 records) [9]. We also developed text classification, relationship extraction, signaling

filtering, and signal prioritization algorithms to extract targeted anticancer drugs associated side effects, including CV

events from 13,855 full-text articles and embedded tables from the Journal of Oncology (JCO) published between

1983 and 2013 [10-11]. In this study, we built tcTKB (the CardioToxicity Knowledge Base for Targeted Cancer

Drugs) by combining drug-CV pairs extracted from FAERS and JCO articles with pairs from another three large-

scale and publicly available datasets: U.S. Food and Drug Administration (FDA) drug labels (44,979 drug labels),

the Canada Vigilance Adverse Reaction Online Database (CVAROD) (1,107,752 records), and the vast corpus of

published biomedical literature (21,354,075 MEDLINE records).

Drug toxicity knowledge contained in these five data sources is largely complementary. FDA drug labels contain

known adverse events associated with commercial drugs, which are mainly gleaned from controlled clinical trials.

Drug-CV pairs from FDA drug labels are highly accurate (high precision), however the recall may be limited since
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they are mainly obtained from pre-marketing clinical trials for well-controlled patients (i.e. patients with less co-

morbidities or younger patients). The two post-marketing surveillance systems (FAERS and CVAROD) contain both

voluntary and mandatory reports of suspected drug adverse events from health-care professionals, consumers, and

pharmaceutical companies for drugs used in less controlled ‘real-world’ patient populations. FAERS is the main spon-

taneous reporting system overseen by the U.S. FDA. Mining drug-side effect (drug-SE) relationships from FAERS is a

highly active research area. Data mining algorithms such as disproportionality analysis, correlation analysis, and mul-

tivariate regression have been developed to detect adverse drug signals from FAERS [12-14]. Recently, we developed

signaling extraction, prioritization, filtering algorithms and extracted a total of 11,173 drugCV pairs, representing 39

targeted cancer drugs and 1095 CVs, from FAERS [9]. In this study, we will extract drug-CV pairs from CVAROD,

the main spontaneous reporting system overseen by Health Canada. CVAROD contains more than one million patient

records, however, research effort in mining drug safety signals from CVAROD is significantly less compared to ef-

forts in mining FAERS. Drug-CV pairs extracted from these two post-marketing surveillance systems are comprised

of known true positives (those included in FDA drug labels), unknown true positives, and false positives. The main

challenge is to differentiate between unknown true positives and false positives.

JCO is the official journal of the American Society of Clinical Oncology and the leading journal in oncology. JCO

articles not only include pivotal clinical trials that have led to drug approval, but also trials that are still in investigational

stages and even failed trials. In one of our recently studies, we downloaded a total of 13,855 full-text JCO articles

published between 1983 and 2013. We combined automatic table classification and relationship extraction approaches

to extract anticancer drug-associated side effects from a total of 31,255 tables embedded in these JCO articles [10].

We also developed an integrated system combining text classification, relationship extraction, signal filtering, and

signal prioritization algorithms to extract targeted anticancer drug-associated side effects from the full-text part of

JCO articles [11]. We demonstrated in our previous studies and in this study that full-text oncological articles contains

much drug-associated side effects including CV events that are not captured in FDA drug labels, MEDLINE abstracts,

or post-market drug safety surveillance systems.

Currently, more than 22 million biomedical records are publicly available on MEDLINE, making it a rich source of

CV toxicity information for drugs at all clinical stages, including drugs in pre-marketing clinical trials, post-marketing

clinical case reports and clinical trials. The major challenge in extracting drug-CV pairs from this rich source is that

it is buried in free-text format.We recently develop approaches to extract drug-SE pairs from MEDLINE [15-16]. In

this study, we will apply these approaches to extract target anticancer drug-associated CV events from MEDLINE

abstracts. In this study, we show that as much as 96% and 67% targeted anticancer drug-associated CV pairs extracted

from MEDLINE are not included in FDA drug labels and FAERS, respectively, demonstrating the need of building

tcTKB from multiple complementary data resources. To the best of our knowledge, this is the first research effort in

building a comprehensive CV toxicity knowledge base for targeted drugs from multiple complementary data sources.

