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ABSTRACT 
Clinical concept recognition (CCR) is a fundamental task in clinical natural language 
processing (NLP) field. Almost all current machine learning-based CCR systems can only 
recognize clinical concepts of consecutive words (called consecutive clinical concepts, 
CCCs), but can do nothing about clinical concepts of disjoint words (called disjoint clinical 
concepts, DCCs), which widely exist in clinical text. In this paper, we proposed two novel 
types of representations for disjoint clinical concepts, and applied two state-of-the-art 
machine learning methods to recognizing consecutive and disjoint concepts. Experiments 
conducted on the 2013 ShARe/CLEF challenge corpus showed that our best system achieved 
a “strict” F-measure of 0.803 for CCCs, a “strict” F-measure of 0.477 for DCCs, and a 
“strict” F-measure of 0.783 for all clinical concepts, significantly higher than the baseline 
systems by 4.2% and 4.1% respectively. 

INTRODUCTION 

With rapid growth of medical informatics technology, a large number of electronic health 
records (EHRs) have been available in recent years, including a huge mass of data, such as 
clinical narratives. They have been being used not only to support computerized clinical 
systems (e.g., computerized clinical decision support systems [1][2]), but also to help the 
development of clinical and translational research [3]. One of the challenges to use them is 
that much information is embedded in clinical notes, but cannot be directly accessible for 
computerized clinical systems which rely on structured information. Therefore, natural 
language processing (NLP) technologies, which can extract structured information from 
narrative text, have received great attention in medical domain [4], and many clinical NLP 
systems have been developed for different applications [5]. 

Clinical concept recognition (CCR) as a fundamental task of clinical NLP has also attracted 
great attention, and a large number of systems have been developed to recognize clinical 
concepts from various types of clinical notes in last two decades. Earlier systems were based 
on rules or dictionaries manually built by medical experts. The representative systems 
included MedLEE [4], SymText/MPlus [6][7], MetaMap [8], KnowledgeMap [9], cTAKES 
[10], and HiTEX [11]. In the past few years, with the increasingly available annotated clinical 
corpora, researchers started to apply machine learning algorithms to CCR, and several 
clinical NLP challenges were organized to promote the research on this task. For example, 
the Center for Informatics for Integrating Biology & the Beside (i2b2) organized NLP 
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challenges on CCR in 2009 and 2010 respectively [12][13]. The ShARe/CLEF eHealth 
Evaluation Lab (SHEL) organized a NLP challenge in 2013 [14], which includes a subtask of 
disorder recognition [15], and launched a similar NLP challenge as a part of the SemEval 
(Semantic Evaluation) in 2014 (i.e., SemEval-2014 Task 7) using the same training set, but 
different test set. Rule-based, machine learning-based and hybrid methods were developed to 
recognize medications by over twenty participating teams in the 2009 i2b2 NLP challenge 
[12]. In the 2010 i2b2 NLP challenge, clinical concepts, including problems, tests and 
treatments, not limited to medication, were required to recognize [13]. Most systems were 
primarily based on machine learning algorithms in this challenge, likely due to a large 
available annotated corpus [14]. In both the 2013 ShARe/CLEF and SemEval-2014 
challenges, machine learning-based systems achieved state-of-the-art performance on 
disorder concept recognition [15]. Among the four NLP challenges, the ShARe/CLEF and 
SemEval-2014 challenges first considered disjoint clinical concepts (DCCs), which consist of 
multiple non-consecutive sequences of tokens. Actually, DCCs always drew much attention 
because they widely exists in clinical text and are important for subsequent applications such 
as clinical reasoning systems. In the 2013 ShARe/CLEF challenge, CCR is a preliminary step 
for concept mapping, mapping concepts in clinical text to UMLS concepts. Almost no 
machine learning-based method was proposed for disjoint clinical concept recognition except 
some simple rule-based systems such as MetaMap [8] and cTAKES [10], as well as disjoint 
named entity recognition in other domains. The main reason may lie in that it is more 
difficult to annotate DCCs than CCCs. In the 2013 ShARe/CLEF challenge, the organizers 
annotated a corpus with both CCCs and DCCs where DCCs account for about 10%. This 
corpus gave us a good chance to investigate how to recognize DCCs using machine 
learning-based methods. Compared with CCC recognition, the main challenge of DCC 
recognition is how to represent them. In previous studies, clinical concepts were typically 
represented by �BIO� tags, where B, I and O denotes that a token is at the beginning, inside 
and outside of a concept respectively [16]. This representation worked very well for CCCs, 
but not suitable for DCCs. For DCC recognition, a few systems tried some methods in the 
2013 ShARe/CLEF challenge, including rule-based [17] and machine learning-based [18][19] 
[20] methods. The machine learning-based methods showed much better performance than 
the rule-based methods. Among all machine learning-based methods, our method was the 
best [14], which proposed a novel representation for DCCs. 

