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Abstract 

Our research investigates methods for creating effective concept extractors for specialty clinical notes. First, we 

present three new “specialty area” datasets consisting of Cardiology, Neurology, and Orthopedics clinical notes 

manually annotated with medical concepts. We analyze the medical concepts in each dataset and compare with the 

widely used i2b2 2010 corpus. Second, we create several types of concept extraction models and examine the effects 

of training supervised learners with specialty area data versus i2b2 data. We find substantial differences in 

performance across the datasets, and obtain the best results for all three specialty areas by training with both i2b2 

and specialty data. Third, we explore strategies to improve concept extraction on specialty notes with ensemble 

methods. We compare two types of ensemble methods (Voting/Stacking) and a domain adaptation model, and show 

that a Stacked ensemble of classifiers trained with i2b2 and specialty data yields the best performance.  

Introduction 

Medical notes provide detail on patient encounters. Written by clinicians primarily for clinicians, they document 
(e.g., progress notes) or summarize (e.g., discharge summaries) patient care. They come in a variety of note types 
and are entered by health care professionals from varying backgrounds. 

Information extraction from medical texts is a challenging problem of growing interest to both the natural language 
processing and medical informatics communities. Medical concept extraction (MCE) is one such task, which seeks 
to identify specific types of information such as medical problems, treatments, and tests. Previous research on this 
task has primarily focused on discharge summaries and progress notes [1-4], which we will refer to as broad 

medical texts because they describe a patient’s overall care and their content can cover a diverse set of topics cutting 
across many areas of medicine. Most publicly available corpora of clinical medical notes consist of broad medical 
texts (e.g., i2b2 Challenge Shared Tasks [5-10] and ShARe/CLEF eHealth Shared Tasks [11-12]). 

There has been relatively little research on medical concept extraction for more specialized clinical texts. Studies 
focused on Radiology and Pathology reports are an important exception, but we would argue that they also cover a 
broad set of clinical conditions. Broad medical texts have the advantage of being relatively well formatted, and they 
typically follow general documentation standards. In contrast, specialty notes conform to varying documentation 
standards, with little overlap between specialties. Patterson and Hurdle [13] and Friedman et al. [14] demonstrated 
that clinicians in different clinical domains use specific sublanguages. Still, given the general nature of broad 
medical notes, we speculate that their content could enrich MCE systems targeted at specialized note types and our 
work offers a practical way forward for clinical information extraction despite the common use of sublanguages. 

Our research investigates methods for creating medical concept extraction systems that will perform well on 
specialty area notes. For this research, we created three new text corpora consisting of medical notes from three 
specialty areas: Cardiology, Neurology, and Orthopedics. We present an analysis of how they differ in content 
(semantic concepts and formatting) from each other and from i2b2 medical notes. We then examine a variety of 
information extraction (IE) models, and evaluate their performance on all of these data sets. The contributions of our 
work are twofold. First, we investigate how well MCE models perform on specialty notes when trained on a broad 
medical corpus and then when trained on the same type of specialty data. When training with a comparable amount 
of annotated data, we find that training with specialty texts outperforms training with broad medical texts. However, 
we achieve better performance for all three specialty areas by using a combination of both broad medical i2b2 data 
and specialty area data for training.  

Second, we explore Voting and Stacked Learning ensembles to combine multiple MCE models. The ensemble 
architecture can be beneficial in two ways: (1) it can exploit multiple models that use different extraction techniques, 
and (2) it can exploit multiple models trained with different types of data (in our case, some trained on broad 
medical notes and some trained on specialty notes). To our knowledge, this is the first work that combines broad 
medical components and specialty area components in a single ensemble for MCE. Our results show that a stacked 
ensemble consisting of both types of components achieves the best balance of precision and recall. 
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Background 

