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Abstract 

Clinical Named Entity Recognition (NER) is a critical task for extracting important patient information from 

clinical text to support clinical and translational research. This study explored the neural word embeddings derived 

from a large unlabeled clinical corpus for clinical NER. We systematically compared two neural word embedding 

algorithms and three different strategies for deriving distributed word representations. Two neural word 

embeddings were derived from the unlabeled Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) II 

corpus (403,871 notes). The results from both 2010 i2b2 and 2014 Semantic Evaluation (SemEval) data showed that 

the binarized word embedding features outperformed other strategies for deriving distributed word representations. 

The binarized embedding features improved the F1-score of the Conditional Random Fields based clinical NER 

system by 2.3% on i2b2 data and 2.4% on SemEval data. The combined feature from the binarized embeddings and 

the Brown clusters improved the F1-score of the clinical NER system by 2.9% on i2b2 data and 2.7% on SemEval 

data. Our study also showed that the distributed word embedding features derived from a large unlabeled corpus 

can be better than the widely used Brown clusters. Further analysis found that the neural word embeddings 

captured a wide range of semantic relations, which could be discretized into distributed word representations to 

benefit the clinical NER system. The low-cost distributed feature representation can be adapted to any other clinical 

natural language processing research. 

Introduction 

Clinical Named Entity Recognition (NER) is to identify boundaries and determine semantic classes (e.g., problems, 

treatments and lab tests) of clinical concept mentions in clinical text. Over the last few years, much attention has 

been focused on the clinical NER as it’s the critical step of unlocking important healthcare information from 

narrative clinical text. Much of the important patient information is locked in the narrative clinical text, which is not 

directly accessible for clinical applications that rely on structured data. Clinical NER systems identify clinical 

entities from narrative patient reports to support clinical and translational research. Various clinical NER modules 

have been developed in general clinical Natural Language Processing (NLP) systems (e.g., MedLEE,
1
 MetaMap

2
, 

KnowledgeMap
3
 and cTAKES

4
). Most of the existing clinical NLP packages are rule-based systems that rely on 

comprehensive medical vocabularies. Recently, the clinical NLP community organized a series of open challenges 

with focus on identifying clinical entities from narrative clinical notes, including the 2009 i2b2 (the Center of 

Informatics for Integrating Biology and the Bedside) challenge
5
 on medication information extraction, the 2010 i2b2 

challenge
6
 on recognizing medical problems, treatments, and tests entities, 2013 Share/CLEF challenge

7
 on disorder 

mention recognition and normalization, and the 2014 SemEval challenge
8
 on disorder mention recognition and 

normalization. Researchers developed rule-based systems, machine learning based systems as well as hybrid 

systems during the challenges. Currently, most of the state-of-the-art clinical NER systems are primarily based on 

the machine learning models.
9-11

 

Supervised machine learning methods approach the NER as a sequence labeling problem, which aims to find the 

best label sequence (e.g., BIO format labels) for a given input sequence (individual words from clinical text). 

Researchers have applied various supervised machine learning algorithms, including Conditional Random Fields 

(CRFs)
12

, Maximum Entropy (ME), and Structural Support Vector Machines (SSVMs)
13

, to recognize clinical 

entities. Among the supervised machine learning algorithms, the CRFs is the most popular one for NER tasks as it’s 

intrinsically designed for sequence labeling problem by modeling the relationships between neighbor tokens. A 

number of top-ranked NER systems are primarily based on the CRFs. The supervised machine learning algorithms 

work well as researchers manually extract useful features and feature combinations through feature engineering. 

Orthographic information (e.g., capitalization of letters, prefix and suffix), syntactic information (e.g. POS tags), n-

gram information, semantic information (e.g., UMLS concept unique identifier) and disclosure information (sections 

in the clinical notes) are often used as features in the typical NER systems. The combination of features, such as the 
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word combined with POS tags, also prove to be useful.
14

 Subsequently, it was identified that the performance of the 

supervised machine learning algorithm could be further improved by “unsupervised features”, which are typically 

derived from unlabeled corpora using unsupervised machine learning methods such as Brown clustering
15

. 

