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Abstract 

Cancer Registries record cancer data by reading and interpreting pathology cancer specimen reports. For some 

Registries this can be a manual process, which is labour and time intensive and subject to errors. A system for 

automatic extraction of cancer data from HL7 electronic free-text pathology reports has been proposed to improve 

the workflow efficiency of the Cancer Registry. The system is currently processing an incoming trickle feed of HL7 

electronic pathology reports from across the state of Queensland in Australia to produce an electronic cancer 

notification. Natural language processing and symbolic reasoning using SNOMED CT were adopted in the system; 

Queensland Cancer Registry business rules were also incorporated. A set of 220 unseen pathology reports selected 

from patients with a range of cancers was used to evaluate the performance of the system. The system achieved 

overall recall of 0.78, precision of 0.83 and F-measure of 0.80 over seven categories, namely, basis of diagnosis (3 

classes), primary site (66 classes), laterality (5 classes), histological type (94 classes), histological grade (7 

classes), metastasis site (19 classes) and metastatic status (2 classes). These results are encouraging given the large 

cross-section of cancers. The system allows for the provision of clinical coding support as well as indicative 

statistics on the current state of cancer, which is not otherwise available. 

Introduction 

Cancer notified from pathology is the primary method of identifying population based cancer incidence and is an 

important and fundamental tool for cancer monitoring, service planning and research. The Cancer Registry receives 

cancer specimen reports from pathology laboratories, which are subsequently abstracted by expert clinical coders for 

key cancer characteristics. The information is often trapped in the language of these reports, which are in the form of 

unstructured, ungrammatical and often fragmented free-text. The effort required for information abstraction can 

therefore be an extremely labour and time intensive exercise. Furthermore, the abstraction is also subject to errors 

and inconsistent interpretations due to the need for repeated interpretation of the results by coders with differing 

levels of experience and training potentially leading to differing conclusions, repeated data entry into collection 

systems, and when cases are misinterpreted or keywords are missed. 

An approach whereby reports are electronically received and automatically processed, abstracted and analysed has 

the potential to support expert clinical coders in their decision-making and assist with improving accuracy in data 

recording. Improving the cancer notifications process would provide significant benefits to oncology service 

providers, health administrators, clinicians and patients.  

An automated medical text analysis system that extracts cancer notifications data from any notifiable electronic 

cancer pathology report is proposed. A rule-based approach utilising natural language processing (NLP) and 

symbolic reasoning using SNOMED CT
*
 were adopted in the system. Selected Queensland Cancer Registry 

business rules were also incorporated to mimic the interpretations and coding standards that expert clinical coders 

would adopt. The system was deployed to process pathology HL7 feeds from across the state of Queensland in 

Australia. The utility of the system was assessed and showed promising results on a set of reports containing a large 

cross-section of cancers. 

Background 

There has been a number of clinical language processing systems or studies relating to the extraction of key cancer 

characteristics from pathology free-text. Most research has focused on data extraction tasks for specific cancers such 

as colorectal, breast, prostate and lung.  

                                                             
*
 Systematized nomenclature of medicine - clinical terms 
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The medical text analysis system/pathology (MedTAS/P) proposed by Coden et al.
1
 uses NLP, machine learning and 

rules to automatically extract or classify cancer characteristics. Selected cancer characteristics were evaluated and 

showed promise with F-measures ranging from 0.9–1.0 for most extraction tasks including histological type, 

primary site, and grade on a corpus of colon cancer pathology reports. 

Martinez and Li
2
, similarly, used a colorectal cancer database to automatically predict cancer characteristics using 

machine learning (and in some cases complemented with rules) with 5 of the 6 multiclass problems achieving an F-

measure above 74.9% using simple feature representations. Primary site, however, proved difficult to predict with an 

F-measure of 0.58.  

Ou and Patrick
3
 extracted pertinent colorectal cancer information from narrative pathology reports using supervised 

machine learning and automatically populated the cancer structured reporting template using rule-based methods. 

