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Abstract

Operating rooms (ORs) are one of the most expensive and profitable resources within a hospital system. OR
managers strive to utilize these resources in the best possible manner. Traditionally, surgery durations are
estimated using a moving average adjusted by the scheduler (adjusted system prediction or ASP). Other methods
based on distributions, regression and data mining have also been proposed. To overcome difficulties with
numerous procedure types and lack of sufficient sample size, and avoid distributional assumptions, the main
objective is to develop a hybrid method of duration prediction and demonstrate using a case study.
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1. Introduction

Accurate prediction of the duration of surgical procedures is necessary to meet the needs of stakeholders. The
duration of the procedure is critical in determining optimal schedules, and to reduce delays for patients and
providers as well as reducing overtime and under-utilization of operating rooms (ORs) for administration. As
surgeries get scheduled, the surgery duration is estimated and an appropriate day is selected to schedule the surgery.
Currently most hospitals use software designed by commercial surgical scheduling systems from EMR vendors such
as Cerner, Epic, etc. Both traditional method of surgery prediction and those used by commercial software used in
most hospitals is based upon a moving average of previous cases, based on surgeon and procedure codes. This
warrants the need for a scientific method to predict duration. With the increasing amount of data in healthcare and
the need for making improvements in healthcare industry, it is critical to use more efficient methods of surgery
prediction that can improve system performance and encourage physicians and hospital staff to not only think about
the success of their own practice as an individual surgeon but also think of improving the performance of the
hospital as a system. In this study, we consider data from a large hospital and propose a hybrid method for
predicting surgery duration times. Our method is consisting of two steps 1) classification and 2) prediction. In
prediction portion, we explore two different methods and discuss the performance of each method.

2. Literature Review

To provide a more scientific mechanism for prediction, various approaches have been proposed. While predicting
surgical durations, there are two main streams of research. The first stream attempts to find the best fit among
known distributions (most commonly normal [1] and lognormal [2]-[6]) and use these fitted distributions in order to
characterize variability in surgical procedures and predict durations. In the second approach, researchers build
statistical models to predict surgical procedure durations and identify critical factors that influence variability in
these durations.

Among those studies relating to distributions, Strum et. al. analyzed a large dataset of clinical cases and concluded
that fitting a log-normal model for each Current Procedural Terminology (CPT) code-anesthesia combination
provides accurate predictions for procedure duration [7]. In a follow-up study, Strum et. al. showed that the
lognormal distribution provides a better fit than normal distributions for modeling procedure durations having
exactly two CPT codes [8]. With such an approach, the distribution is used in scheduling instead of a single value.
This approach is good because it considers stochasticity by using distribution, however it is clear that there is a lot of
variability within procedures of a certain CPT code in terms of complexity and that the single criteria CPT code is
not an accurate indicator of surgery prediction. Relying on the lognormality assumption for procedure durations,
Dexter, and Ledolter develop a Bayesian method to calculate prediction bounds for procedure durations [9].
Stepaniak et. al. use a three-parameter lognormal model for predicting the procedure durations of CPT-anesthesia
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combinations including surgeon effects and show that their model can significantly reduce prediction errors and
therefore operating room (OR) inefficiency [10].

On the other hand, with model building, due to the large number of CPT codes, Strum et. al. built a separate five-
factor main-effects linear model for each CPT code [11] using logarithm of surgical time (i.e., the time from incision
to closure) or the logarithm of total procedure time (i.e., the time from when the patient enters the OR until he/she
emerges from anesthesia) as the response variable and surgeon, anesthesia type, American Society of
Anesthesiologist (ASA) risk class, patient gender, and patient age as the explanatory variables. Eijkemans et. al.
developed a regression-based prediction model with the logarithm of the total OR time, defined as the time from
patient entry into the OR room until the patient is moved out of the OR, as the response variable [12]. Besides the
surgeon’s estimate, they considered a large set of additional factors, divided into three classes, including operation
characteristics (e.g., the number of separate procedures and whether it is a laparoscopic procedure), team
characteristics (e.g., number and experience of the surgical team), and patient characteristics (e.g., age, sex, body
mass index, previous hospital admissions) and determined their significance when added as a single factor to the
base model, which only included the procedure type as a random effect. Motivated by the fact that CPT codes are
among the factor with the highest predictive power for procedure durations, Li et. al. developed a general
regression-based predictive model with multiple CPT codes as dependent variables [13]. They developed a
grouping procedure to identify CPT codes that always appear together in order to construct a full-ranked design
matrix for the regression model. Kayis et. al. developed a regression model, which adjusts a commonly used base
estimation method using procedure-surgeon specific last five cases, using operational (e.g., order of surgery, OR
assignment, surgical staff) and temporal factors (e.g., day, month, time of day) [14]. Due to the larger number of
explanatory variables, they used an elastic-net regularized generalized linear model. Their model results in improved
mean absolute deviation, especially for cases with long durations.