Medical concept extraction has been the focus of several shared tasks, such as the i2b2 Challenge Shared Tasks and 
the ShARe/CLEF eHealth Shared Tasks [8, 11-12]. Our work uses the annotated data set provided for the 2010 i2b2 
Challenge [8]. In this challenge, machine learning approaches [15-16] showed superior results over hand-crafted 
rule-based systems. de Bruijn et al. [15] incorporated syntactic, orthographic, lexical, and semantic information 
(from various medical knowledge databases) and their system performed best in the i2b2 concept extraction 
challenge task with 83.64% recall, 86.88% precision, and 85.23% F1 score. Jiang et al. [16] implemented an 
ensemble method to combine concept extraction models trained with local features and outputs from different 
knowledge databases. In 2013, Tang et al. [17] extended their work using clustering and distributional word 
representation features, achieving 84.31% recall, 87.38% precision, and an F1 score of 85.82% on the i2b2 test set. 

Our work is closely related to the classic task of Named Entity Recognition. In both newswire and biomedical texts, 
many types of supervised learning and sequential tagging methods have been used to extract specific types of 
entities [18-22]. In Clinical NLP (Natural Language Processing), several systems have been developed to process 
medical notes or biomedical texts. MedLEE [23] has been applied to chest radiology reports, discharge summaries, 
and operative reports to extract and encode medical information. MPlus [24] was used to extract medical findings, 
diseases, and appliances from chest radiograph reports. LifeCode [25] was developed to extract demographic and 
clinical information on emergency medicine clinical specialty and radiology reports. 

Ensemble methods that combine multiple classifiers have been widely used for many NLP tasks. Voting strategies 
[26-28] and statistical approaches including stacked generalization [29-30] have generally shown better performance 
than individual classifiers. Our work is also related to supervised domain adaptation, which can be applied when 
some labeled data for the target domain is available. Many algorithms for efficient domain adaptation have been 
proposed, and domain adaptation-based models have been shown to improve performance for some tasks when 
limited annotated data is available for the target domain [31- 35]. 

Methods 

Data Sets and Annotated Concepts 

Our research starts with the medical concept extraction (MCE) task defined for the 2010 i2b2 Challenge [8]. This 
task involves extracting three types of medical concepts: Problems (e.g., diseases and symptoms), Treatments (e.g., 
medications and procedures), and Tests. The 2010 i2b2 corpus consists of 349 training documents and 477 test 
documents manually annotated by medical professionals. This test set contains 45,009 annotated medical concepts.  

For our work, we created new text collections representing three specialized areas of medicine: Cardiology, 
Neurology, and Orthopedics. We annotated 200 clinical notes from the BLULab corpus1 for each specialty area. 
Each specialty data set consists of different subtypes of notes. Table 1 shows the five most prevalent subtypes in 
each specialty data set.  

Table 1. Five most prevalent note subtypes in each specialty area data set 

Data Note subtypes 

Cardiology 
Cardiology (surgery) discharge summary, Cardiology (surgery) consultation report, Cardiology 
operative report, Cardiology history and physical examination, Angio report 

Neurology 
Neurosurgery discharge summary, Neurosurgery transfer summary, Neurology consultation 
report, Neurology history and physical examination, Neurosurgery death summary 

Orthopedics 
Orthopedic (surgery) operative report, Trauma discharge summary, Orthopedic (surgery) 
discharge summary, Orthopedic surgery transfer summary, Orthopedics consultation report 

                                                             
1 The BluLab corpus is a collection of de-identified clinical notes drawn from multiple clinical settings at the University of 
Pittsburgh. The dataset was available for research to investigators with local Institutional Review Board approval, but 
unfortunately the University of Pittsburgh has withdrawn the corpus for new studies. However interested researchers can 
collaborate with previously approved sites. 

738



  

Two people with medical expertise manually annotated the specialty notes using the 2010 i2b2 Challenge 
guidelines. One annotator had previously annotated data for the official 2010 i2b2 Challenge data and the other 
annotator had equivalent medical knowledge. We measured their inter-annotator agreement on 50 documents 
annotated by both annotators during the pilot phase using Cohen’s kappa [36] and their IAA was κ = .67. Each of the 
annotators then labeled 100 new documents for each specialty area, producing a total of 600 annotated specialty area 
texts. These texts contain 17,783 annotated concepts for Cardiology, 11,019 concepts for Neurology, and 12,769 
concepts for Orthopedics.  