They achieved an overall F-measure of 81.84% over a large range of structured reporting data fields. 

Currie et al.
4
 presented a method of automated text extraction using specific rules and language patterns to extract 

over 80 data fields from breast and prostate cancer pathology reports with 90-95% accuracy for most fields. 

Buckley et al.
5
 studied the feasibility of using natural language processing to extract clinical information from over 

76,000 breast pathology reports from 3 institutions. They reported that there was widespread variation in how 

pathologists reported common pathologic diagnoses. For example, 124 ways of saying ‘invasive ductal carcinoma’, 

95 ways of saying ‘invasive lobular carcinoma’ and over 4000 ways of saying ‘invasive ductal carcinoma was not 

present’. Reported sensitivity and specificity of the system were 99.1% and 96.5% when compared to expert human 

coders.  

The Medical Text Extraction (Medtex) pipeline proposed by Nguyen et al.
6
 used a symbolic rule-based approach to 

parse pathology reports using NLP to identify SNOMED CT concepts of relevance, and tested whether these 

concepts were subsumed by concepts relating to cancer staging factors. Lung cancer staging and synoptic reporting 

were used to illustrate the symbolic rule-based approach
7,8

. The symbolic rule-based system performed within the 

bounds of human staging accuracy as observed in studies of registry data
8
. 

As these studies are cancer (or tumour stream) specific, more generalized approaches are needed to extract cancer 

characteristics for all cancers. More recent research using Medtex has been applied to the extraction and coding of 

cancer characteristics such as basis of diagnosis, histological type and grade, cancer site and laterality from 

pathology free-text for all cancers
9
. Preliminary results on a small evaluation set of 61 cancer notifiable reports 

comprised of a range of cancers have shown that cancer characteristics can be extracted with an overall accuracy of 

80%. 

In this paper, we present the architecture and deployment of Medtex on streaming pathology HL7 feeds from public 

pathology laboratories across the state of Queensland, Australia. Challenges here included the vast individual 

pathologists and institutional variations in the textual contents of the reports. A subset of 220 pathology reports from 

the deployment was selected from patients with a range of cancers to evaluate and analyse the performance of the 

system over seven cancer characteristic categories, each potentially containing a large number of possible classes, 

namely, basis of diagnosis (4 classes), primary site (330 classes), laterality (5 classes), histological type (1036 

classes), histological grade (9 classes), metastasis site (330 classes) and metastatic status (2 classes). In contrast to 

previous work
9
, the work presented here evaluated the utility of a Medtex deployment using a different and larger 

evaluation dataset and, unlike all previous tumour stream specific studies, this paper presents cancer characteristic 

extraction results on a wide range of cancer sites and types. The robustness of the system is also presented by 

comparing the evaluation results against those obtained from the development set and from a majority class 

classifier. An error analysis of the poorer performing cancer characteristic categories was also performed to 

determine the underlying limitations of the system.  

Method 

System Description 

The medical text analysis system, Medtex, is a Java-based NLP software platform created for the development of 

clinical language engineering analysis engines to support data-driven analytic tasks
6
. Medtex incorporates a (1) free-

text to SNOMED CT mapping engine to normalize the free text (i.e. unify the language of the reports) by identifying 

medical concepts, abbreviations and acronyms, short-hand terms, dimensions and relevant legacy codes, (2) relate 

key medical concepts, terms and codes using contextual information and report substructure, and (3) use formal 

semantics, via a SNOMED CT ontology server, for medical text inference and reasoning. Additional analysis 
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engines can be incorporated to infer or classify complex clinical notions relevant to a particular health application 

using handcrafted algorithms and rules and/or machine learning techniques. Medtex has been applied to small scale 

datasets for research purposes; however its utility on real-time data streams and larger datasets may be inadequate if 

the computational time for the analysis of reports cannot keep up with the demands of the incoming data stream.  

