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Abstract

Assigning labels from a hierarchical vocabulary is a well known special case of multi-label classification, often

modeled to maximize micro F1-score. However, building accurate binary classifiers for poorly performing labels in

the hierarchy can improve both micro and macro F1-scores. In this paper, we propose and evaluate classification

strategies involving descendant node instances to build better binary classifiers for non-leaf labels with the use-

case of assigning Medical Subject Headings (MeSH) to biomedical articles. Librarians at the National Library of

Medicine tag each biomedical article to be indexed by their PubMed information system with terms from the MeSH

terminology, a biomedical conceptual hierarchy with over 27,000 terms. Human indexers look at each article’s full

text to assign a set of most suitable MeSH terms for indexing it. Several recent automated attempts focused on using

the article title and abstract text to identify MeSH terms for the corresponding article. Despite these attempts, it is

observed that assigning MeSH terms corresponding to certain non-leaf nodes of the MeSH hierarchy is particularly

challenging. Non-leaf nodes are very important as they constitute one third of the total number of MeSH terms. Here,

we demonstrate the effectiveness of exploiting training examples of descendant terms of non-leaf nodes in improving

the performance of conventional classifiers for the corresponding non-leaf MeSH terms. Specifically, we focus on

reducing the false positives (FPs) caused due to descendant instances in traditional classifiers. Our methods are able

to achieve a relative improvement of 7.5% in macro-F1 score while also increasing the micro-F1 score by 1.6% for

a set of 500 non-leaf terms in the MeSH hierarchy. These results strongly indicate the critical role of incorporating

hierarchical information in MeSH term prediction. To our knowledge, our effort is the first to demonstrate the role of

hierarchical information in improving binary classifiers for non-leaf MeSH terms.

1. Introduction

Indexing biomedical articles is an important task that has significant impact on how researchers search and retrieve

relevant information. This is especially essential given the exponential growth of biomedical articles indexed by

PubMed R©, the main search system developed by the National Center for Biotechnology Information (NCBI). PubMed

lets users search over 22 million biomedical citations available in the MEDLINE bibliographic database curated by

the National Library of Medicine (NLM) from over 5000 leading biomedical journals in the world. To keep up with

the explosion of information on various topics, users depend on search tasks involving Medical Subject Headings

(MeSH R©) that are assigned to each biomedical article. MeSH is a controlled hierarchical vocabulary created by the

NLM and consists of medical subjects that form a directed acyclic graph (DAG). Once articles are indexed with

MeSH terms, users can quickly search for articles that pertain to a specific subject of interest instead of relying solely

on keyword based searches.

Since MeSH terms are assigned by librarians who look at the full text of an article, they capture the semantic

content of an article that cannot easily be captured by keyword or phrase searches. Thus assigning MeSH terms

to articles is a routine task for the indexing staff at NLM. This is empirically shown to be a complex task with

48% consistency because it heavily relies on indexers’ understanding of the article and their familiarity with the

MeSH vocabulary [1]. As such, the manual indexing task takes a significant amount of time leading to delays in the

availability of indexed articles. It is observed that it takes about 90 days to complete 75% of the citation assignment

for new articles [2]. Moreover, manual indexing is also a fiscally expensive initiative [3]. Due to these reasons, there

have been many recent efforts to develop automatic ways of assigning MeSH terms for indexing biomedical articles

including an on-going indexing challenge (http://www.bioasq.org/). However, automated efforts (including

ours) mostly focused on predicting MeSH terms for indexing based solely on the abstract and title text of the articles.

This is because most full text articles are only available based on paid licenses not subscribed by many researchers.

Many efforts in MeSH term prediction generally rely on two different methods. The first method is the k-nearest

neighbor (k-NN) approach where k articles that are already tagged with MeSH terms and whose content is found to

be “close” to the new abstract to be indexed are obtained. The MeSH terms from these k articles constitute candidate

terms for the new abstract [2]. A second method is based on applying machine learning algorithms to learn and
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index the best binary classifier models for each MeSH term. A new candidate abstract would then be put through

all these classifiers and the corresponding MeSH terms of classifiers that return a positive prediction are chosen as

candidate terms for the abstract. This approach has been termed as meta-learning and researchers at the NLM [4] have

demonstrated that depending on the individual terms different classifiers might yield different results thus justifying

the approach.