We demonstrated that this unique knowledge base tcTKB, in combination with other data resources such as drug target

databases or drug pharmacogenetics and genomics databases, can facilitate our deeper understanding of the molecular

mechanisms underlying the unexpectedly high incidence of CV toxicities associated with many targeted anticancer

drugs.

Data and methods

The data resources and methods that were used to construct tcTKB is depicted in Figure 1 and described later.

Data

The four data sources for extracting targeted anticancer drug-associated CV pairs are summarized in Table1 and

described in the sections that follow.

FDA drug labels We downloaded a total of 44,979 drug labels, including 21,610 human prescription labels and

23,369 human OTC labels from DailyMed 1. DailyMed is maintained by the National Library of Medicine (NLM)

1http://dailymed.nlm.nih.gov/dailymed
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MEDLINE (40 targeted 
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drug-CV pairs)
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targeted drugs, 75 CVs, 

259 drug-CV pairs)

FAERS (39 targeted drugs, 
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JCO (45 targeted 
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Data: 44,979 drug labels

process: text Classification, 
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relationship extraction

Data: 13,855 full-text articles

process: text classification, 

table classication, 

relationship extraction, 

signal filtering, and signal 

prioritization)

Data: 21,354,075 Records

process: named entity 

recognition,  relationship 

extraction, manual curation

Data: 1,107,752 records
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recognition,  relationship 

extraction, signal filtering, 

and signal prioritization)

Data: 4,285,097 records

process: named entity 

recognition,  relationship 

extraction, signal filtering,

and signal prioritization

Figure 1: The data resources and methods used in constructing tcTKB.

Source Size Type

FDA drug labels 44,979 drug labels Pre-marketing (main) and Post-marketing

FAERS 4,285,097 records Post-marketing (U.S)

CVAROD 1,107,752 records Post-marketing (Canada)

MEDLINE 21,354,075 records All stages

JCO 13,855 full-text articles pre-marketing

Table 1: Summary of the five data sources of drug-CV associations.

and provides high quality FDA package inserts information about marketed drugs. The majority of drug side effect

information captured on FDA drug labels is obtained from clinical trials, while some is obtained from post-marketing

surveillance. We used the publicly available information retrieval library Lucene2 to create a local FDA drug label

search engine with indices created on drugs, section headers such as “Indications,” “Contraindications,” and “Adverse

Reactions,” and sentences. Each sentence was associated with a drug and a subsection header name.

The FDA Adverse Event Reporting System (FAERS) FAERS is the prominent post-marketing drug safety surveil-

lance system maintained by the U.S. FDA. In our recent study, we downloaded a total of 4,285,097 records from

FAERS for the time period of 2004 to 20123. We extracted a total of 11,173 drug-CV pairs, representing 39 targeted

cancer drugs and 1095 CVs, from FAERS [9].

The Canada Vigilance Adverse Reaction Online Database (CVAROD) CVAROD is the main post-marketing drug

safety surveillance system in Canada. A total of 1,107,752 patient records were downloaded4. File “reactions.txt”

contains the reported adverse events. File “drug product ingredients.txt” contains drug information. Similar to pairs

extracted from FAERS, pairs in CVAROD could contain spurious pairs as well as unknown true positives.

JCO full text articles In our previous study, we downloaded a total of 13,855 JCO full text JCO articles published

from 1983 through 2013 and extracted anticancer drug-SE pairs from both the text and the tables in the articles [10-11].

We extracted a total of 3,515 drug-CV pairs, representing 45 targeted anticancer drugs and 449 CV events.

MEDLINE data and local MEDLINE search engine We downloaded a total of 21,354,075 MEDLINE records

(119,085,682 sentences) published between 1965 and 2012 from NLM (http://mbr.nlm.nih.gov/Download/index.shtml).