In this paper, we proposed another type of representation for DCCs based on our previous 
work for the 2013 ShARe/CLEF challenge, which ranked first among 20 participating teams 
[14][15] on the disorder recognition task. In that study, we proposed a novel type of 
representation for DCCs by using two additional tags (i.e., H-head entity and D-non-head 
entity) based on the representation for CCCs, and a two-step method to recognize them. 
Although this type of representation can completely separate DCCs from CCCs, it does not 
provide enough information about how to combine head entities and non-head entities except 
that head entities should be shared with more than one DCC, and non-head entities should be 
combined with other head/non-head entities. Therefore, Some extra rules is needed for 
head/non-head entity combination. In this study, we proposed another type of representation 
for DCCs that integrates combination information into the representation strategy. Using this 
representation, a separate step for combination is not required any more. Similar to our 
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previous work in [20], we compared Conditional Random Fields (CRF) [21] and Structured 
Support Vector Machines (SSVM) [22] when using the two types of representations. To 
prove the effectiveness of our methods, we also compared them with the CRF/SSVM-based 
systems ignoring DCCs. To the best of our knowledge, it is the first time to comprehensively 
investigate DCC recognition using machine learning-based methods, which can be used as a 
benchmark for further studies. Moreover, the methods proposed in this paper can also be 
easily applicable to recognize disjoint named entities in other domains. 

METHODS 

Representations for CCCs and DCCs 

We adopted �BIO� tags to represent CCCs in the whole paper. For convenience, we did not 
repeat any more. For DCCs, two different types of representations were proposed. The first 
representation used �BIOHD�, where �H� denotes head entities which are consecutive 
sequences of tokens shared by multiple disjoint concepts in a sentence, and �D� denotes 
non-head entities which are consecutive sequences of tokens in a disjoint concept not shared 
by other disjoint concepts in a sentence. The second representation used �BIOHD1234�, 
where �1�, �2�, �3� and �4� denote that a non-head entity is combined with the nearest head 
entity at left, the nearest non-head entity at left, the nearest head entity at right and the nearest 
non-head entity at right respectively. Figure 1 shows some examples of DCCs represnted by 
�BIOHD� and �BIOHD1234�, where three sentences were used to illustrate different cases of 
DCCs. In sentence 1, two disjoint disorders (i.e., �extremities � turned in� and 
�extremities � clinched together�) share a head entity (i.e., �extremities�). The head entity is 
represented by �extremities/HB-disorder� no matter using �BIOHD� or �BIOHD1234�. The 
non-head entities (i.e., �turned in� and �clinched together�) are represented by 
�turned/DB-disorder in/DI-disorder� and �clinched/DB-disorder together/DI-disorder�when 
using�BIOHD�, while are represented by �turned/D1B-disorder in/D1I-disorder� and 
�clinched/D1B-disorder together/D1I-disorder� when using �BIOHD1234� as both of them 
should be combined with the nearest head entity at left. Considering that head entities are 
represented by �H� in both �BIOHD� and �BIOHD1234�, and non-head entities are always 
represented by �D� when using �BIOHD�, we did not explain them any more in the 
following examples. All non-head entities mentioned in the following examples are the cases 
of representing DCCs using �BIOHD1234�. In sentence 2, two disjoint disorders (i.e., 
�ABD � distend� and �ABD � tenderness � RUQ�) share a head entity (i.e., �ABD�). The 
non-head entity in the first disjoint disorder (i.e., �distend�) is represented by �D1B-disorder� 
as it should be combined with the nearest head entity at left. The non-head entities (i.e., 
tenderness� and �RUQ�) in the second disjoint disorder are represented by �D1B-disorder� 
and �D2B-disorder� respectively because �tenderness� should be combined with the nearest 
head entity at left, while �RUQ� should be combined with the nearest non-head entity at left 
(i.e., �tenderness�). In sentence 3, there is a disjoint disorder (i.e., �left atrium � dilated�) 
composed of two non-head entities (i.e., �left atrium� and �dilated�), which is represented by 
�D4D2�D2� (i.e., �left/D4B-disorder atrium/D4I-disorder� and �dilated/D2B-disorder�) as 
the first non-head entity (at left) should be combined with the second non-head entity (at 
right), and vice versa. 
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Features 