To address this issue, the Java messaging service (JMS) was chosen as the messaging broker for providing an 

intermediary to allow Java applications to be loosely coupled and reliably create, send, receive and read messages
10

. 

This messaging service is built on the concept of message queues, producers (senders), and consumers (receivers). A 

message producer is used for sending messages to a specific queue. The message consumer is then used for 

receiving messages from a specified queue. Multiple message consumers can be set up in parallel to receive 

messages from the same queue such that only one message is received by only one of the consumers. Furthermore, 

consumers acting on data can publish their results to another queue called a message topic, whereby other 

consumers wishing to register and subscribe to the topic can receive messages from the topic. This scenario allows 

for multiple consumer applications to act on the same messages published from a given consumer. 

The proposed Medtex service for analysing HL7 messages from a statewide pathology information system is 

illustrated in Figure 1. It aims to automate a number of Cancer Registry tasks such as the notification of cancer 

reports and the coding of notifications data. Apache ActiveMQ
†
, an open source message broker, which fully 

implements JMS, was used to implement the messaging service. The message producer (HL7 Producer) accesses 

pathology HL7 messages and through the selection of report types that are relevant for subsequent processing, 

messages are sent to a specified queue (REPORTS_QUEUE). Multiple Medtex consumers can be set-up such that 

each consumer will take a message from the queue in turn. The results from the Medtex analysis are encoded in 

JSON
‡
 format and published to a message topic (RESULTS_SUBSCRIPTION) where the topics can be subscribed 

to by end-user applications (Results Consumer), for example, to consolidate patient results and store them in a 

database and/or provide support for clinical coders to abstract clinical information from medical reports. 

 

Figure 1. Messaging architecture for analysing pathology HL7 messages. 

Within Medtex itself, the system would automatically process and analyse free-text HL7 pathology reports. The 

system selects from the pathology feed, histology and cytology reports, and filters non-notifiable cancer reports
12

. 

For notifiable cancer reports, cancer characteristics extracted for a Cancer Registry notification consist of basis of 

diagnosis, primary site, laterality, histological type, histological grade, metastasis site, metastatic status, among 

others. Those relevant for the evaluation in the current study include: 

• Basis of diagnosis encodes the method by which the cancer was diagnosed. For cytology and histology 

reports, the basis of diagnosis can either be encoded as cytology or haematology (06), histology of 

metastasis (07), histology of primary (08), or autopsy and histology (09). The basis of diagnosis is often 

used to assess the reliability of the cancer diagnosis, where the most conclusive information is found from 

histological reports. 

• Histological type records the characteristics of the tumour. It is encoded using an ICD-O morphology code, 

which consist of a prefix M followed by a five-digit code ranging from M-80000 to M-99893. The cell type 

and behaviour make up the morphology code. The first 4 digits refer to the histology, while the last digit is 

                                                             
†
 http://activemq.apache.org/ 

‡
 http://www.json.org/ 

!
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the behaviour code and identifies whether the neoplasm is benign (0), uncertain and unknown behaviour 

(1), in situ (2), malignant (3), secondary or metastatic (6), or malignant but unknown whether it’s a primary 

or metastatic site (9). Behaviour codes 6 and 9 are not used by Cancer Registries
11

 but are instead flagged 

or derived from other cancer characteristic data elements such as basis of diagnosis, metastatic site or 

metastatic status. 

• Histological grade, differentiation or phenotype describes how much or how little a tumour resembles 

normal tissue. It is encoded using a one-digit code. Only malignant tumours are graded and are represented 

by code numbers 1 to 4, designating grades I (well differentiated) to IV (undifferentiated), respectively. For 

a lymphoma or leukaemia, separate code numbers 5 to 8 are used to identify immunophenotype 

differentiation such as T-cell, B-cell, Null cell, and NK cell origin, respectively. If grading is unknown, not 

applicable or cannot be determined, then a code number of 9 would be assigned. 