Some authors investigated use of data mining techniques to predict procedure durations. Combes et. al. proposed a
knowledge discovery in databases (KDD) framework. Within the data mining step of this framework, they
developed and compared two data mining methodologies, namely rough sets and neural networks, using patient
related factors (e.g., administrative data, previous medical history) and surgical environment (e.g., surgeon, type of
anesthesia) as explanatory variables [15]. Based on factors related, the patient and surgical environment (including
patient age, experience of surgical staff, type of anesthesia) within an ophthalmology department, Devi et. al.
developed and compared the performance of three methods: 1) adaptive neuro fuzzy inference systems (ANFIS), 2)
artificial neural networks (ANN), and 3) multiple linear regression [16]. Using duration estimates, they solved a
mixed-integer programming problem to optimize surgery schedules with an objective of minimizing overall
completion time (i.e., make span). Their numerical experiments indicated that ANFIS outperforms other methods.
Instead of predicting duration of individual surgical procedures, some authors study the completion time of a series
of surgical procedures (also referred to as operating list) in the same operating room on a given day. Dexter et. al.
proposed a regression model to predict the completion time of a list with the number of surgeon-procedure
combinations with the list as independent variables [17]. Pandit and Carey used a questionnaire of surgical staff
(including surgeons, anesthetists, and senior nurses) to estimate the duration of procedures and subsequently applied
the average of these estimates to predict the completion time of historical lists. They concluded that even though
estimates from surgical staff are accurate in predicting the completion time of operating lists, a substantial number
of lists were overbooked [18]. In a related work, Pandit and Tavare developed a method for calculating the
probability that a list will finish within its scheduled time [19].

3. Method and Case Study

As previous research suggests there are several factors that impact surgical times. In this study we received data
from a large hospital system. The data includes several fields including some general fields and some patient
specific information (we discuss the details related to the data in next section). One of the fields that show to be
impacting surgery duration is procedure code. Our data shows the record of 2000 procedure codes during the study
period. Therefore, the first step in our proposed method is to statistically reduce the number of sub factors for this
field. Our proposed method consists of two steps as part of the model and an evaluation to assess the performance of
the model (as shown in Figurel). In first step, we use classification to group procedure codes and to reduce the
number of sub-factors for the field of procedure code. The next step is prediction; in this step we develop two
separate regression models for procedure duration prediction using classical least square linear regression with main
factors included (LIN) and stepwise regression (STEP) where main factors and second level interactions are
included (we note that the stepwise with more levels of interaction did not add value, therefore were not considered).
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We then evaluate the model by comparing prediction results from LIN and STEP against the baseline. The hospital
system prediction (baseline) currently uses the moving average of 5 to 10 previous cases of same surgeon for that
procedure code. The system then allows the scheduler to adjust this value. Therefore, the recorded value for
procedure time in the system is the adjusted system prediction (ASP) and that is the value we use as baseline. The
adjustment scheduler makes to the moving average value is reflected by clinical situation of patient (such as
preexisting conditions, etc.,) and the complexity of the surgery which we do not have any fields available for that in
electronic data. This may seem that we set an unfair baseline to compare with. However, we feel confident that if
our model can outperform this baseline, then with additional data fields that will be added in future, our model can
perform even better.

First Step: Second Step:
Evaluation
Factor Analysis
Stepwise Compare with
Regression the Base Model
Classification
\lw Least Square Compare All
Padiiced Regression Maodels
Procedure
Codes Factor

Figure 1. Research Method

3.1. Data Structure

A total of 63,254 surgical procedures performed by 234 surgeons over 39 months at a large academic health system
with a total of 60 ORs were included. The data fields that show to impact surgery times and are included as part of
the electronic data records are specialty, priority, ASA class (American Society of Anesthesiologists score —
preoperative evaluation of patient physical status), age, encounter class, and procedure code. We also use fields such
as actual surgery start and stop times, actual OR start and stop times, and scheduled OR start and stop times for
evaluation purposes. Tables 1 and 2 show how the patients are distributed in relation to factors priority class and
ASA code. We also note that there are total of 2000 procedure codes, and 30 specialties associated with the data.
The patient class consist of 41% inpatient and 59% outpatient cases. Figure 2 shows how patients were distributed
among different age groups.