Each sentence was syntactically parsed with Stanford Parser [16] using the Amazon Cloud computing service (a total

of 3,500 instance-hours with High-CPU Extra Large Instance were used). We created a local MEDLINE search engine

2http://lucene.apache.org
3http://www.fda.gov/Drugs/
4http://www.hc-sc.gc.ca/dhp-mps/medeff/databasdon/extract extrait-eng.php
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with indices created on sentences, their corresponding parse trees, and abstracts.

Lexicon of targeted cancer drugs The 45 targeted cancer drugs was obtained from the National Cancer Institute5.

Lexicon of cardiovascular event (CV) terms We built a lexicon of CV terms based on MedDRA, a medical terminol-

ogy widely used for classifying adverse events associated with drugs and other medical products6. The adverse events

captured on FDA drug labels, FAERS, and CVAROD are coded with MedDRA terms. We created a lexicon of CV

terms by finding all leaf nodes with the ancestor “vascular disorders” or “cardiac disorders.” This lexicon consisted

of a total of 1,712 CV terms, including 1,269 vascular disorders and 527 cardiac disorders. In order to capture all the

term variations in MEDLINE, we expanded the CV lexicon by including the synonyms of the terms in the lexicon.

The term-synonym mappings were derived from UMLS Semantic Network [17]. After expansion, the CV lexicon

consisted of 27,547 terms.

Methods

Extract drug-CV pairs from FDA drug labels We used each of the 45 * 1,712 drug-CV combinations (45 targeted

drugs and 1,712 CV terms) as search queries to the local FDA drug label search engine. Drug-CV pairs that appeared

in sentences with the header “Adverse Reactions” were retrieved. We extracted a total of 259 drug-CV pairs from FDA

drug labels, representing 15 targeted cancer drugs and 75 CV events. These pairs are of high quality and represent

known cardiovascular events associated with targeted cancer drugs derived from both pre-marketing clinical trials

(major) and post-marketing surveillance (minor).

Extract drug-CV pairs from FAERS Drug-CV pair extraction from FAERS was done in our previous study [9].

After file linking, drug entity recognition and mapping, and CV entity recognition, we obtained a total of 11,173

drug-CV pairs, representing 39 (out of 45) targeted drugs and 1,095 (out of 1,712) CV events.

Extract drug-CV pairs from JCO articles Drug-CV pair extractions from JCO articles (including both full-text and

embedded tables) were done in our previous study [10-11]. We extracted a total of 3,515 drug-CV pairs, representing

45 (out of 45) targeted anticancer drugs and 449 (out of 1,712) CV events.

Extract and prioritize drug-CV pairs from CVAROD We extracted drug-CV pairs from CVAROD by linking three

downloaded files: (1) Report Drug.txt, which provides report drug identifiers and adverse reaction report numbers; (2)

Drug Product Ingredient, which provides drug identifiers and active ingredient names; and (3) Reactions.txt, which

provides adverse reaction report numbers and adverse reaction terms. We first linked the file “Drug Product Ingredient”

with file “Reactions.txt” using the identifiers specified in “Report Drug.txt”. We then extracted drug-CV pairs from

the linked file. Unlike drug strings in FAERS, drugs in CVAROD were already mapped to their active ingredients,

therefore no additional concept recognition and mappings were necessary. We filtered the drugs with the lexicon of

45 targeted cancer drugs. The same named entity recognition for CV terms as was completed for FAERS [9] was also

performed for the data collection from CVAROD. In total, we obtained 1,160 drug-CV pairs, representing 31 targeted

cancer drugs and 300 CVs.