• Primary site describes the origin of the cancer in the body and is represented by an ICD-O topology code 

ranging from C00.0 to C80.9. It is encoded using a four-character code using a prefix C to identify 

topography codes. The first two digits represent the site (e.g. C34 for Lung), while the last digit defines the 

sub-site (e.g. C34.1 for Upper lobe of lung). 

• Laterality indicates the side affected by the tumour for cancers of paired organs (e.g. breast, lung, kidney, 

etc.). It is encoded using a one-digit code: right (1), left (2), bilateral (3), not applicable (8) and unknown 

(9). 

• Metastasis site describes the site of spread from which the cancer originated. In this study, it was proposed 

to assign an equivalent ICD-O topography code to represent the metastatic site, although ICD-O is not 

usually used for this purpose.  

• Metastatic status is a flag to reflect whether the behaviour of a tumour indicates a metastasis (including 

lymph node metastasis).  

The cancer characteristic codes were defined from ICD-O Third Edition
13

 for primary site, histological type and 

histological grade; and other notifications data according to classification codes recorded in the Queensland Cancer 

Registry
11

. Table 1 summarises the list of the cancer characteristics along with their codes (or classes). In general, 

the cancer characteristic categories are multiclass where there are more than 2 classes within the category. The vast 

number of histological types and primary sites for classification show the complexity of the extraction tasks 

involved.  

Table 1. Cancer characteristic categories and code description. 

Category Code Number of Classes 

Basis of Diagnosis 06 – Cytology or Haematology 

07 – Histology of metastasis 

08 – Histology of primary 

09 – Autopsy and histology 

4 

Histological Type ICD-O morphology code – M-xxxxx 1036 

Histological Grade 1 – Grade 1 – well differentiated 

2 – Grade II – moderately differentiated 

3 – Grade III – poorly differentiated 

4 – Grade IV –undifferentiated or anaplastic 

5 – T-cell 

6 – B-cell, Pre-B, B-precursor 

7 – Null cell, Non T, Non-B (For leukaemias only) 

8 – NK Cell 

9 – Grade or differentiation not determined, not stated or not applicable. 

9 

Primary Site ICD-O topography code – Cxx.x  330 

Laterality 1 – Right 

2 – Left 

3 – Bilateral  

8 – Not applicable 

9 – Unknown  

5 

Metastatic Site Equivalent ICD-O topology code – Cxx.x See primary site 

Metastatic Status Not applicable or 2 (metastasis) 2 

 

An expert clinical coder analysed the development set (see Corpus Description) to help build the ground truth and 

extraction modules for each of the cancer characteristic categories. A combination of NLP, domain knowledge and 

rules, and in particular SNOMED CT
14

 manipulation and querying were used to classify cancer characteristics. The 
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algorithm and rules were iteratively refined based on measuring and analysing the performance of the system on the 

development data set. Examples of the cancer characteristic classification methods are tabulated in Table 2.  

Table 2. Example of methods used for the extraction of cancer notifications data. 

Method Notifications Data Example 

Queensland Cancer Registry coding 

rules (including special casings) 

Histological Type Select the highest morphology if more than one morphology is stated. 

Histological Grade Assign the highest grade or differentiation code. 

Primary Site Code all leukaemia except myeloid sarcoma (M-99303) to C42.1 (bone 

marrow). 

Domain knowledge Primary Site List of one-to-one only ICD-O morphology to site mappings.  

Restrict SNOMED CT concepts to those with a ‘morphologic abnormality’ 

semantic category and those that have alternate terms with the following 

regular expression "M-[0-9]{5}". 

SNOMED CT property access Histological Type 

 Primary Site Restrict SNOMED CT concepts to those with a ‘body structure’ semantic 

category.  

SNOMED CT to ICD-O topography 

cross-maps 

Primary Site Map SNOMED CT ‘body structure’ concepts to ICD-O topography codes. 

SNOMED CT Subsumption 

querying 

Histological Type Candidate ‘leukaemia’ concepts are found by testing subsumption by the 

‘128931003 | Leukemia – category’ concept. 