In one of their recent results, Jimeno-Yepes et al. [5] identify six MeSH terms that have been found to be difficult

to predict using existing indexing approaches at the NLM. Out of these, two terms, hormones and infection, were

shown to have unusually high numbers of false positive instances (with existing classification approaches) that are

actually tagged with the descendants of the corresponding terms in the MeSH hierarchy. That is, there were many

citations (abstract and title text) that were originally assigned a more specific descendant of an ancestor term but

where the ancestor term classifier has classified each of them as a positive instance. Using this as motivation, in this

paper, we explore classification methods that utilize training examples from the descendants as a way of improving

non-leaf MeSH term prediction.

The rest of the paper is organized as follows. In the rest of this section, we first discuss the essential background

on the size and structure of the MeSH terminology and discuss some related efforts. We also discuss a motivating

scenario for incorporating descendants of non-leaf terms in building non-leaf term binary classifiers. In Section 2, we

discuss our main methods that exploit descendant training instances to reduce false positive errors. We present our

experiments using a large dataset and the corresponding results obtained with associated discussion in Section 3.

1.1. Background and Related Work

MeSH’s main purpose is to index biomedical articles and hence strict notions of meronymy were not used in its

design; the hierarchical relationships are actually guided by “aboutness” of a child to its parent1. Hence a term could

be a descendant of multiple other terms whose least common consumer is not one of them. That is, a term could have

multiple paths from the root. In the 2013 version of MeSH, there are 26578 main subject headings. The scatter plot

of number of descendants and depth of the term is shown in Figure 1. Note that there are 16 individual hierarchies

in MeSH but the machine processable UMLS Metathesaurus2 files combine these hierarchies with additional place

holder nodes to have a unified root. In the figure, the depth of the root is taken as 0 and the first valid MeSH nodes for

each of the 16 hierarchies start at depth 1. From the figure, we can see that the number of descendants is in hundreds

for many nodes at depths ≤ 4. By analyzing the MeSH hierarchy (Figure 2), we also found that there are at least

15,000 MeSH nodes with depth ≤ 4.

Figure 1: Scatter Plot of Term Depth and Number of Descendants

NLM initiated efforts in automatic MeSH term extraction with their Medical Text Indexer (MTI) program that

uses a combination of k-NN based approach and named entity recognition (NER) based approaches with other un-

supervised clustering and ranking heuristics in a pipeline [6]. MTI recommends MeSH terms for NLM indexers

to assist in their efforts to expedite the indexing process3. Another recent approach by Huang et al. [2] uses k-NN

1http://www.nlm.nih.gov/mesh/meshrels.html
2http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
3For the full architecture of MTI’s processing flow, please see: http://skr.nlm.nih.gov/resource/Medical_Text_Indexer_

Processing_Flow.pdf

698



Figure 2: Number of MeSH Terms at a Given Depth on X-axis

approach to obtain MeSH terms from a set of k already tagged abstracts and use the learning to rank approach to

carefully rank the MeSH terms. They use two different gold standard datasets one with 200 abstracts and the other

with 1000 abstracts and achieve an F-score of 0.5 and recall 0.7 on the smaller dataset compared to MTI’s F-score of

0.4 and recall 0.57. Vasuki and Cohen [7] also use the k-NN approach but employ reflective random indexing to find

the nearest neighbors in the training dataset and use the indexing based similarity scores to rank the terms from the

neighboring citations.

Several other attempts incorporated different machine learning approaches with novel feature selection [8] and

training data sampling [9] techniques. In our earlier effort, we also explored purely unsupervised approaches that

rely on term co-occurrence counts and named entity recognition [10], which we subsequently extended [11] to a

supervised framework exploiting latent associations between MeSH headings based on reflective random indexing. A

recent effort by Jimeno-Yepes et al. [4] uses a large dataset and uses meta-learning to train custom binary classifiers

for each MeSH term and indexes the best performing model for each label to be applied on new abstracts; we request

the reader to refer to their work for a recent review of machine learning methods used for MeSH term assignment. In

a related effort [5] they identify six MeSH terms that have been found to be difficult to predict using existing indexing

approaches at the NLM. In this work, we look at all non-leaf nodes (8756 ≈ 33% of all MeSH terms) in the MeSH

hierarchy with varying number of descendants For these terms we develop and evaluate binary classifiers that utilize

examples of their descendants. Given recent efforts [4, 12] that heavily rely on accurate binary classifiers for each

term, we believe our work is very relevant to further the state-of-the-art in automated indexing of biomedical articles.