Table 2 shows the number of annotated concepts of each type in the i2b2 test data and our three specialty data sets, 
as well as the average number of concepts per document. For example, the Cardiology data contains 7,474 Problem 
concepts and the average number of Problem concepts per text is 37, which is similar to the i2b2 data (39). 
However, the Neurology and Orthopedics data sets contain only 25 Problem concepts per document, on average. For 
Treatment concepts, the Neurology notes contain fewer than the i2b2 data but the Orthopedics notes contain more. 
The prevalence of Test concepts varies greatly: the i2b2 and Cardiology texts have many Test concepts per 
document, but they are much less common in the Neurology notes (11 per text) and Orthopedics notes (6 per text).  

Table 2. The numbers of concepts in each data set 

The last row of Table 2 compares the number of sentences in the data sets. The i2b2 test data contains 45,052 
sentences (94 per file, on average). The Cardiology notes were generally longer with 106 sentences per text, while 
the Neurology and Orthopedics notes were generally shorter. 

We also examined, qualitatively, the types of sections in each data set to gain more insight about content differences 
between specialist notes and the more general i2b2 notes. Table 3 shows the five most frequent section titles in each 
data set. Many section titles, such as ‘Hospital course’, are common across all of the data sets. However, we found 
section titles that are much more frequent in some types of specialty area notes. For example, sections related to 
‘Procedures’ and ‘Operations’ occurred most frequently in Orthopedics notes. ‘Consultation’ sections were common 
in the Cardiology notes, but rare in the i2b2 notes. 

Table 3. Five most frequent section titles in each data set 

Data Section Titles 

i2b2 Test 
Hospital course, History of present illness, Physical Examination, Past medical history, 
Allergies 

Cardiology Physical examination, Allergies, Past medical history, Social history, History of present illness  

Neurology 
Hospital course, Reason for admission, History of present illness, Discharge medications, 
Discharge instructions  

Orthopedics Hospital course, Procedures, Discharge instructions, Description of Operation, Complications  

Although some of the same section titles occur in both broad medical notes and specialty notes, their contents can 
differ. For example, in the sections titled ‘Procedures,’ Orthopedics notes typically contain more detailed 
information than discharge summaries. Figure 1 illustrates an Orthopedics note that is similar to the ones in our 
collection. 

Categories 
i2b2 Test Cardiology Neurology Orthopedics 

Total Average Total Average Total Average Total Average 

Problem 18,550 39 7,474 37 4,971 25 5,022 25 

Treatment 13,560 28 5,706 29 3,815 19 6,494 33 

Test 12,899 27 4,603 23 2,233 11 1,253 6 

All Concepts 45,009 94 17,783 89 11,019 55 12,769 64 

# Sentences 45,052 94 21,255 106 15,339 77 16,855 84 
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Figure 1. A sample Orthopedics note2 

Information Extraction Models 

We developed four types of information extraction models that use a diverse set of extraction techniques.  

Rules: We created a simple set of rules by harvesting information from the annotated training data. First, for each 
word in the training data we computed Prob(concept | word) and Prob(category | word). Next, we selected words 
that had frequency ≥ 3 and Prob(concept | word) ≥ .80. For each selected word, we chose the category with the 
highest probability and created a rule (e.g., diabetes → Problem). Given a new text, we then found all words that 
matched a rule and labeled them as concepts using the category assigned by the rule. When two or more labeled 
words were contiguous, we treated them as a single concept. For multi-word concepts, we calculated the average 
Prob(category | word) across the words in the concept. The category with the highest average probability was 
assigned to the concept. 

MetaMap: We used a well-known knowledge-based system, MetaMap [37], that assigns UMLS Metathesaurus 
semantic concepts to phrases. We identified UMLS semantic type identifiers, using the UMLS Semantic Lexicon, 
that covered the types of medical concepts required for our task. We only used the final mappings of MetaMap to 
avoid generating nested terms because the i2b2 guidelines do not permit nested concepts. Table 4 shows the 
semantic types that we used for concept extraction3. We used MetaMap 2013v2 with the 2013AB NLM relaxed 
database. 