SNOMED CT Concept relationship 

querying 

Primary Site “Procedure site – Direct” and “Finding site” relationship values from 

concepts are used as candidate sites. 

SNOMED CT querying using ad-hoc 

term expansion 

Histological Type The histological type and grade’s preferred terms were used to search for a 

more specific concept. For example, the query for “Follicular Lymphoma” 

+ “Grade 3” would return the histological type M-96983, which is 

“Follicular Lymphoma, Grade 3”. 

Relation extraction Basis of Diagnosis Identification of multiple concepts or terms within a search scope such as 

metastasis and lymph nodes within a sentence. 

Keyword/phrase spotting Histological Grade Detect keywords or phrases that were unable to be (or unreliably) mapped 

to SNOMED CT. For example “poorly to moderately differentiated”. 

 

Corpus Description 

Access to the Queensland statewide pathology data was obtained from the Queensland Oncology Repository with 

research ethics approval from the Queensland Health Research Ethics Committee. The data covers HL7 pathology 

feeds from public pathology laboratories in the state of Queensland. A corpus consisting of 500 pathology reports 

was used for system development of which 201 of them were notifiable cancers (and thus relevant for the current 

cancer characteristic extraction task). Non-notifiable cancers such as non-malignant cancers, and squamous cell 

carcinoma (SCC) and basal cell carcinoma’s (BCC) of the skin were identified, but removed and flagged by the 

system; a separate study addressed these issues by filtering notifiable reports from non-notifiable reports
12

. For 

system evaluation, a separate 220 pathology reports from the deployment of the system for processing the backlog 

of pathology feeds was selected from patients with a range of cancers (i.e. tumour-stream stratified sampling) to 

evaluate and analyse the performance of the system. The ground truth used for system evaluation was based on the 

reference data set annotated by the same expert clinical coder who helped develop the system. Table 3 shows the 

cancer characteristic statistics from the development and evaluation corpus.  

Table 3. Notifiable cancer characteristic corpus statistics. 

Category 
Number of 

Classes 
Majority Class Frequency Range (Mean ± Std Dev) 

Number of Unseen 

Classes in Eval. 

 Dev./Eval. Dev. Eval. Dev. Eval.  

Basis of Diagnosis 3 08 08 19-146 (67±69) 21-175 (73±88) - 

Histological Type 64/94 M-81403 M-81403 1-35 (3.1±5.4) 1-21 (2.3±3.1) 65 (69%) 

Histological Grade 7 9 9 3-110 (28.7±38.1) 1-129 (31.4±44.6) - 

Primary Site 58/66 C50.9 C42.1 1-21 (3.4±4.1) 1-39 (3.3±5.9) 30 (45%) 

Laterality 4/5 8 8 20-129 (50.3±52.6) 1-134 (44.0±52.4) 1 (20%) 

Metastatic Site 17/19 NA NA 1-170 (11.2±39.7) 1-192 (11.0±42.6) 10 (53%) 

Metastatic Status 2 NA NA 31-170 (101±98) 28-192 (110±116) - 

Dev., development set (N=201); Eval., evaluation set (N=220); Std Dev, standard deviation; NA, ‘Not Applicable’ class 

 

The distributions between the development and evaluation set for each cancer characteristic category were quite 

similar. However, within the categories the class frequencies can vary quite significantly, with large variation in 

ranges and standard deviations, e.g. basis of diagnosis, histological grade, laterality, etc. On the other hand, in some 

categories, there are a large number of small frequency classes resulting in low means and standard deviations, e.g. 

histological type and primary site, due to the large and diverse number of cancer types and sites, respectively. 
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Furthermore, there is a large portion of classes contained in the evaluation set that were not found in the 

development set (e.g. histological type, primary site and metastatic site). The corpus and cancer characteristic 

category statistics show the challenges and complexity of the extraction tasks. In addition, the varied writing style 

and language contained within the reports from different pathologists and laboratories creates additional challenges 

that will test the robustness and generalizability of the extraction modules when measuring the performance of the 

system on the evaluation set. 