1.2. Motivating Scenario & Baseline Approach

In this section we demonstrate the presence of false positives arising from descendant nodes using the following six

terms with varying descendant counts.

1. Membrane Proteins: 971 descendants

2. Neoplasms: 663 descendants

3. Hormones: 221 descendants

4. Infection: 154 descendants

5. Mutation: 47 descendants

6. Plasmodium: 10 descendants

Here Hormones and infection are from the challenging terms used in experiments in [5]; among the terms considered

in these related efforts, these two had many descendants and high descendant attributable FPs. In addition to these, we

chose four other terms arbitrarily with varying numbers of descendants. For our motivating scenario, we built training

and testing datasets for each of these terms by extracting positive and negative examples from over 20 million Medline

citations that are already fully tagged with MeSH terms by trained coders at the NLM. We made sure that our training

and testing examples both had a non-empty abstract field as books and other artifacts indexed might not have an

abstract. The number of positive and negative examples for each of the terms in the training and testing data are

shown in Table 1.

In Table 1, the sum of positive examples in both training and testing sets for each term is equal to the total number

of citations (with a non-empty abstract field) tagged with that term in the Medline citation database (2014 Baseline).
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We randomly selected approximately 5% of the available citations for each term to be included as the corresponding

positive examples in the testing data. Most MeSH terms are tagged for very few citations and hence, we chose a

very high number of negative examples as shown in the negative testing instance count column; the positive examples

constitute a maximum of around 2% of the total testing dataset for each term.

Table 1: Training and Testing Instance Counts

MeSH Term
Training Testing

Positive Negative Positive Negative

Membrane Proteins 98401 340780 5674 255535

Neoplasms 134082 338308 4138 257071

Hormones 15679 340416 1026 260183

Infection 12930 340327 1060 260149

Mutation 230905 336020 5451 255758

Plasmodium 3206 343440 253 260956

For our experiments, we chose as baseline the LIBLINEAR [13] logistic regression implementation through the

scikit-learn [14] framework. We used unigrams and bigrams, with a minimum frequency of five citations per n-gram,

as our binary features. After applying the classifiers on the corresponding testing sets for each of the six terms,

we looked at the number of FPs that can be attributed to descendants of the six terms under consideration. These

observations are shown in Table 2 from which we notice that a significant number of FPs (more than 40% for four

terms) are due to misclassification of descendants. Based on these observations, we set out to design and evaluate

classification approaches that exploit descendant instances.

Table 2: False Positives due to Descendants

MeSH Term # FPs # Desc. FPs % Desc. FPs

Membrane Proteins 7547 3126 41%

Neoplasms 8133 3533 44%

Hormones 1349 790 56%

Infection 1283 356 28%

Mutation 13268 1733 13%

Plasmodium 227 157 69%

2. Methods: Hierarchical Strategies to Handle Descendant FPs

Motivated by observations in Table 2, we proceed to exploit instances of descendants terms in building better binary

classifiers for non-leaf MeSH terms. Here, the descendant set of a given MeSH term is defined recursively as the union

of the set of its children and all their descendants in the MeSH hierarchy. The baseline method is simply building

binary classifiers with unigram and bigram features using support vector machines (SVMs). Next, we outline the five

different methods that incorporate descendant instances to be compared with the baseline approach. We eventually

use a dataset of one million biomedical citations and all non-leaf terms that are assigned to at least 100 citations in

this dataset. Details of dataset and results achieved using our methods will be elaborated in Section 3.

Before we proceed, we first note that it is a valid indexing approach to assign a term and one or more of its

descendants to the same biomedical article. NLM’s multi-label assignment process allows this when the content

of the article warrants such an assignment. As such, the task of assigning MeSH terms is a relaxation of the non-

mandatory leaf node prediction [15, Section 4.4] scenario encountered in hierarchical classification. Given this, to best

differentiate a term’s instances from its descendants’ instances, we curate training data of ancestor terms that are not

tagged with any of their descendants. Similarly, we curate training instances of descendant terms that are not tagged

with the corresponding ancestors. If T is the size of the training set of a given ancestor term selected as explained

above, we randomly pick T/d training instances for each of its d descendant terms to approximately create equal
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sized datasets. While we allow appropriate data imbalance to persist in our main experiments, we selected balanced

datasets to distinguish between main terms and their descendants, with equal contribution from each descendant4.