Conventionally, Brown clusters are converted into symbolic IDs to form the unsupervised feature representations. 

Brown clusters have been used successfully in a number of top-ranked clinical NER systems, such as the system 

from Bruijin
11

 in i2b2 2010 challenge and the system from Zhang et al. 
10

 from the SemEval 2014 Challenge. The 

study from Tang et al.
14

 also found that unsupervised features could improve the identification of clinical entities 

that not covered by the training corpus. However, this one-hot word representation has limitations in that it only 

captures a single aspect relation of a word using sparse binary vectors.
16

 Researchers have explored the 

distributional semantics models to derive distributional word representations. Jonnalagadda et al. 
17

 explored the 

random indexing model and found that the distributional word representations could enhance the performance of 

clinical concept extraction. Henriksson et al. 
18

 further combined the distributional word representations with a large 

unlabeled in-domain corpus to generate additional features for de-identification of health records. 

Recently, there has been an increasing interest in training word embeddings from large unlabeled corpora using 

neural networks.
19-21

 Word embeddings are typically represented as a dense real-valued low dimensional matrix M 

of size V×D, where V is the vocabulary size and D is the predefined embedding dimension. Each row of the matrix 

is associated with a word in the vocabulary and each column of the matrix represents a latent feature. The distributed 

word representations can be derived from the word embeddings. Different from the one-hot word representations 

such as the clustering feature from Brown clusters, the word embeddings have real-valued numbers to describe 

multi-aspect relations between words. Usually, the word embedding matrix is first initiated with random values and 

then tuned using neural networks induced by the neural language model. Bengio
22

 and Mikolov
21

 proposed different 

neural networks to train the word embeddings, where the probability of a word given by the previous word was 

estimated using the cross-entropy criterion. In 2010, Collobert
23

 et al. proposed a new neural language model to train 

word embeddings using ranking loss criteria with negative sampling. The experimental results showed that the 

ranking based word embeddings derived from the entire English Wikipedia corpus greatly helped the NER task in 

general English domain.  

Previous studies
23,24

 have shown that the neural word embeddings could represent abundant semantic meanings and 

capture multi-aspect relations into a real-valued matrix. However, there is no conclusion on how to use the real-

valued word embeddings in machine learning based clinical NER systems. In the biomedical literature domain, Tang 

et al.
14

 conducted a study to evaluate the different types of unsupervised word representations in biomedical NER 

task. They used the popular word2vec package to generate the word embeddings and showed that the word 

embedding features improved the F1-score of a baseline NER system by 0.49% (from 70.0% to 70.49%). The 

Brown cluster features improved the F1-score by 1.2% (from 70% to 71.2%), which was superior to the word 

embedding features. Tang’s study directly used the real values from the embedding matrix as features in a CRFs 

model without any discretization and the corpus size was relatively small (20,000 sentences from BioCreAtIvE II 

GM corpus and 22,402 sentences from JNLPBA corpus). Recently, research from Wang and Manning
25

 showed that 

conventional supervised machine learning models, such as the CRFs, have a preference for high dimension discrete 

feature space instead of low dimension real-valued feature space. Later in 2014, Guo et al.
26

 proposed two new 

strategies for deriving distributed feature representations from neural word embeddings trained from the entire 

English Wikipedia corpus. The experimental results showed that the proposed binarized embedding features 

(BinEmb – there are three possible values: “positive”, “negative” and “neutral” in BinEmb feature. However, we 

keep using this name to make it consistent with the previous research) and the distributed prototype features 

(ProtoEmb) were comparable to the Brown clusters.  