Table 1. Cases by Priority Class

Priority Class Number of | % of Cases
Cases

Emergent 1886 2.97

Immediate 960 1.51

Organ Donor 50 0.08

Urgent 1634 2.58

Elective 58873 92.86

Table 2. Cases by ASA Class

ASA Class Number of Patients
1 11856
2 25066
3 21473
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Figure 2. Patient Age Distribution

Although surgeon name was available as part of the data, however, this field was not considered as a factor, because
a surgeon based model makes the model not to be used for surgeons who just join the practice or those who start
performing a new surgery. Data was split with 85 percent for training and the remaining for the test set. The
analysis was performed using JMP PRO 10 software. We also note that all time units throughout the paper are in
minutes.

3.2. Classification

The dataset shows record of 2000 different procedure codes performed over the period of 39 months. The analysis
indicates that procedure code is highly significant factor in both surgery time (ST) and ASP. However, some of the
procedure codes are very rare and there are not enough records of these surgery types available. Also there are
procedure codes that are very similar in terms of duration. In order to consider the effect of procedure code while
fixing some of the issues with rare cases, we decide to define a new variable based on the grouped procedure codes.
In order to do that, we use data mining technique, particularly classification to categorize the 2000 different
procedure types in new groups. Classification or decision tree is a platform that recursively partitions data according
to a relationship between certain independent and dependent variables, creating a tree of partitions. It finds a set of
cuts or groupings of independent variables that best predict a dependent variable. These splits of data are done
recursively forming a tree of decisions until the desired fit is reached. There are several heuristic algorithms used to
build classification and decision trees [21,22]. Some of these algorithms are ID3, and CART [21]; in this study we
used CART. The proposed work uses classification to group different procedure codes based on their length of OR
time. This allows reduction of the number of categories of procedure codes. This reduction needs to be validated by
using cross-validation. We use a 10 fold cross validation to validate the categorization at 95% confidence. The new
categorization then can replace the variable procedure code in our regression model. This new variable called
adjusted procedure code. The classification method categorizes 2000 procedure types to 49 distinct groups.
Therefore, nominal variable adjusted procedure code has 49 levels instead of the initial 2000 levels. The R value for
the classification is 0.65. We apply Tukey Kramer HSD test with 0=.05 to test that these categories represent
statistically different groups in terms of mean procedure times. The results of this test are very lengthy and therefore
are omitted.

3.3. Prediction

Once the procedure category variable is created, regression models are developed to predict the duration. A multi
regression is a regression with more than one independent variable or factor and is one of the common methods of
prediction. The two of the most common techniques used in multiple regressions are least square regression and
stepwise regression. These methods are applied to predict surgery duration. We note that the stepwise regression and
linear least square regression are very similar in nature. The difference is mainly in the way significant variables
selected. For stepwise regression we use the combination of backward elimination and forward selection.
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According to the Gauss—Markov theorem, there are a few conditions to be satisfied such that the least square
estimator will be the best linear unbiased estimator. We notice that validation of these conditions is often ignored in
many previous studies, resulting in poor or invalid outcomes. In practice, there are rarely situations that all these
conditions hold; therefore, there is often need for adjustments and changes in the data that can help to satisfy these.
These conditions are:

1. Relationship between dependent and independent variables should be linear
The residuals are normally distributed with mean close to zero
There is no heteroscedasticity which means that residuals have a constant variance
There is no autocorrelation, that is successive residuals are not correlated
There is no multi-colinearity

kv

In preparation for use of regression model, all above assumptions have been verified. Due to the length of results
related to these assumptions, here only the method that applied to test each of the assumptions has been listed in
Table 3.