Performance Measures 

The measures used to evaluate results are based on the counts of true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN) resulting from the classification decisions. The multiclass classification 

performance for a given cancer characteristic category, C, is measured using the micro-average recall (R or 

sensitivity), precision (P or positive predictive value), and balanced F-measure (F). 
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Overall system performance is reported as the macro-average measure across all the categories, with equal weight to 

every category.  

A majority class classifier was used as a baseline to determine whether the system’s results were significantly better 

than one that naively classifies results simply based on the majority class. In addition, to assess the generalizability 

of the system, the system’s results from the evaluation set were compared with that from the development set. Other 

cancer notification extraction systems are tumour specific and thus were not suitable for use as a benchmark. 

Results 

The Medtex messaging service was applied to a statewide pathology HL7 message feed. The backlog and new 

incoming HL7 messages from pathology laboratories in Queensland, Australia were used to analyse the pathology 

reports as well as test the load on the service. Using 3 instances of Medtex, the system’s average processing rate was 

3.6 seconds per message and achieved the processing of a year’s worth of messages within just under 5 days.  

An increase in report analysis throughput was achieved by using the messaging framework and multiple instances of 

Medtex consumers in parallel. The use of 3 Medtex instances in parallel resulted in a 2.5 times speed-up over the 

sequential single instance of Medtex in operation. Depending on system resources, further speed-ups are possible if 

additional instances of Medtex and/or multiple instances of Medtex’s shared resources such as the SNOMED CT 

ontology and concept-mapping servers were made available. 

The classification performances of the system with respect to the cancer characteristic categories are shown in Table 

4. Figure 2 summarises the F-measure comparison of cancer characteristic categories between the development and 

evaluation set. 

Table 4. Cancer characteristic classification performances. 

 Recall Precision F-measure 

 Dev. Eval. Dev. Eval. Dev. Eval. 

Basis of Diagnosis 0.955 0.918 0.965 0.948 0.960 0.933 

Histological Type 0.796 0.577 0.865 0.710 0.829 0.637 

Histological Grade 0.935 0.773 0.945 0.798 0.940 0.785 

Primary Site 0.522 0.546 0.656 0.694 0.582 0.611 

Laterality 0.786 0.805 0.794 0.831 0.790 0.818 

Metastatic Site 0.891 0.886 0.918 0.920 0.904 0.903 

Metastatic Status 0.945 0.932 0.945 0.932 0.945 0.932 

Macro-average 0.833 0.777 0.870 0.833 0.850 0.803 
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Figure 2. Cancer characteristic classification performances (F-measure) shown with 95% confidence intervals. 

The system’s results were compared to a majority class classifier to determine whether the system was significantly 

better than one that naively classifies results simply based on the majority class. Table 5 shows the F-measure results 

for both the system and the majority class classifier. 

Table 5. Comparison of F-measure results between the system (Medtex) and majority class classifier. 

 Development (N=201) Evaluation (N=220) 

 
Majority Classifier 

(95% CI) 

Medtex 

(95% CI) 

Majority Classifier 

(95% CI) 

Medtex 

(95% CI) 

Basis of Diagnosis 0.73 (0.66-0.79) 0.96 (0.93-0.99) 0.80 (0.74-0.85) 0.93 (0.90-0.97) 

Histological Type 0.17 (0.12-0.23) 0.83 (0.78-0.88) 0.10 (0.06-0.14) 0.64 (0. 57-0.70) 

Histological Grade 0.55 (0.48-0.62) 0.94 (0.91-0.97) 0.59 (0.52-0.65) 0.79 (0.73-0.84) 

Primary Site 0.11 (0.06-0.15) 0.58 (0.51-0.65) 0.18 (0.13-0.23) 0.61 (0.55-0.68) 