This is due to the presence of extremely large number of instances when summed over all descendants of a given

term. Because of the way we incorporate these descendant instances into our methods (the rest of the section), we

believe this descendant specific instance selection is appropriate given the testing data set is chosen randomly while

preserving realistic imbalance. Next, we describe each of the five methods that employ descendant training instances.

2.1. Multiclass Prediction with a Third Descendant Class

Unlike the binary classification approach used in our baseline method, in this approach, for each term we model the

prediction as a multiclass text classification problem with three classes: 1. main non-leaf term class of interest to

us, 2. its descendants class, and finally 3. the ‘other’ class that has negative examples of all other non-descendant

instances. The non-descendant ‘other’ instances are citations in our dataset that are not tagged with the non-leaf term

of interest or its descendants. The positive class instances are those that are tagged with the non-leaf term but none

of its descendants. The descendants’ training instances are curated as explained in the beginning of this section with

equal contributions from each descendant. We used the built-in one-vs-all approach in LIBLINEAR with the same

set of features used for our baseline method in Section 1.2.

2.2. Two Stage Hierarchical Prediction

Here we follow the conventional hierarchical approach and build two different classifiers. The top level binary classi-

fier combines instances of either the main term or any of the descendants as one positive class, the negative class being

the ‘other’ class from Section 2.1. Intuitively, this classifier is expected to identify testing instances of a candidate

term or its descendants. Once an instance is predicted as positive with this classifier, a second binary classifier that

distinguishes between the main term and its descendants’ instances is applied. This second classifier is built using the

main non-leaf term class and the descendants class from Section 2.1.

2.3. Baseline Result Filtering using Descendant Classifier

Instead of applying the second stage classifier in Section 2.2 to the positive instances of the top level classifier in the

hierarchical approach, we simply use it to filter the positive instances output by the baseline classifier from Section 1.2.

Given the high proportion of FPs attributable to descendant instances (Table 2) and the reasonably high performance

we observed in the 2nd stage classifier in the two stage hierarchical approach, we chose to do this filtering.

2.4. Baseline Filtering with Descendant Classifier and FN recovery

Our primary focus thus far has been on minimizing FPs. In this context, clearly, the percentages of total FP reduction

should be looked at in the context of the recall loss due to new false negatives (FNs) induced. Just as many FPs can be

attributed to descendant instances, it is also possible that several FNs can be attributed to descendants. This is because

of the multi-label indexing nature where both a term and any of its descendants can be assigned to a given article as

discussed in the beginning of this section. That is, many negative predictions that end up in the descendant class in

Section 2.1 or of the second stage classifier in Section 2.3 could actually be positives. To reduce these descendant

attributable FNs, we propose to move several of these positives from the incorrect descendant predictions to their

correct ancestor predictions using a binary FN recovery classifier that distinguishes between instances that are tagged

with “only descendants” (negative class) and instances that are tagged with “both the ancestor term and at least one

descendant” (positive class). We apply this binary classifier to the negative predictions from the second stage classifier

of the baseline filter approach (Section 2.3). Those that are classified as belonging to the class “both the ancestor term

and at least one descendant” are considered positive instances of the non-leaf ancestor term in the end. To build this

binary classifier, we obtain the positive instances by considering all citations tagged with the non-leaf term and any

of its descendants. The negative instances dataset is again a subset of the descendant-only examples as explained at

the beginning of this section.

2.5. Combining NER and Supervised Classification

Our final approach involves combining named entity recognition with supervised classification. It is also essentially

a filter on positive classifications of the baseline classifier from Section 1.2. In this method, we first use a state-of-

the-art biomedical named entity recognition tool, MetaMap [16], on the input citation of each positive instance output

4If some descendants do not have enough examples (which was rare in our experiments), we randomly choose examples from the other descen-

dants until the total instance set size was equal to the size of the main term training instance set
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by the baseline classifier to identify MeSH terms mentioned in its title and abstract. If any of these MeSH terms is

actually a descendant of the candidate term, we subject it to a corresponding new binary classifier that distinguishes

between instances that are tagged with only descendants and those tagged with both a main term and at least one

of its descendants (from Section 2.4). Those that are classified into the “only descendants” are treated as negatives

in this filter. Intuitively, since the input instances to this filtering approach are already deemed positive for the main

term (since they are the positives from the baseline classifier), we only need to identify those instances that should be

exclusively tagged with descendant terms only. However, just because a citation contains a descendant MeSH term

does not necessarily mean it can only take a descendant MeSH term as a tag, although it could be a candidate for

further analysis. Hence we apply the supervised classifier to those that contain a descendant term.