Table 3. List of Assumptions

Assumption | Method to Verify

1 Looking for un even distribution of standardized residuals as function of standardized predicted
value around zero horizontal line

Distribution of residuals

Applying white’s test

Applying Durbin Watson test

DB |WI N

Calculating correlation between response and the factors (for age) and visual examination of graph
of response by factor (for factors other than age)

Also regression factor statistical analysis indicates that all main factors shown in Table 4 are significant factors for
least square prediction model with p-value<0.0001. Although we admit that these are not the only factors
influencing OR times however the statistical results show that all of these factors significantly affect OR times. For
the stepwise regression we not only consider these main factors but also the two level interactions of these factors to
start the stepwise regression. The stepwise method however enters only those factors that have a significant impact
on the result. We also tested the stepwise with three levels of interaction; however, no improvement has been
reported from this model compared to the model with only two levels of interaction. Therefore, in result section only
the stepwise method with two levels of interaction has been discussed.

Table 4. Description of Variables

Independent Variables (Factors) Type Number of Levels
Priority Class Nominal 5

Procedure Category Nominal 49

ASA Class Nominal 6

Age Continuous -

Patient Class Nominal 2

Specialty Nominal 30

As we are predicting duration of times, we also need to make sure that the values reported as output of the
regression model are greater than zero. Plotting the distribution of duration of surgeries, it could be seen that the
distribution is very much skewed to the left. We expect this to cause the prediction values to occasionally get values
of zero or even negative. To prevent that, we use log transformation as predictor in regression model. This
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transformation has been widely used in literature to prevent the output of time predictions from falling to negative
numbers. After applying the regression model, inverse transformation needs to be applied before statistical results
are gathered. Figure 3 shows the distribution of case durations in train set before and after transformation.

0 100200 300 400 500 600 700 800 900 1100 112 16 222 26 332

Figure 3. Case Distribution Before and After Transformation

4. Results

The results of the three predictions (ASP, LIN, and STEP) are compared against each other. Multiple performance
measures such R? , RASE, and AAE which are coefficient of determination, root square average error, and average
absolute error respectively, are reported for both train and test sets (due to respective strengths [23, 24) ]. Table 5
shows the comparison statistics of the three methods. As can be seen, STEP prediction is better than LIN, and each
outperforms ASP

Table 5. Comparison of Results

Train Set Test Set
Predictor R? RASE AAE R? RASE AAE
ASP 0.6375 59.26 37.7017 | 0.652 57.3641 | 37.4473
LIN 0.6598 574116 | 34.0933 | 0.678 55.1816 | 34.3059
STEP 0.6838 55.3505 | 33.0578 | 0.6822 54.8274 | 34.0446

Table 6 shows the comparison of the three prediction values by specialty, for most frequent specialties with at least
100 cases. STEP is the best model for the most frequent specialties (orthopedics and general surgeries, surgical
oncology). LIN is better for urology, ophthalmology, thoracic, vascular, GYN oncology, and gynecology. ASP
outperforms both STEP and LIN for otolaryngology, plastic, and GYN oncology procedures. Neuro surgery,
obstetrics, and acute care procedures have mixed results. For Psychosurgery cases, the R’ values for ASP and LIN
are negative (these values for psychology is not shown in table as this specialty did not have many cases),
suggesting that the mean of the group is a better representative of the predicted values. Even though the R’ values
for STEP is positive (yet very small), none of the prediction models can accurately estimate the procedure durations
of this specialty. The t-test performed with alpha=0.05, suggests that LIN and STEP are significantly different from
ASP in terms of the mean residuals.
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Figure 4. Scatter Plot for Prediction