We used the same features as our previous work in [20], including bag-of-word, 
part-of-speech (POS), note type, section information, word representations, semantic 
categories of words. Most of them were also used in our previous systems for medical 
concept recognition [23][25][24][26]. For detailed information, please refer to the references. 

Dataset 

We used the dataset of the 2013 ShARe/CLEF challenge, which is composed of 298 notes 
from different clinical encounters including radiology reports, discharge summaries, ECG 
reports and ECHO reports. For each note, only disorders, including consecutive and disjoint 
disorders, were annotated according to a pre-defined guideline. The dataset was divided into 
two parts: a training set of 199 notes used for system development, and a test set of 99 notes 
used for system evaluation. In the training set, 651 out of 5811 disorders were disjoint, and 
439 out of 5340 disorders were disjoint in the test set. Table 1 shows the counts of disorders 
in the training and test sets, where the number in parenthesis is the count of disjoint disorders. 

Table 1. Counts of disorders in the training and test sets. 

Dataset Type #Note #Concept #Consecutive #Disjoint 

Training 

All 199 5816 5165 651 

ECHO 42 828 603 225 

RADIOLOGY 42 555 489 66 

DISCHARGE 61 3589 3232 357 

ECG 54 193 190 3 

Test 

All 99 5340 4901 439 

ECHO 12 338 280 58 

RADIOLOGY 12 162 158 4 

DISCHARGE 75 4840 4463 377 

ECG 0 0 (0) 0 0 

 

Experiments and Evaluation 

All models were trained on the training set and evaluated on the test set, and their parameters 
were optimized by 10-fold cross-validation on the training set. The performance of disorder 
concept recognition were evaluated by precision (P), recall (R) and F-measure (F) in both 
�strict� and �relaxed� modes [14], calculated by an evaluation tool provided by the organizers 
(https://sites.google.com/site/shareclefehealth/evaluation). To investigate the effect of the 
proposed methods, we started with two types of baseline systems: one treated every head and 
non-head entity of disjoint clinical concepts as an individual CCC (1st); and the other one 
removed all DCCs (2nd), and then compared them with our systems. 
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RESULTS 

Table 2 shows the overall performance of the machine learning-based consecutive and 
disjoint CCR systems on the test set, when using different types of representations for CCCs 
and DCCs. The systems using �BIOHD� or �BIOHD1234� showed significantly better 
performance than the corresponding baseline systems, indicating that the proposed 
representations are suitable for CCCs and DCCs. For example, when using �BIOHD�, the 
CRF-based system outperformed the 1st baseline system by 3.9% (0.777 vs 0.738), and the 
2nd baseline system by 5.9% (0.777 vs 0.718) in �strict� F-measure respectively; The 
SSVM-based system outperformed the 1st and 2nd baseline systems by 4.1% (0.782 vs 0.741) 
and 4.0% (0.782 vs 0.742) in �strict� F-measure respectively. When using the same 
representations for CCCs and DCCs, the SSVM-based systems showed better performance 
than the CRF-based systems. For example, the �strict� F-measure of the SSVM-based system 
was 0.782, while that of the CRF-based system was 0.777 when using �BIOHD�. For each 
machine learning method, the system using �BIOHD1234� slightly outperformed the system 
using �BIOHD�. For example, the SSVM-based system using �BIOHD1234� achieved a 
�strict� F-measure of 0.783, while the SSVM-based system using �BIOHD� achieved a 
�strict� F-measure of 0.782. 

Here, we should note that the CRF-based and SSVM-based systems using �BIOHD� in this 
paper achieved better performance than our previous systems submitted to the 2013 
ShARe/CLEF challenge as some bugs in previous systems have been fixed in current ones. 