2.6. Summary of Our Approaches

Some of our methods in Sections 2.1–2.5 involve multiple classifiers that use different training data subsets. For clar-

ity, here we summarize all the classifiers involved and how they are used in different methods using the corresponding

section numbers. We use the following notation to represent different training data subsets for our classifiers.

• A: set of all training examples annotated with the main non-leaf term but none of its descendants

• D: set of examples not tagged with the main non-leaf term but with at least one of its descendants

• AD: examples tagged with both the non-leaf term and at least one of its descendants

• O: training examples that are not in sets A, D, or AD.

Table 3: Classifiers Used in Different Methods

(a) Classifier-Dataset Map

Dataset L1 L2 L3 L4 L5

A + 1 + +

D - 2 + - -

AD + + +

O - 3 -

(b) Method-Classifier Map

Method L1 L2 L3 L4 L5

Baseline X

Sec 2.1 X

Sec 2.2 X X

Sec 2.3 X X

Sec 2.4 X X X

Sec 2.5 X X

Based on this notation, in Table 3(a), we identify the five different types of classifiers L1–L5 used in our methods

and the corresponding training data subsets used. All classifiers are binary except L2, which is a three way classifier.

For L4 and L5, the D set is sampled as elaborated in the second paragraph of Section 2. In Table 3(b), we specify the

classifiers used for the baseline approach (Section 1.2) and our proposed FP handling methods in Sections 2.1–2.5.

3. Results and Discussion

To ensure a natural distribution of terms, we chose a set of 1 million already annotated citations with dates of publica-

tion between 2005–2014 from around 1900 well known journals used in the BioASQ competition to index biomedical

articles. Out of this dataset, 850,000 citations were used for training, 100,000 were used for validation, and the re-

maining 50,000 were used for testing. The testing dataset instances’ dates of publication are chronologically later

than the training and validation dataset instances. Among all non-leaf terms in the MeSH hierarchy, we chose those

that had at least 100 instances in the training dataset, which resulted in 4395 non-leaf terms that we considered for

our experiments. Before we proceed we outline the performance measures used.

3.1. Performance Measures

Since the task of assigning multiple MeSH terms to a citation is the multi-label classification problem, there are

multiple complementary methods [17] for evaluating automatic approaches for this task. Here, we focus on label

based measures since we are only concerned about the performance of non-leaf MeSH terms.
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For each MeSH heading T j in the set of terms T being considered, we have label-based precision P(T j), recall

R(T j), and F1-score F(T j) defined as

P(T j) =
T P j

T P j + FP j

, R(T j) =
T P j

T P j + FN j

, and F(T j) =
2P(T j)R(T j)

P(T j) + R(T j)
,

where T P j, FP j, and FN j are true positives, false positives, and false negatives, respectively, of term T j. Given this,

the label-based macro average F1-score is

Macro-F =
1

|T |

|T |∑

j=1

F(T j).

The label-based micro precision, recall, and F1-score are defined as

Pmic
=

∑|T |
j=1

T P j

∑|T |
j=1

(T P j + FP j)
,Rmic

=

∑|T |
j=1

T P j

∑|T |
j=1

(T P j + FN j)
, and Micro-F =

2Pmic · Rmic

Pmic + Rmic
.

While macro measures consider all labels as equally important, micro measures tend to give more importance to

more frequent labels. Here we are interested in improving both the micro and macro averages over non-leaf terms.

3.2. Application of Hierarchical Classifiers

We first applied our hierarchical strategies (Section 2) to the set of six terms in the motivating scenario in Section 1.2.

All approaches showed some improvement except the two-stage hierarchical approach in Section 2.2, which suffered

a major loss in precision. This is not surprising given recent attempts by other researchers [18] also show that top-

down hierarchical approaches may not be very suitable with very large terminologies with thousands of labels. Hence

all our large scale experiments described in this section are conducted with all the methods except the two-stage

approach. We note that all approaches we consider here are thus essentially filters on the positive instances of the

baseline. That is, we are not attempting to obtain better recall than baseline but are willing to trade off some recall for

precision increases that could yield us better micro and macro F-measures.