Laterality 0.64 (0.58-0.71) 0.79 (0.73-0.85) 0.61 (0.55-0.67) 0.82 (0.77-0.87) 

Metastatic Site 0.85 (0.80-0.90) 0.90 (0.86-0.95) 0.87 (0.83-0.92) 0.90 (0.86-0.94) 

Metastatic Status 0.85 (0.80-0.90) 0.95 (0.91-0.98) 0.87 (0.83-0.92) 0.93 (0.90-0.97) 

Macro-average 0.56 (0.49-0.62) 0.85 (0.80-0.90) 0.57 (0.51-0.64) 0.80 (0.75-0.86) 

CI, confidence interval 

Discussion 

Overall system performance on the evaluation set reported as F-measure was 0.80. At a cancer characteristic level, 

the F-measure performances within each category were 0.93 for basis of diagnosis, 0.64 for histological type, 0.79 

for histological grade, 0.61 for primary site, 0.82 for laterality, 0.90 for metastatic site and 0.93 for metastatic status. 

The results are promising given the challenges previously discussed regarding the large number of classes from 

certain categories, varied and skewed distributions within each cancer characteristic category, and the large number 

of unseen classes being classified in the evaluation set. The results show the system’s robustness and generalizability 

by achieving extraction performances on the evaluation set that is comparable with that obtained from fine-tuning 

the system using the development set, and also its superiority to that obtained when using a majority class classifier. 

When compared to previous studies that focused on certain tumour streams
1,3,5

, the results show that generalizing the 

extraction algorithms to accommodate for all tumour streams has its challenges and therefore is sub-optimal to the 

tumour stream specific results. However, it would be a very costly exercise to build specific tumour stream cancer 

characteristic classifiers for each and every possible cancer. The trend in extraction performances across the 

categories are also consistent with previous works
2
 whereby primary site was found to be the most challenging. 

The results between the development and evaluation set were in general not significantly different. Only the 

histological type and histological grade generated results that exhibited non-overlapping 95% confidence intervals 

suggesting that the algorithms and rules adopted in these extraction modules likely over-fitted the development data. 

That said, there was a large number of histological types in the evaluation set that were not seen in the development 

set; despite having almost 70% of the histological types unseen by the system during development, the system was 

able to classify the category with a recall of 0.58, precision of 0.71 and an overall F-measure of 0.64. In terms of the 
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free-text to SNOMED CT mapping engine, it was observed that 83.2% of the histological types from the 

development set could have been found within the mapped concepts. This provides an upper bound to the 

classification performance by the system, unless other methods are introduced to infer the histological type. 

For histological grade, error analysis revealed that at a per-class level, all classes had non-overlapping 95% 

confidence intervals, except for the histological grade of 3 (poorly differentiated). The errors were more pronounced 

for histological grades 4 through to 6, from which 5 and 6 relate to lymphoma or leukaemia histological types. 

The extraction of primary site was also a challenge for the system as evident from its performance. Despite having 

45% of the cases in the evaluation set unseen by the system during development, the results between the 

development and evaluation set had overlapping 95% confidence intervals. One source of error was due to the lack 

of co-referencing of specimens between the macroscopic and microscopic sections of the pathology report. As a 

result, the relation between different evidences in the free-text could not be classified correctly. Again in terms of 

the free-text to SNOMED CT mapping engine, 70.3% of the primary sites (excluding unknown primary C80.9 sites) 

from the development set were found in the mapped concepts. This suggests that the use of the current concept-

mapping algorithm has its limitations in giving the system the ability to correctly identify primary sites. Further 

inspection of the errors also revealed that many of the cases actually classified the ICD-O site (Cxx) correctly (e.g. 

site = C34 for Lung) but not the sub-site (Cxx.x; e.g. sub-site = C34.1 for Upper lobe of lung). Figure 3 illustrates 

this effect where results at a site level (Cxx) were significantly better than that classified at a sub-site level (Cxx.x) 

with non-overlapping 95% confidence intervals. 
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Figure 3. Primary site classification performances at a site (Cxx) and sub-site (Cxx.x) level along with 95% 

confidence intervals. 