Table 2. Overall performance of the machine learning-based CCR systems. 

  

Furthermore, table 3 shows the performance of machine learning-based systems in the �strict� 
mode for CCCs and DCCs respectively. The machine learning-based system using �BIOHD� 
or �BIOHD1234� not only correctly recognized a number of DCCs, but also improved the 
performance for CCCs. For example, the �strict� F-measure of the CRF-based system using 
�BIOHD� for DCCs was 0.433, and that for CCCs was 0.799, higher than the 1st and 2nd 
baseline systems by 2.8% (0.799 vs 0.771) and 4.4% (0.799 vs 0.753). When using the same 

System 
Strict Relaxed 

P R F P R F 

1st Baseline 
CRF 0.773 0.707 0.738 0.937 0.848 0.890 

SSVM 0.764 0.720 0.741 0.933 0.863 0.897 

2nd Baseline 
CRF 0.862 0.615 0.718 0.965 0.693 0.807 

SSVM 0.842 0.663 0.742 0.947 0.749 0.836 

BIOHD 
CRF 0.839 0.723 0.777 0.952 0.835 0.890 

SSVM 0.830 0.740 0.782 0.941 0.849 0.892 

BIOHD1234 
CRF 0.845 0.722 0.778 0.955 0.831 0.889 

SSVM 0.834 0.739 0.783 0.942 0.846 0.892 
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representations for CCCs and DCCs, the SSVM-based systems showed better performance 
than CRF-based systems for both CCCs and DCCs. For example, when using �BIOHD�, the 
SSVM-based system achieved a �strict� F-measure of 0.802 for CCCs and a �strict� 
F-measure of 0.487 for DCCs; while the CRF-based system achieved a �strict� F-measures of 
0.799 and 0.433 for CCCs and DCCs respectively. For each machine learning method, the 
systems using �BIOHD1234� showed slightly better performance than the systems using 
�BIOHD� for CCCs, but slightly worse performance for DCCs. For each machine 
learning-based system, the performance for CCCs is much higher than that for DCCs. 

Table 3. Performance of the machine learning-based systems for CCCs and DCCs (�strict�). 

 

DISCUSSION 

It is reasonable that the proposed two types of representations improved the performance of 
CCR systems as expected since they can distinguish DCCs from CCCs. To evaluate their 
representation abilities, we calculated upper boundaries of systems using �BIO�, �BIOHD� 
and �BIOHD1234� on the training set respectively. Firstly, we represented notes with gold 
clinical concepts using one of the three types of representations, and then converted the 
labeled notes back to clinical concepts. Finally, the upper boundary was calculated by 
comparing the converted clinical concepts with the gold ones using the evaluation tool. The 
upper boundaries of the systems using the three types of representations are shown in Table 3. 
The upper boundaries of systems using our representations were much higher than the 
systems using �BIO� (i.e., baseline systems shown in figure 1), and the differences ranged 
from 6.7% to 12.9% in �strict� F-measure. Among the proposed two types of representations, 
the upper boundary of the systems using �BIOHD1234� is slightly higher than the systems 
using �BIOHD� (0.969 vs 0.965 in �strict� F-measure). It means that the representation 
ability of �BIOHD1234� is slightly stronger than �BIOHD�, and is much stronger than 
�BIO�. 

Although both �BIOHD� and �BIOHD1234� have good ability to represent both CCCs and 
DCCs, they are not complete. When clinical concepts are represented by �BIOHD�, clinical 

System 
CCCs DCCs 

P R F P R F 

1st 

Baseline 

CRF 0.773 0.770 0.771 0.000 0.000 0.000 

SSVM 0.764 0.784 0.774 0.000 0.000 0.000 

2nd 

Baseline 

CRF 0.862 0.670 0.753 0.000 0.000 0.000 

SSVM 0.842 0.722 0.777 0.000 0.000 0.000 

BIOHD 
CRF 0.844 0.759 0.799 0.726 0.308 0.433 

SSVM 0.832 0.774 0.802 0.794 0.352 0.487 

BIOHD 

1234 

CRF 0.849 0.759 0.802 0.751 0.297 0.426 

SSVM 0.834 0.775 0.803 0.813 0.338 0.477 
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effectiveness was proved on a benchmark dataset. 
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