Table 6. Comparison by Specialty

Specialty Predictor R-Square RMSE MAE Frequency
Orthopedics ASP 0.5257 57.9685 39.9777
LIN 0.5755 54.8451 36.1095 34.2%
STEP 0.5828 54.3689 35.9546
General ASP 0.3729 55.0437 37.3926
LIN 0.4697 50.616 33.7518 14.6%
STEP 0.4965 49.3186 32.7425
Otolaryngology ASP 0.7319 51.7225 32.9076
LIN 0.7126 53.5506 32.2944 11.3%
STEP 0.7189 52.9621 32.0055
Urology ASP 0.7272 46.7483 30.5251
LIN 0.7733 42.614 26.7203 7.8%
STEP 0.7709 42.8332 26.9698
Ophthalmology ASP 0.2313 35.9271 22.6226
LIN 0.5206 28.3732 17.5264 6.3%
STEP 0.4968 29.0675 17.6161
Neuro Surgery ASP 0.5946 81.0404 54.9013
LIN 0.5947 81.0349 52.2301 5.1%
STEP 0.5893 81.5648 52.1195
Surgical Oncology ASP 0.6781 54.9955 32.3168
LIN 0.691 53.8794 31.6966 4.6%
STEP 0.7119 52.0292 30.4564
Plastic ASP 0.7299 78.7518 54.2446
LIN 0.6102 94.609 58.9855 4.0%
STEP 0.6412 90.7662 58.5443
Thoracic ASP 0.5998 99.1005 66.6381
LIN 0.7161 83.4766 59.6474 2.8%
STEP 0.6775 88.958 60.5216
Vascular ASP 0.6072 60.2528 40.1038
LIN 0.7247 50.4412 35.8458 2.0%
STEP 0.7008 52.5839 37.4437
Obstetrics ASP 0.6049 34.3594 26.9036
LIN 0.6995 29.9654 20.1546 1.8%
STEP 0.673 31.2549 19.1835
Psychosurgery ASP -2.2645 7.9547 4.5975
LIN -0.0481 4.5072 3.3032 1.7%
STEP 0.0009 4.4006 3.2347
Acute Care Surgery | ASP 0.2728 51.8505 38.2971
LIN 0.3784 47.9386 31.887 1.5%
STEP 0.3583 48.7057 31.8369
GYN Oncology ASP 0.6277 56.7332 35.9823
LIN 0.6227 57.1121 36.812 1.2%
STEP 0.6144 57.7381 36.4322
Gynecology ASP 0.5071 52.1249 37.6535
LIN 0.6241 45.5197 30.9478 1.1%
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STEP 0.6195 45.7996 31.8781

5. Discussion

Both LIN and STEP show moderate improvement over ASP. This is not surprising since ASP prediction is often
adjusted by the scheduler and/or the surgeon. These adjustments are typically based on intuitive consideration of
patient characteristics and clinical factors and surgery complexity (12). There is no indication in the data set of any
of these variables however about how often the moving average has been adjusted and by how much to determine
reported scheduled duration. We believe that additional factors such as those considered by scheduler to adjust the
value of the moving average if available can potentially make LIN and STEP even more accurate. The STEP
regression model includes two-level interactions (inclusion of three-level interactions gives only slight
improvement). The performance of LIN and STEP is dependent on the choice of independent variables and the size
of the data set. While having additional factors and interaction of factors can potentially increase R value in the
training set indicating a better model, corresponding performance in the test set needs to be evaluated.

The independent variables considered in this study are general factors available across all specialties, and hence
ensures ease of scalability. If more clinical factors are added to the model, then the interaction of factors will add
more value to the accuracy of the prediction. These clinical factors however may not be available in structured data
format. In some situations these factors could be observed by applying text mining on pre and post diagnostic notes
if these notes are recorded electronically in unstructured form. However, in some situations such data is not
available electronically. In such case there is need for manual observation of factor from notes by reading hand
written charts by experts. We also note that each specialty has several meaningful variables which are specific to
their practice, to add all these factors into a single model, care needs to be taken since this will create an uneven
spread of factors among data due to the fact that some practices perform more surgeries than others. For instance,
our data shows an indication that there is more of general and orthopedic surgery compared with other specialties;
this however should not be used against accuracy of the prediction of duration of specialties with lesser number of
cases. Further, individual specialties tend to show variation in performance based on the type of regression. STEP
performs best with fewer specialties but those that account for more than half of the procedures. LIN performs best
with specialties that account for a third of the procedures. Psychosurgery as a specialty is not predicted well by any
of the models, and hence needs further investigation.

6. Conclusion

Prediction of OR times is very important as these times are used to assign time and day of the surgery. Accurate
predictions are necessary to prevent over- and under-utilization. We proposed and evaluated a hybrid method with
two steps 1) creation of a new variable to categorize procedures across all specialties and 2) development of
regression models to predict procedure duration using the procedure category variable from the first step along with
other factors. Evaluation shows that both regression models (LIN and STEP) result in better predictions compared to
the current state-of-the-practice. The hybrid method with STEP regression gives a better prediction for orthopedics
and general surgeries and surgical oncology specialties, which constitute more than half of the procedures. The
proposed hybrid method can effectively deal with the heterogeneity problem, and further improvements can be
obtained through inclusion of additional clinical factors.
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