Instead of using the default approach of making predictions based on SVM scores, we use a more suitable ap-

proach for multi-label classification based on the meta-labeler [19] method where, in addition to a ranked list of labels

(based on probability estimates) for each artifact to be classified, a threshold on the number of labels is also predicted

using the same set of features used for predicting the labels. This generally helps because some binary classifiers for

labels with low frequencies do not always produce high scores for the positive class. We used this approach and built

over 27,000 binary classifiers (one for each MeSH term even if it is not a non-leaf term) using the training dataset.

We also developed another model that predicts the number of terms for an input citation based on the training dataset.

Next, we applied each of these classifiers to each instance in the validation dataset. We ranked the MeSH terms for

each instance based on the corresponding SVM classifier scores and chose the threshold for the number of terms to

retain based on the thresholding model. Next, for each of our hierarchical strategies, if one of the 4,395 non-leaf

terms that we consider in our experiments shows up in the top terms predicted using the baseline approach and the

thresholding, we apply the hierarchical strategy as an additional filter. If the output of the hierarchical strategy also

ends up in the positive class, we take it as a positive classification for the non-leaf term. If the strategy outputs a neg-

ative prediction, we treat the prediction to be negative for the non-leaf term. Thus, we reverse some positive non-leaf

term predictions by the base classifier using the hierarchical strategies.

3.3. Results on Validation Dataset

We used the validation dataset to identify non-leaf MeSH terms for which we notice an improvement over the baseline

when the hierarchical strategies are used. We then applied the strategies for only such non-leaf terms on the test

dataset. This is to ensure that our choice of the terms is not influenced by the test data. Here we present our results

on the validation dataset. In Table 4, for each strategy (first column, indicated by the section number), we show how

many terms had better F1-score (compared with the baseline), the average increase in macro-F1 and micro-F1 over

such terms, and average number of descendants and average depth for such terms. The final row is a hybrid classifier

that chooses the best hierarchical strategy over the baseline for each non-leaf term.

From the table, we see that the FP filtering approach with a descendant classifier and an FN recovery classifier

(Sec 2.4) had the largest improvement when considering both macro and micro averages. Although the NER based

approach (Sec 2.5) improved results for over 300 terms, the improvement is smaller compared to other methods. The

average depth of the full MeSH hierarchy is 4.5 with an average of 17 descendants per non-leaf term. From Table 4,

it is evident that the hierarchical strategies seem to do well when the terms are slightly higher in the hierarchy with
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Table 4: Validation Dataset Results

Method # terms macro-F impr micro-F impr #desc #depth

Sec 2.1 131 0.019 0.011 51.59 3.39

Sec 2.3 341 0.018 0.011 48.96 3.55

Sec 2.4 342 0.018 0.018 48.15 3.55

Sec 2.5 317 0.012 0.007 69.32 3.46

Hybrid 536 0.017 0.015 60.00 3.48

many descendants. The absolute improvement is around 1.5% in both micro and macro averages for a total of 536

terms, which constitute about 12% of the set of non-leaf terms we considered. We will now apply the hierarchical

approaches as discussed in Section 3.2 to the test dataset.

3.4. Results on Test Dataset

The test set results in Table 5 are obtained by considering all those non-leaf terms that had at least 1% improvement in

F1 score in the validation dataset and ranking them in the descending order of their frequency in the validation dataset.

This is to analyze if we can find a large set of terms for which the performance holds across different datasets. From

the table it is clear that both micro and macro averages increase for the top 500 non-leaf terms. We also display

relative improvements (= (hybrid − baseline)/baseline) in the table which become prominent at the macro level as

we consider fewer frequently occurring terms. But overall were able to identify 500 terms for which we improved

micro-F1 score by 1.6% and macro-F1 score by 7.5% relative to the baseline scores. These results indicate the strong

potential of exploring hierarchical information in improving the state-of-the-art in automated indexing of biomedical

articles.

Table 5: Test Dataset Results

# Terms
Micro-F Macro-F

Baseline Hybrid Rel. Impr. Baseline Hybrid Rel. Impr.