However, until now there is no report of using neural word embeddings in the clinical domain. Compared with 

general English text, the clinical texts are much noisy with frequently occurred ungrammatical sentences, 

misspellings and abbreviations. It is not clear how the supervised machine learning based clinical NER systems 

could benefit from the neural word embeddings derived from the noisy clinical corpora. It’s also not clear which of 

the neural word embedding algorithms would be better for clinical NER tasks and how to utilize the word 

embeddings as features in machine learning based NER systems. In this study, we propose to 1) explore the power 

of a large unlabeled clinical corpus (403,871 notes) using deep neural networks (DNN); 2) compare the entropy-

based neural word embedding algorithm and the ranking-based word embedding algorithm on the clinical NER task; 

3) compare three different strategies for deriving distributed word representations from word embeddings in clinical 

NER tasks. To the best of our knowledge, this is the first study of training neural word embeddings from a large 

unlabeled clinical corpus and comparing different neural word embedding algorithms and strategies for deriving 
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distributed word representations. The most related study is that of Guo et al.
26

 in the general English domain, where 

they used only the word embedding algorithm implemented in word2vec. Another related study is by Tang et al.
14

 

for NER in biomedical literature, where the study directly used the real values as feature weights without 

discretization, and the corpus size was relatively small. 

Methods 

Data sets 

This study used the annotated corpora from the 2010 i2b2 challenge
6
 and the 2014 SemEval challenge

8
. The i2b2 

2010 corpus is annotated with three types of clinical entities including Problem, Test, and Treatment. All entities are 

composed of consecutive words. The SemEval corpus has only one type of entity – the disorder mention. However, 

the SemEval corpus contains disjoint entities – entities that are composed of more than one piece of text region. The 

following sentence illustrates an example: “The aortic root and ascending aorta are moderately dilated”. There are 

two disjoint entities: “aortic root … dilated” and “ascending aorta … dilated”. Table 1 shows the detailed 

information for the two labeled clinical corpora. In order to train the neural word embeddings and the Brown 

clusters, we utilized a 2.2 gigabytes of unlabeled clinical notes from the Multiparameter Intelligent Monitoring in 

Intensive Care (MIMIC) II corpus
27

. The MIMIC II corpus is composed of 403,871 notes from four different note 

types. Table 1 shows the detailed information about the MIMIC II corpus. All the clinical notes were preprocessed 

using the same pipeline to separate sentences and tokens. 

Table 1. Descriptive statistics of data sets used in this study. 

Data set  Notes  Entities  Entity types Note types 

i2b2 2010 Training 349 27,837 

 

Problem, Treatment Discharge  

Test 477 45,009 

 

Test Progress  

SemEval 2014 Training 298 11,156 Disorder Discharge, radiology 

Test 133 7,971  ECG, ECHO 

MIMIC II N/A 403,871 N/A N/A Discharge, radiology 

ECG, ECHO  

           ECG: electrocardiogram, ECHO: echocardiogram 
  

The Machine learning-based NER framework  

To apply machine learning algorithms to the NER task, the annotated corpora are typically converted into “BIO” 

format, where “B” denotes “the beginning of a concept”, “I” denotes “inside of a concept”, and “O” denotes 

“outside of a concept”. E.g., a concept for the semantic category of medical problem can be represented using “B-

problem” and “I-problem”. In this study, we developed a baseline clinical NER system based on the CRFs model. 

The baseline system covers the most common NER features including bag-of-word, Orthographic information (word 

patterns, prefixes and suffixes), syntactic information (POS - part of speech tags), n-gram of word and POS tags 

(unigrams, bigrams, and trigrams), disclosure information (sections and note types) and combination of words and 

POSa tags. We used the implementation of CRFs in the CRFsuite package 

(http://www.chokkan.org/software/crfsuite/). The model parameters were optimized using 5-fold cross validation on 

the training data, and the best parameters were used to predict the test data. 

Integrate word embeddings with the NER framework 

Neural word embedding algorithms 

We explored two popular word embedding algorithms, including the word2vec from Mikolov
21

 and the ranking-

based neural word embedding algorithm from Collobert
23

. For word2vec, we used the implementation from 

“https://code.google.com/p/word2vec/” with the default settings (we used the CBOW model, which is faster and a 

little bit better than the skip-gram). As there is no out of shelf package for the ranking-based neural word embedding 

algorithm, we implemented the deep neural network according to the paper from Collobert
23

 using Java. We used 

the suggested parameters to train the neural network with a hidden layer size of 300, a fixed learning rate of 0.01, 

and an embedding dimension of 50. The standard stochastic gradient descent algorithm was used to optimize the 

neural network according to the ranking loss. The final word embeddings were represented as dense real-valued 

matrix. Each row in the embedding matrix associated with a word. Figure 1 shows examples of the word 

embeddings. 
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Figure 1. Examples of neural word embeddings 