Table 4. MetaMap semantic types used for concept extraction 

Category MetaMap semantic types 

Problem acab, anab, bact, celf, cgab, chvf, dsyn, inpo, mobd, neop, nnon, orgm, patf, sosy 

Treatment antb, carb, horm, medd, nsba, opco, orch, phsu, sbst, strd, topp, vita 

Test biof, bird, cell, chvs, diap, enzy, euka, lbpr, lbtr, mbrt, moft, phsf, tisu 

                                                             
2 Excerpted from http://www.mtsamples.com/ 
3 Refer to http://metamap.nlm.nih.gov/Docs/SemanticTypes_2013AA.txt for the mapping between abbreviations and the full 
semantic type names. 

PREOPERATIVE DIAGNOSIS: Achilles tendon rupture, left lower extremity. 

POSTOPERATIVE DIAGNOSIS: Achilles tendon rupture, left lower extremity. 

PROCEDURE PERFORMED: Primary repair left Achilles tendon. 

ANESTHESIA: General. 

COMPLICATIONS: None. 

ESTIMATED BLOOD LOSS: Minimal. 

TOTAL TOURNIQUET TIME: 40 minutes at 325 mmHg. 

POSITION: Prone. 

HISTORY OF PRESENT ILLNESS: The patient is a 26-year-old African-American male who states that he was 

stepping off a hill at work when he felt a sudden pop in the posterior aspect of his left leg. The patient was placed 

in posterior splint and followed up at ABC orthopedics for further care. 

PROCEDURE: After all potential complications, risks, as well as anticipated benefits of the above-named 

procedure were discussed at length with the patient, informed consent was obtained. The operative extremity was 

then confirmed with the patient, the operative surgeon, Department Of Anesthesia, and nursing staff. While in this 

hospital, the Department Of Anesthesia administered general anesthetic to the patient. The patient was then 

transferred to the operative table and placed in the prone position. All bony prominences were well padded at this 

time. 

A non-sterile tourniquet was placed on the left upper thigh of the patient, but not inflated at this time. Left lower 

extremity was sterilely prepped and draped in the usual sterile fashion. Once this was done, the left lower 

extremity was elevated and exsanguinated using an Esmarch and the tourniquet was inflated! 
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SVM: We trained a multi-class Support Vector Machine (SVM) classifier with a linear kernel using the 
LIBLINEAR software package [38]. We applied the Stanford CoreNLP tool [39] to our data sets for tokenization 
and part-of-speech (POS) tagging. We defined features for each medical concept’s lexical string, POS tag, affix(es), 
orthographic features, and pairwise combinations of these features. We also extracted these features for the three 
words before and after the concept. To identify multi-word concepts, we reformatted the training examples with IOB 
tags (B: at the beginning, I: inside, or O: outside of a concept) and then trained the model to produce IOB labels as 
output. We trained a single SVM model to produce labels for all three concept types (Problem, Treatment, and Test).  

CRF: We trained two types of sequential taggers using linear Conditional Random Fields (CRF) models [19]: 
models with forward transitions (CRF-fwd) and models with backward transitions by reversing the word sequence 
(CRF-rev) [40-41]. The CRF models used the same feature set as the SVM models. A single CRF model produces 
labels for Problem, Treatment, and Test. 

We performed 10-fold cross validation on the i2b2 training set to optimize the parameters of the SVM and CRF 
classifiers for F1 score maximization. For the SVMs, we tuned the cost parameter (c = 0.1) of LIBLINEAR. For the 
CRFs, we used Wapiti [42], a simple and fast discriminative sequence labeling toolkit. We set the size of the interval 
for the stopping criterion to be e = .001. For regularization, L1 and L2 penalties were set to 0.005 and 0.4 
respectively. These parameter settings were kept the same throughout all of our experiments. 

Ensemble Methods 

We explored two types of ensemble architectures that have performed well for other NLP tasks: Voting ensembles 
and Stacked Learning ensembles [29]. Each ensemble consists of a set of MCE components. The general 
architectures of the Voting and Stacked ensembles are described below. In the Results section, we present 
experimental results for ensembles consisting of different mixtures of component systems.  