While drug-CV pairs extracted from FDA drug labels are known true positives, pairs extracted from CVAROD contain

known true positives, unknown true positives, and true negatives. In order to prioritize drug-CV pairs extracted from

CVAROD, we implemented and compared six ranking algorithms in prioritizing true signals, including ranking by

pairs’ frequency counts (FREQ) in FAERS, and five commonly used Disproportionality Analysis (DPA) statistical

signal detection approaches: relative reporting ratio (RRR), proportional reporting ratio (PRR), reporting odds ratio

(ROR), phi coefficient (PhiCorr), and information component (IC). The five DPAs are currently the most widely used

approaches for automated signal detection in FAERS [11]. All these DPA methods are based on frequency analysis of

2x2 contingency tables to estimate statistical association between drugs and SEs and it intends to quantify the degree

to which a drug-SE pair co-occurs disproportionally in the database. These five DPA methods differ by the statistical

adjustments they apply to account for low counts.

5http://www.cancer.gov/cancertopics/factsheet/Therapy/targeted
6http://www.meddramsso.com/
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In order to compare different ranking methods, we used 11-point interpolated average precision, a commonly used

measure in evaluating information retrieval results [18]. For each ranked list, the interpolated precision was measured

at the 11 recall levels of 0.0, 0.1, 0.2, ..., 1.0. At each recall level, we calculated the arithmetic mean of the interpolated

precision. A composite precision-recall curve showing 11 points was then graphed. In order to compare these six

ranking approaches in prioritizing true signals, we used the 259 drug-CV pairs extracted from FDA drug labels as the

evaluation dataset, which consisted of known true positives. If a ranking algorithm ranks known true positives highly,

we can reason that it also ranks many unknown true positives highly. Note: this evaluation dataset was not used to

calculate the true precisions and recalls, but to compare the six ranking approaches in prioritizing true signals.

Extraction and manual curation of drug-CV pair from MEDLINE We used each of the 45 * 27,547 drug-CV

combinations for the 45 targeted cancer drugs and 27,547 CV terms as search queries to the local MEDLINE search

engine. Sentences, their associated parse trees, and abstracts that contained each pair were retrieved. Instead of simply

retrieving a pairs co-occurrence counts at both sentence- and abstract-level from the search engine, we added the extra

restriction that both drug and CV terms must be noun phrases in retrieved parse trees. This additional restriction was

put in place to prevent the extraction of partial drug-CV pairs from sentences. For example, a CV term appeared as

a substring in a noun phrase in the sentence where the noun phrase term is not included in the input CV lexicon. We

extracted a total of 1,080 drug-CV pairs (38 targeted cancer drugs and 470 CVs) from MEDLINE sentences and 2,469

pairs (40 targeted cancer drugs and 877 CVs) from MEDLINE abstracts.

Unlike drug-CV pairs extracted from FAERS or CVAROD, which are hard to evaluate, pairs extracted from MEDLINE

have associated abstracts which can be used for manual curation. We extracted a total of 1,080 drug-CV pairs from

MEDLINE sentences and then manually curated these pairs. We used the local MEDLINE search engine to retrieve all

the sentences (8,590 in total) wherein the pairs appeared. We then manually classified these 1,080 drug-CV pairs into

three classes (CAUSE, TREAT, and NONE) using the sentences (and abstracts when necessary) as evidence. Three

curators with graduate degrees in biomedical sciences independently performed the curation. It took an average 25

hours for each curation in annotating these sentences. Majority vote was used to decide the final classification.

Correlation analysis We investigated whether drug-drug pairs that shared CV events also tended to share gene targets.

We downloaded a total of 10,478 drug-gene pairs from DrugBank [19], a knowledge base for drugs, drug actions, and

drug targets. These downloaded drug-gene pairs included a total of 24 targeted cancer drugs. For drug-drug pairs that

shared different numbers of CV events, we calculated the average number of shared gene targets.