Neural word embedding as features 

This study compared three different strategies of deriving distributed word representations from neural word 

embeddings. For each of the strategies, we derived corresponding distributed representations from the MIMIC II 

corpus and tested the effect of the derived features using the 2010 i2b2 data and the 2014 SemEval data. 

1) Raw embedding feature (RawEmb) 

The raw embedding feature is a straightforward way of using neural word embeddings. In this method, the real 

values from the embedding matrix were directly used as feature weights without any post processing. This method 

will generate the same number (equals to the dimension of the word embeddings) of feature representations for each 

word. Tang et al. used this strategy in their research
14

. Figure 2 shows examples of the raw embedding features. 

 

Figure 2. Examples of raw embedding features 

2) Binarized embedding feature (BinEmb) 

The binarized embedding feature was proposed by Guo et al.
26

 in 2014 for general English domain. The intuition of 

the binarized embedding feature is to discretize the real-valued matrix and omit the insignificant dimensions. Given 

a real-valued neural word embedding matrix MV×D, the binarized embedding features can be derived by converting 

the real-valued embedding matrix to another discrete-valued matrix M
*

V×D with the discrete symbolic values in [+,−, 

0]. For the j
th

 dimension (column) of the embedding matrix, we first calculate the positive mean MEAN(j)
+
 and 

negative mean MEAN(j)− according to the following equations: 

!"#$ ! !
!

!

!!
!

!!!!
!

!!! ! !!!! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   (1) 

!"#$ ! !
!

!

!!
!

!!!!
!

!!! ! !!!! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! (2) 

 Where Nj
+ is the total number of rows with j

th
 column M.j >0, and Nj

− is the total number of rows with j
th

 column 

M.j <0. Then the discrete-valued matrix M
*
 can be derived by the following projection: 

!!!!
!
!

!!!!!!"!!!!! ! !"#$ ! !

!!!!!!"!!!!! ! !"#$ ! !

!!!!!!!!!!!!!!!!!!!!!!!!!"!!"#$%!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

Using the discrete-valued matrix M
*
, we can add the symbolic features according to the row vector associated with 

the word. Figure 3 shows examples of the binarized embedding features. 

Figure 3. Examples of binarized embedding features 

3) Distributed prototype feature (ProtoEmb) 

The distributed prototype feature was also proposed by Guo et al.
26

 for the general English domain. Instead of using 

the embedding dimensions, the prototype feature method selects prototypical words as representative features for 

each label. The prototypical words will be assigned as features to the samples according to the distributed similarity 

atrium   :  E0:-0.627 E1:-0.473 E2:0.149 E3:0.165 E4:0.002 E5:-0.015 E6:-0.624 E7:-0.555 … 
ventricle:  E0:0.194 E1:-1.492 E2:2.407 E3:0.996 E4:0.379 E5:2.384 E6:-1.808 E7:-0.608 … 
pt       :  E0:-0.451 E1:0.553 E2:0.399 E3:-0.836 E4:-1.275 E5:1.395 E6:-0.846 E7:0.348 … 
 

atrium   : -0.627 -0.473 0.149 0.165 0.002 -0.015 -0.624 -0.555 0.343 -1.160 … 
ventricle: 0.194 -1.492 2.407 0.996 0.379 2.384 -1.808 -0.608 -1.294 0.324 … 
pt       : -0.451 0.553 0.399 -0.836 -1.275 1.395 -0.846 0.348 -1.601 -0.484 … 
 