Voting Ensemble: This ensemble collects the phrases labeled by a set of MCE components and outputs all phrases 
that received at least three votes (i.e., were labeled by at least three components). In the case of overlapping phrases, 
we choose the one with the highest confidence, based on the normalized confidence scores of the MCE models. For 
each MCE model, each confidence score was divided by the highest score produced by that model for normalization. 

Stacked Learning Ensemble: This ensemble consists of a set of MCE components as well as a meta-classifier, which 
is a SVM classifier trained on the predictions of the individual MCE models. To create training instances for a 
document, we first aggregated all of the concept predictions into sets of unique predictions. For example, one 
aggregated prediction set might indicate that an instance of “acute renal failure” was labeled as a Problem by 
models M1, M3, and M4. Each concept predicted by an MCE model was then compared with all concepts predicted 
by the other MCE models. For each pair of concepts, the following eight matching criteria are applied to create 
binary features: 

 - If the text spans match 
 - If the text spans partially match (any word overlap) 
 - If the text spans match and concept types match 
 - If the text spans partially match and the concept types match 
 - If the text spans have the same start position 
 - If the text spans have the same end position 
 - If one text span subsumes the other 
 - If one text spans is subsumed by the other 

For an ensemble with k MCE models, k × 8 features are defined so that each matching function is replicated for each 
MCE model. Each feature indicates whether Concept1 and Concept2 satisfy a specific matching function, given that 
Concept1 was produced by a specific model. In addition, features are defined that count how many different models 
produced a predicted concept, and features are defined for predictions produced by just a single model (indicating 
which model produced the predicted concept). In a previous study [43], this type of Stacked ensemble architecture 
achieved performance comparable to the state-of-the-art on the i2b2 test data with 83.4% recall, 87.9% precision, 
and 85.6% F1 score. 

Results 

We conducted an extensive set of experiments to evaluate the performance of each individual MCE model and 
Voting and Stacked Learning ensembles. We also experimented with models trained using the broad medical (i2b2) 
texts, using our specialty area texts, and using a mixture of both. We evaluated performance using the i2b2 test set as 
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well as our three sets of specialty area notes: Cardiology, Neurology, and Orthopedics. The specialty area models 
(Sp) were trained and evaluated using 10-fold cross validation on our specialty notes data. A labeled phrase was 
scored as correct if it was assigned the correct concept type and its text span exactly matched the gold standard text 
span, disregarding articles and possessive pronouns (e.g., “his”).  

Performance of Individual MCE Models 

Table 5 shows the performance of each MCE model based on Recall (Rec), Precision (Pr), and F1 score (F). The 
Rules (i2b2) row shows results for the simple rules harvested from the i2b2 training data. Not surprisingly, these 
rules performed better on the i2b2 test set than on the specialty notes, but the scores were low across the board. The 
Rules (Sp) row shows results (averaged during cross-validation) for the rules harvested from the training folds and 
evaluated on the test folds for the specialty area data. These rules also performed poorly. The MetaMap row shows 
similarly low scores for MetaMap on all data sets. One reason for its low performance is that the concept and phrase 
boundary definitions of MetaMap’s semantic categories are not perfectly aligned with i2b2’s concept definitions. 

The machine learning classifiers performed substantially better. The SVM (i2b2) row shows results for the SVM 
model trained on i2b2 data, which produced an F1 score of 78.7% on the i2b2 test set but substantially lower F1 

scores on the specialty datasets. The SVM (Sp) row shows results for the SVMs trained on specialty area data. 
Performance substantially improved on the Orthopedics notes (from 43.5% to 52.6% F1 score), but did not change 
much for the other specialty areas. 