We investigated whether drug-drugs that shared CV events also tended to share drug metabolism genes. We down-

loaded a total of 4,399 drug-gene pairs from PharmGKB (the Pharmacogenetics and Pharmacogenomics Knowledge

Base) [20], a public repository of genotype and phenotype information relevant to pharmacogenetics. The drug-gene

pairs were assigned with subtypes Pharmacokinetics (“PK”) and Pharmacodynamics (“PD”). These downloaded drug-

gene pairs included a total of 25 targeted cancer drugs. For drug-drug pairs that shared different numbers of CV events,

we calculated the average number of shared metabolism genes.

1 Results

1.1 Description of tcTKB

tcTKB is comprised of a total of 14,351 unique drug-CV pairs extracted from five data sources, representing 45

targeted drugs and 1,842 CV events (Table 2). From the FDA drug labels, we extracted a total of 259 drug-CV

pairs, representing 15 targeted drugs and 75 CV events. Unlike pairs extracted from the other three data sources, pairs

extracted from FDA drug labels are mainly known true positives. From FAERS, we extracted a total of 11,173 drug-CV

pairs, representing 39 targeted cancer drugs and 1,095 CV events. These CV events were reportedly associated with

targeted cancer drugs in patients in real-world settings and included many CV events that have not yet been captured

in the FDA drug labels. We extracted a total of 1,160 drug-CV pairs from CVAROD for 31 targeted cancer drugs

and 300 CV events. This number is 10 times smaller than the number of pairs extracted from FAERS. It is unclear

why significantly fewer CV events were reported in CVAROD than in FAERS although the numbers of targeted cancer

drugs in both databases are comparable. From MEDLINE sentences, we extracted 1,080 drug-CV pairs for 38 targeted

cancer drugs and 479 CV events. From MEDLINE abstracts, we extracted 2,469 drug-CV pairs representing 40 cancer

1346



Source Drugs CVs Pairs

FDA drug labels 15 75 259

FAERS 39 1,095 11,173

CVAROD 31 300 1,160

MEDLINE (sentence) 38 479 1,080

MEDLINE (abstracts) 40 877 2,469

JCO 45 449 3,515

Combined 45 1,842 14,351

Table 2: Summary of tcTKB.

FDA drug labels FAERS CVAROD MEDLINE JCO

FDA drug labels 100% 2.2% 10.4% 4.0 0.7%%

FAERS 95.8% 100% 96.7% 33.1% 48.4%

CVAROD 46.7% 10.1% 100% 12.2% 13.6%

MEDLINE 38.2% 7.4% 26.0% 100% 23.0%

JCO 71.4% 15.3% 41.3% 32.8% 100%

Table 3: The overlapping matrix of drug-CV pairs in tcTKB. The number in each cell represents the percentage of

pairs from one source (column) also appeared in the other source (row).

targeted drugs and 877 CV events. The numbers of drug-CV pairs extracted from MEDLINE were smaller than that

from FAERS; however, these pairs contained 40 out of the 45 targeted cancer drugs. A total of 3,515 drug-CV pairs

were extracted from JCO articles. These pairs included all 45 targeted drugs, demonstrating that JCO articles is good

data resource for targeted anticancer drugs.

1.2 Drug-CV pairs extracted from four data sources are largely complementary

We investigated overlaps of drug-CV pairs extracted from FDA drug labels, FAERS, CVAROD, MEDLINE, and JCO.

As shown in Table 3, the information in these four sources overlaps, but is largely complementary. Column 2 in Table3

represents the percentages of drug-CV pairs from FDA drug labels that were also included in the other data sources.

Row 2 represents the percentages of drug-CV pairs from the other three data sources that were captured in the FDA

drug labels. As shown in both column 2 and row 2, many of the known drug-CV pairs in FDA drug labeling appeared

in the other four data sources: 95.8% in FAERS, 46.7% in CVAROD, 38.2% in MEDLINE, and 71.4% in JCO (column

2). However, the opposite is not true. Only very small percentages of drug-CV events reported in other data sources

were captured in FDA drug labels (row 2). This low percentage may be due to the following reasons: First, FDA drug

labels contain only 15 targeted drugs, while the other data sources contained more targeted drugs. Second, while the

drug-CV pairs extracted from FDA drug labels are mostly true positives, the pairs extracted from the other sources

may contain false positives and unknown true positives.