The metastatic site and metastatic status data items are also worth deeper analysis. Although, performing well with 

high F-measures, the large bias towards the majority class did not make the system perform much better than the 

majority class classifier. As a result, it is likely that there is poor recall and precision for the minority classes.  

Future research will need to focus on iteratively improving the system’s performance, especially for critical cancer 

notifications data such as primary site and histological type. Preliminary error analysis have revealed areas of focus 

for further system improvement such as histological grade for lymphoma and leukaemia cancers, including the need 

to investigate other concept-mapping algorithms for improving both histological type and primary site categories. 

These error analyses facilitate the identification of the relevant Queensland Cancer Registry business rules to be 

incorporated, abstraction errors by human experts, and also feedback the type of errors generated for further system 

development. 

Other limitations of the system include limited number of development reports given the large number of possible 

histological types and primary sites. The evaluation corpus is also biased towards uncommon cancers due to the 

tumour-stream stratified sampling that was applied to ensure that a range of cancers were represented in the 

evaluation set. In addition, the system at present cannot distinguish between multiple cancers reported within a 

single report. 

In a clinical coding workflow setting, the system could be used to support clinical coders and hence improve data 

collection capture at Cancer Registries by highlighting and pre-populating cancer notification items for validation 

(for example, see Figure 4). Here, the free-text report is shown in the leftmost panel. The highlights shown over the 
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free-text report correspond to the evidence used to generate the system’s suggested coding, which is shown in the 

rightmost panel. Clinical coders can then use the system’s suggestions to either accept (using the arrows in the 

rightmost panel) or enter in an alternate code to populate the fields within the clinical coder’s coding panel (as 

depicted by the middle panel). Investigations into the utility of a guided and interactive annotation process on cancer 

characteristic abstraction tasks is reserved for future work.   

 

Figure 4. The Medtex software can process narrative pathology reports and generates structured data to aid clinical 

coders in cancer abstraction tasks. 

The proposed architecture for the processing and analysis of streaming pathology reports has potential to overcome 

the multi-year delay in the reporting of cancers by providing indicative population-level statistics on the current 

incidence of cancer. The system supports future data extension requirements such as cancer stage, and also can be 

applied on other sources of cancer data with free text, e.g. death data and radiology reports. 

Conclusion 

Analysis of the contents of electronic pathology reports will have a profound impact on cancer care. As a result, a 

number of automatic cancer data extraction systems have been developed, however their utility in automating 

Cancer Registry tasks has to be adequately assessed. In this study, the Medtex system was assessed and showed 

promise in terms of stream processing at a statewide level and also in terms of cancer characteristic extraction 

performances and its ability to track and identify specific system limitations for future improvements.  

The use of Medtex’s messaging technologies that take advantage of the parallelism of consumers/producers can be 

an effective real-time processing solution for data streams. These technologies greatly increase the throughput of 

medical text analytics for clinical decision support and/or research activities involving real-time data streams or 

large datasets. 

The cancer notifications data extraction results from Medtex show promise with an overall F-measure performance 

of 0.80 on a broad range of cancers and cancer characteristic categories. Despite some cancer characteristic 

categories performing well, with an F-measure score of above 0.90, the histological type and primary site extraction 

results proved more challenging due to its large number of possible classes. The system is extensible and cancer 

stage including other synoptic data can also be incorporated. Future work will analyse errors between the system and 

the reference standard to feedback into the iterative development process.  

The system is proposed to streamline and support the clinical coding workflow at Cancer Registries by identifying 

cancer notifiable reports and then highlighting and pre-populating cancer notification items for clinical coder 

validation. It is hoped that such automation would help overcome the multi-year delay in the reporting of cancer 
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statistics with Cancer Registries able to have access to up-to-date population-level statistics on the current state of 

cancer.   
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