Table 5. Recall (Rec), Precision (Pr), and F1 score (F) for individual MCE models 

Model 
i2b2 Cardiology Neurology Orthopedics 

Rec Pr F Rec Pr F Rec Pr F Rec Pr F 

Rules (i2b2) 38.5 48.4 42.9 33.1 37.9 35.3 29.2 35.3 32.0 21.4 26.2 23.5 

Rules (Sp)    32.6 38.6 35.3 30.9 33.0 31.9 26.8 27.9 27.3 

MetaMap 36.0 47.3 40.9 31.1 40.0 35.0 29.4 34.6 31.8 22.6 26.3 24.3 

SVM (i2b2) 80.6 76.9 78.7 64.5 59.4 61.8 59.4 55.7 57.5 45.7 41.6 43.5 

SVM (Sp)    65.5 59.4 62.3 60.2 53.8 56.8 56.6 49.1 52.6 

CRF-fwd (i2b2) 81.4 86.1 83.7 65.2 67.9 66.5 61.3 65.8 63.5 47.4 56.3 51.5 

CRF-rev (i2b2) 82.3 86.4 84.3 65.8 68.0 66.9 61.7 65.7 63.6 48.2 55.8 51.7 

CRF-rev (i2b2180) 78.7 84.2 81.4 63.3 66.5 64.9 59.6 64.8 62.1 44.8 53.3 48.7 

CRF-fwd (Sp)    63.8 69.3 66.4 59.2 64.6 61.8 55.4 62.3 58.6 

CRF-rev (Sp)    65.2 69.1 67.1 60.5 64.6 62.5 56.0 60.6 58.2 

CRF-rev (i2b2+Sp)    68.7 70.3 69.5 64.6 66.8 65.7 59.3 62.5 60.9 

Both the CRF-fwd and CRF-rev models trained on i2b2 data performed better than the SVM models. Performance 
on the Cardiology and Neurology notes was similar when trained on specialty (Sp) data, but performance on the 
Orthopedics notes substantially improved. Since the i2b2 training data is much larger than our specialty area training 
data, we performed another experiment using only 180 randomly selected i2b2 training texts, to match the amount of 
specialty area training data (under 10-fold cross-validation, each fold trains with 180 documents). The performance 
of this model, shown in the CRF-rev (i2b2180) row, is lower than when using all of the i2b2 training data. We can 
now see that training on specialty area data consistently performs better than training on i2b2 data when using 
comparable amounts of training data. The last row of Table 5 shows the results for training the CRF-rev model using 
all of the i2b2 training data as well as the specialty area training data. Performance improved for all three specialty 
areas by training with the combined data sets. The broad i2b2 data clearly provides added value. However, the F1 
scores for the three specialty areas ranges from 60.9% to 69.5%, which is substantially lower than the 84.3% F1 
score achieved for the i2b2 test set. 
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Performance of Voting and Stacked Ensembles  

We also evaluated the performance of the Voting and Stacked ensemble architectures, which were populated with all 
five types of MCE components: Rules, MetaMap, SVM, CRF-fwd, and CRF-rev models. For both the Voting and 
Stacked architectures, we created three different types of ensembles: i2b2 ensembles consisting of MCE models 
trained on the i2b2 data, Sp ensembles consisting of MCE models trained on specialty data, and i2b2+Sp ensembles 
consisting of MCE models trained with i2b2 data and MCE models trained with specialty data. Consequently, the 
i2b2+Sp ensembles include nine different classifiers (two models each of Rules, SVM, CRF-fwd, CRF-rev, and one 
MetaMap model, because it does not use training data).  

Table 6 shows the performance of these ensembles, as well as the EasyAdapt domain adaptation method [34], which 
we implemented as another point of comparison. For EasyAdapt, we used a CRF-rev classifier with the feature set 
augmented for broad medical (i2b2) notes as the source domain and specialty area notes as the target domain. For 
the sake of comparison, the first row of Table 6 displays again the results obtained for the best individual MCE 
model from Table 5, which was the CRF-rev classifier trained with both i2b2 and specialty data. Comparing the first 
two rows, we see that training a CRF-rev model with combined i2b2 and specialty area data outperforms the domain 
adaptation model on all three data sets.  