Only small percentages of pairs from FAERS were included in other data sources: 2.2% in FDA drug labels, 10.1%

in CVAROD, 7.4% in MEDLINE, and 15.3% in JCO (column 3). In addition, a majority of drug-CV pairs from other

data sources (except CVAROD) were not included in FAERS (row 3). This indicates that drug-CV pairs contained in

FAERS are largely complementary to those in FDA drug labels or MEDLINE. Drug-CV pairs contained in CVAROD

are a subset of the pairs from FAERS as 96.7% of the 1,160 pairs also appeared in FAERS. Drug-CV pairs extracted

from MEDLINE are largely complementary to those in the other three data sources. For example, only 4.0% of pairs

from MEDLINE appeared in FDA drug labels, 33.1% in FAERS, and 12.2% in CVAROD (Column 5). The opposite is

also true. Only 38.2% drug-CV pairs from FDA labels, 7.4% from FAERS, and 26.0% from CVAROD also appeared in

MEDLINE. It is also evident from the table that full-text articles contain much information not captured in MEDLINE

abstracts. For example, only 23% drug-CV pairs from JCO articles also appeared in MEDLINE abstracts.
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Figure 2: Ranked precisions at 11 recalls for drug-CV pairs from CVAROD ranked by three ranking measures: fre-

quency (Freq), proportional reporting ratio (PRR) and phi coefficient (PhiCorr). Data for relative reporting ratio

(RRR), reporting odds ratio (ROR), and information component (IC) IC are similar to that for PRR and not shown

Total CAUSE TREAT NONE Not in FDA drug labels

1,080 48.6% 32.9% 18.5% 90.8%

Table 4: Manual curation of drug-CV pairs extracted from MEDLINE sentences.

1.3 Ranking drug-CV pairs from CVAROD

Drug-CV pairs extracted from CVAROD may contain false signals. We compared six ranking algorithms in prioritizing

extracted drug-CV pairs using drug-CV pairs extracted from the FDA drug labels as goldstandard. In our previous

study in extracting drug-CV pairs from FAERS, we demonstrated that ranking by frequency significantly improved the

precisions of top-ranked pairs as compared to other statistical ranking methods including RRR, ROR, RR, IC. Here we

investigate whether the same is true in ranking drug-CV pairs extracted from CVAROD. As shown in Fig.2, ranking

based on frequency is more effective than ranking based upon the other five approaches. The precision of top-ranked

pairs (at recall = 0.1) is 0.16 as measured with drug-CV pairs extracted from FDA drug labels as gold standard. This

still low precision indicates that it is likely that many true positives among the top-ranked pairs from CVAROD have

not yet been captured in FDA drug labeling. This is reflected by the modest overlap between pairs extracted from FDA

drug labels and pairs extracted form CVAROD (Table 3).

1.4 Manual curation of drug-CV pairs extracted from MEDLINE sentences

We manually curated all 1,080 drug-CV pairs extracted from MEDLINE sentences. We did not curate the 1,389 pairs

that only co-occurred in MEDLINE abstracts but not in sentences. Among the 1,080 pairs, 525 pairs (48.6%) were

true positives (“drug CAUSE CV”), 356 pairs (32.9%) were “drug TREAT CV” pairs, and 199 pairs (18.5%) had

no obvious semantic relationships (“drug NONE CV”) (Table 4). Moreover, among the 525 true positives, 477 pairs

(90.8%) were not included in FDA drug labels.