Top 100 0.6304 0.6421 1.5% 0.3835 0.4206 12.8%

Top 250 0.6106 0.6201 1.5% 0.3651 0.3979 9.9%

Top 500 0.5959 0.6034 1.6% 0.3274 0.3515 7.5%

3.5. Remarks on Class Imbalance

As noted in Section 1.2, there is extreme imbalance between the positive and negative instances of MeSH terms,

a situation which is more prominent in non-leaf terms. We conducted additional experiments with different class

weighting schemes for all the strategies discussed in Section 2. To handle high negative class bias in a methodical

way we also tried a combination of boosting and random under sampling [20]. Although there were marginal im-

provements for a few terms, we do not think they warrant reporting in this manuscript and so we leave them out.

However, this also leads us to believe that this problem is not only important but also very difficult to solve, especially

under the assumption that only the abstract and title are available. There is some evidence [21] that points to small

improvements if additional sections of the article full text, when available, are considered. The class imbalance in

the MeSH training data can also result from the so called “Rule of Three”5 for indexing biomedical articles – “If

more than 3 related concepts are discussed in an article but are not a major topic, the more general MeSH heading

under which they are all treed is usually indexed. The specific headings usually are not indexed.” Due to this rule,

some of the false positives could have been due to more than three specific MeSH headings predicted for a citation

with a common immediate parent. So we conducted additional experiments where we replaced such term sets with

their immediate ancestor in the final candidate set of predicted terms (an extension to the method in Section 3.2).

5http://www.nlm.nih.gov/bsd/disted/meshtutorial/principlesofmedlinesubjectindexing/depthofindexing/02.html
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However, we observed only marginal improvements; incorporating this particular manual indexing guidance into the

automation process did not seem to help. The rule-of-three also states that when three or more related concepts are

identified as major MeSH terms (terms that are deemed central to the article), their immediate common ancestor is

coded as a major topic, while the descendants are retained but not as major terms. Thus this aspect of the rule-of-three

is also essentially responsible for situations where both a non-leaf term and several of its descendants are assigned to

an article.

For our initial study we used a dataset of one million citations although there are currently about 21 million

citations made available through NLM for training purposes. Although we chose the smaller dataset for computational

tractability in building over 27,000 baseline models and four sets of 4,395 hierarchical models for non-leaf terms,

increasing the dataset size to 22 million citations may not necessarily yield improved performance. This is because of

the extreme class imbalance that will persist given the unusually high number of negative examples for each non-leaf

term. In such cases, it is not clear whether rare event adjustments to supervised learning approaches [22, 23] will help

the situation for MeSH term prediction because of the limitation of considering only the title and abstract. However,

there is recent evidence that micro averages (over all MeSH terms) can be improved by using more efficient learning

methods and considering all available citations [24]. Our main purpose in this paper is to show that descendant

instances play an important role in improving results for many MeSH terms. We believe their role will only increase

in relevance, if extreme class imbalances are handled, because of the hierarchical nature of MeSH.

4. Conclusion

Assigning MeSH headings to biomedical articles is an important task at the NLM due to the search flexibility it

gives biomedical researchers in satisfying their information needs. Many automated attempts have been developed

in the recent past to predict MeSH terms from the title and abstract text of an article. In this paper, we focus on the

problem of building binary classifiers for terms corresponding to non-leaf nodes in the MeSH hierarchy. Based on

the observation that many false positives for terms with several descendants could be attributed to the descendants,

we experimented with approaches that exploit descendant training instances. To our knowledge, this is the first effort

to investigate the suitability of hierarchical information toward improving MeSH term prediction. Our results show

good promise with a relative improvement of 7.5% in macro-F1 score and 1.6% in micro-F1 score over the baseline

non-hierarchical approach for a set of 500 non-leaf terms that occur at least 100 times in our training dataset of one

million citations.

Given that there are over 23 million citations and the recent evidence [24] of computational tractability for learning

using all citations, we will conduct additional experiments to identify other non-leaf terms whose performance can

be improved using hierarchical approaches. We will also conduct additional error analysis to identify factors that

make certain non-leaf terms more suitable for hierarchical classification compared to others. Our current effort in this

paper, nevertheless, demonstrates that hybrid hierarchical approaches that exploit descendant instances play a key

role in assigning MeSH terms to biomedical articles.
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