For the Voting ensembles, the i2b2+Sp ensemble produced the best F1 scores, but did not outperform the CRF-rev 
(i2b2+Sp) model. However, the Voting ensemble trained only on specialty notes (Sp) produced much higher 
precision than the CRF-rev model. A Voting ensemble appears to be an effective way to improve precision on 
specialty notes when a limited amount of annotated specialty data is available, although with some cost to recall.  

Table 6. Recall (Rec), Precision (Pr), and F1 score (F) for ensemble methods 

Model 
Cardiology Neurology Orthopedics 

Rec Pr F Rec Pr F Rec Pr F 

CRF-rev (i2b2+Sp) 68.7 70.3 69.5 64.6 66.8 65.7 59.3 62.5 60.9 

EasyAdapt 66.1 69.5 67.8 62.0 65.4 63.7 57.7 62.0 59.8 

Voting (i2b2) 61.0 73.0 66.5 56.2 70.4 62.5 40.7 64.2 49.8 

Voting (Sp) 58.3 77.8 66.7 52.9 74.3 61.8 47.3 73.0 57.4 

Voting (i2b2+Sp) 69.4 69.8 69.6 64.5 66.0 65.3 56.6 62.5 59.4 

Stacked (i2b2) 65.7 69.0 67.3 61.8 66.9 64.3 47.8 57.6 52.3 

Stacked (Sp) 63.4 73.9 68.2 57.4 70.9 63.4 52.3 70.2 60.0 

Stacked (i2b2+Sp) 66.0 75.1 70.2 61.5 72.4 66.5 54.6 70.8 61.6 

For Stacked Learning, every Stacked ensemble outperformed its corresponding Voting ensemble. The best Stacked 
ensemble (i2b2+Sp) included MCE models trained on i2b2 data as well as MCE models trained on specialty data, 
producing slightly higher F1 scores than the CRF-rev models for all three specialty areas. Using a paired t-test to 
measure statistical significance, the F1 score performance of the i2b2+Sp Stacked ensemble is significantly better 
than EasyAdapt and all of the Voting ensembles at the p < .05 significance level, but not significantly better than the 
CRF-rev (i2b2+Sp) model. However, the results show that the Stacked ensemble produces higher precision than the 
CRF-rev model (70% → 75% for Cardiology; 67% → 72% for Neurology; 63% → 71% for Orthopedics), with 
correspondingly smaller decreases in recall (69% → 66% for Cardiology; 65% → 62% for Neurology; 59% → 55% 
for Orthopedics).  

Discussion and Analysis 

The main conclusion of our research is that models trained with a combination of broad medical data and specialty 
data consistently perform better than models trained on either type of data alone when the amount of specialty data 
is limited. In addition, we find that a Stacked ensemble consisting of a diverse set of MCE models using different 
types of extractors achieves overall performance comparable to the best individual classifier in our experiments, but 
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offers two advantages. First, the Stacked ensemble yields a recall/precision balance that favors precision, which may 
benefit applications that place a premium on high precision. Second, the Stacked ensemble can be easily augmented 
with additional components as new resources become available, because the meta-classifier automatically learns 
how to use them simply by re-training the meta-classifier component. In contrast, adding new components to Voting 
ensembles can require a change in voting strategies, and Voting ensembles do not provide a way to learn weights to 
optimally control the influence of different component models.  

However, performance on all three types of specialty areas is much lower than performance on the broad medical 
(i2b2) texts. Clearly there is ample room for improvement for medical concept extraction from specialty area clinical 
notes and more work is needed on this topic. To better understand the strengths and weakness of our models, we 
manually inspected their output. We observed that our ensemble methods are particularly successful at identifying 
more accurate concept boundaries than the individual MCE models (e.g., identifying “severe chest pain” as a 
Problem concept instead of just “severe” or “chest pain”). We also analyzed the false negative errors by the CRF-
rev models trained with i2b2 data and those trained with specialty data. Table 7 shows the results of this manual 
analysis, which were based on one test fold (20 notes) for each specialty area. The first row of Table 7 corresponds 
to errors due to unseen vocabulary. These concepts were misclassified when none of the words in a concept occurred 
in the training data. For example, the Cardiology concepts ‘thoracoscopy’ and ‘cardioplegia’ never appeared in the 
i2b2 training data. Unseen concepts accounted for roughly the same percentage of errors when training with i2b2 
data or specialty data, but note that the i2b2 training set is roughly twice as large as each specialty area training set. 