1.5 Positive relationship between shared CV events and shared drug target genes

We investigated whether drug-drug pairs that shared CV events also tended to share gene targets. A positive relation-

ship between these two entities could indicate a causal relationship between drug targets and the observed cardiovas-
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Figure 3: Relationship between shared CV events and shared target genes.

cular adverse events associated with targeted anticancer drugs. This indication could in turn open up the possibility of

predicting unknown CV events by systematically studying their gene targets and discovering novel drug off-targets,

such as targets related to cardiovascular systems, instead of tumor cell growth, based on observed cardiovascular

events. As shown in Figure 3, there exists a positive relationship between shared CV events and shared gene targets

for drug-drug pairs. For instance, the average number of shared gene targets was 1.678 for all drug-drug pairs (cut

off≥0). The number significantly increased to 2.122 for drug-drug pairs that shared at least 250 CVs (cutoff≥250)

and to 3.857 for drug-drug pairs that shared at least 450 CVs (cutoff≥450).

Since drug metabolism is responsible for many known drug-related adverse events, we then investigated whether

the observed CV events were related to drug metabolism. Any positive correlations between CV events and drug

metabolism genes could open up the possibility of predicting drug-associated CV events in specific cancer patients

based on their metabolism genotypes (personalized cancer care). As shown in Figure 4, there is a strong positive

correlation between CV events and drug metabolism genes. Drug-drug pairs that shared more CV events tended to

also share more metabolism genes. The average number of shared metabolism genes for all drug-drug pairs (cutoff≥0)

was 0.39. The number significantly increased to 0.583 for drug-drug pairs sharing at least 250 CV events (cutoff≥250)

and 1.375 for pairs sharing at least 450 CV events (cutoff≥450). In summary, both gene targets and metabolism genes

positively correlated with targeted cancer drug-associated CV events, indicating that the observed CV events may have

discoverable genetic causes and that we can predict unknown cardiotoxicities and achieve personalized cancer care by

systematically studying drug-associated gene targets and metabolism.

2 Discussion

In this study, we built a comprehensive CV toxicity knowledge base for targeted cancer drugs (tcTKB) by extracting

drug-CV pairs from five large scale and complementary data sources. We manually curated all drug-CV pairs that

appeared in MEDLINE sentences. We systematically analyzed the correlations between the observed CV events and

drug-associated gene targets and demonstrated that tcTKB, in combination with other drug-related data, represents a

unique knowledge base for our understanding targeted anticancer drugs and their associated CV adverse events.

Nonetheless, our study has several limitations and can be further improved in the future. First, even though tcTKB

includes many drug-CV pairs, it remains unknown what the actual precision and recall of these pairs are. For example,

it is difficult to measure how many of the drug-CV pairs in tcTKB are true positives (including both known and

unknown positives) and how many of them are true negatives. In addition, even though we used four large datasets

in constructing tcTKB, we don’t know what the coverage of this knowledge base is. There may be drug-CV pairs in

existence in other data sources, such as patient electronic health records (EHRs).
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Figure 4: Relationship between shared CV events and shared metabolism genes.

Second, we observed positive relationship between CV events and drug-associated gene targets. As was previously

discussed, the drug-CV pairs in tcTKB may contain noise, which can affect the observed correlations. However, we

expect that the noise shall not systematically correlate with drug gene targets. Systems approach to studying drug-CV

associations in tcTKB, as done for the widely used protein-protein interaction (PPI) data (which also contains noise

and is largely incomplete) may generate many insightful biological hypotheses.

Third, in order to further stratify drug-CV pairs in tcTKB by patient characteristics, we need detailed information

about patient characteristics. Patient demographics information can be extracted from MEDLINE abstracts [22], full-

text JCO articles as well as FAERS. In the future, we will enrich tcTKB with patient demographics information.

Last but not least, we only extracted cardiovascular events associated with targeted cancer drugs in this study. In the

future, we will extract richer sets of toxicities that are associated with targeted cancer drugs, including neurotoxicities,

nephrotoxicities, heptotoxicities, and hematotoxicities, and develop systems approaches to studying these observed

drug phenotypes in order to understand the molecular mechanisms underlying these toxicities.
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