Table 7. False negative errors by CRF-rev (i2b2) and CRF-rev (Sp) models 

The second row of Table 7 corresponds to false negatives for concepts containing at least one seen word and one 
unseen word. We see more false negatives in this category for the models trained with i2b2 data than the models 
trained with specialty data. For example, for the Treatment concept ‘aortic crossclamping’, ‘crossclamping’ never 
appeared in the i2b2 training data but it did appear in the Cardiology training data. This type of error was most 
common in the Orthopedics data (51% of the errors), which suggests that the Orthopedics notes contain many 
vocabulary terms that are not present in the i2b2 data.  

The third row of Table 7 corresponds to false negatives for concepts containing all seen words, but at least one 
rarely seen word (frequency <= 3). For example, in the Cardiology data, the concepts ‘psa data’ and ‘r-wave’ were 
not identified by the i2b2 trained model. The model trained with Cardiology data could not extract ‘nystatin’ and 
‘oximeter’, even though they occurred (infrequently) in the Cardiology training data.  

The last row of Table 7 corresponds to false negatives for concepts consisting entirely of words that occurred > 3 
times in the training data. Many false negative errors fell into this category. Generally, there were more false 
negative errors of this type for the models trained with specialty data than those trained with i2b2 data, presumably 
because the vocabulary is more homogenous in the specialty areas so more words simply fall into the seen category.  

Finally, we observed that many errors were due to incorrect phrase boundaries of medical concepts. For example, 
only the word “hepatitis” was labeled in the phrase “hepatitis c”. We also witnessed some tricky errors due to 
contextual differences in the words surrounding medical concepts. For example, a Treatment concept ‘lidocaine’ is 
often prescribed for usage on skin (“treated with lidocaine jelly for pain control”). However, in the Cardiology data, 
it is usually applied by infiltration (“Lidocaine 20 cc was infiltrated into the tissues”). 

Conclusion 

We analyzed the differences in content between broad medical and specialty area notes, confirming prior research 
showing that specialty notes exhibit sublanguage behavior that requires rethinking the use of NLP tools developed 

Error types 
Cardiology Neurology Orthopedics 

i2b2 Sp i2b2 Sp i2b2 Sp 

All unseen 22 (05%) 27 (06%) 31 (06%) 32 (06%) 53 (08%) 23 (04%) 

At least one unseen word 138 (31%) 100 (21%) 186 (37%) 109 (21%) 355 (51%) 112 (19%) 

At least one word rarely seen 70 (16%) 81 (17%) 70 (14%) 85 (17%) 94 (14%) 113 (19%) 

All seen 213 (48%) 279 (56%) 211 (43%) 288 (56%) 184 (27%) 337 (58%) 
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on broad medical notes. We found that even though the CRF-rev (i2b2+Sp) and Stacked ensemble produce similar 
F1 scores, they exhibit different behaviors with respect to the underlying recall and precision of their output. 
Consequently, our results suggest that the CRF-rev (i2b2+Sp) model may be preferable for applications where recall 
is more important than precision, while the Stacked ensemble may be preferable for applications where precision is 
more important than recall. Interestingly, Orthopedics specialty notes exhibit the most unique language when 
compared to other specialty notes or to broad medical texts. When a limited amount of annotated specialty area data 
is available, our research shows that training concept extractors with both broad medical data and specialty area data 
produces MCE models that achieve better performance on specialty notes than training with either type of data 
alone. In addition, our research found that a Stacked ensemble with a mixture of MCE components, including 
different types of MCE models as well as models trained on different types of data, achieves good performance and 
offers some advantages over other approaches. However, we also observed that MCE performance on specialty texts 
is substantially lower than state-of-the-art performance on broad medical texts. A promising direction for future 
work is to explore semi-supervised methods to exploit larger collections of specialty area notes for training. 
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