atrium   :  E0:- E1:0 E2:0 E3:0 E4:0 E5:0 E6:0 E7:0 E8:0 E9:- … 
ventricle:  E0:0 E1:- E2:+ E3:+ E4:+ E5:+ E6:- E7:- E8:- E9:0 … 
pt       :  E0:0 E1:+ E2:0 E3:- E4:- E5:0 E6:0 E7:0 E8:- E9:0 … 
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in the embedding matrix. Typically, the prototypical feature words are selected using the normalized pointwise 

mutual information (PMI) between the word and its labels (equation 4 and 5). For each word ‘w’ in the training/test, 

we calculate the cosine similarity between ‘w’ and all the selected prototypical words using the associated 

embedding vectors. If the cosine similarity is above the predefined threshold, the prototypical word will be assigned 

as a feature. Following the study by Guo
26

, we tested different numbers of prototypical words and cutoff thresholds 

to select the best parameters. Finally, the top 40 prototypical words and a cutoff threshold of 0.5 were used to assign 

the prototypical words for the distributed prototype feature. Figure 4 shows the prototypical feature words selected 

for each label from i2b2 corpus and Figure 5 shows examples of assigned prototypical words. 

!"#$ !"#$!!!"#$ !
!"#!!"#$!!!"#$!

!!"!!!!"#$!!!"#$!
                                                        (4) 

!"# !"#$!!!"#$ ! !"
!!!"#$!!!"#$!

! !"#$! !!!"#$!
                                                        (5) 

Figure 4. Examples of prototype words selected using normalized PMI 

 Figure 5. Example of prototype features assigned to word 

Experiments and Evaluation 

We ran two neural network embedding algorithms and Brown clustering algorithm on the unlabeled MIMIC II 

corpus to derive word embeddings and Brown clusters. For Brown clustering, we used the implementation from 

“https://github.com/percyliang/Brown-cluster/” and set number of clusters to 1,000. (We tested the different number 

of clusters from 50 to 2000 during the 2014 SemEval challenge. The cluster number 1,000 achieved the best 

performance) For each neural word embedding algorithm, we compared three different strategies for deriving word 

embedding features. Finally, we combined the best word embedding feature with the Brown clusters to examine 

how the clinical NER system could benefit from the large unlabeled clinical corpus. The official evaluation scripts 

provided by the i2b2 organizers and SemEval organizers were used to calculate the strict micro-averaged precision, 

recall, and F1-score. We report the performances of combining different types of unsupervised word representations 

on the 2010 i2b2 data and the 2014 SemEval data. 

Results 

Table 2 and Table 3 show the performances of the CRFs based NER system on the 2010 i2b2 data and the 2014 

SemEval data respectively, when using different word representation features. The baseline system achieved F1-

scores of 0.799 for the i2b2 data and 0.754 for the SemEval data. The baseline performance on SemEval data is 

lower than the performance on i2b2 data. The Brown cluster features improved the baseline system by 1.7% for the 

i2b2 data and 1.3% for the SemEval data. The binarized embedding features outperformed other embedding features 

and the Brown clusters, by improving the F1-score by 2.3% for the i2b2 data and 2.4% for the SemEval data. The 

combined feature from the binarized embedding features and the Brown clusters improved the F1-scores by 2.9% 

for i2b2 data and 2.7% for SemEval data, respectively. 

 

 

 

B-Problem: afebrile acute hypertension vomiting chills nausea nontender chronic mild some moderate …  

I-Problem: disease pain breath failure fibrillation mellitus stenosis effusion infarction distress … 

B-Treatment: coumadin lisinopril metoprolol protonix aspirin colace heparin tylenol percocet … 

I-Treatment: therapy catheter sulfate drip graft scale bypass saline fluids replacement tube support … 

B-test: auscultation glucose hgb abs bun wbc rbc mchc rdw mch plt mcv ast creat cl ptt hct creatinine … 

I-test: scan count pressure x-ray ct cultures culture saturation rate biopsy exam bilirubin study fraction … 

O: . , : was to with for is she he on and no mg by day as had discharge be has were date history patient … 
 

focal   : pleural obstructive dependent acute chronic mild moderate metastatic  … 

warfarin: coumadin lisinopril metoprolol protonix aspirin colace heparin tylenol percocet … 

pt      : patient she he and has which but also there that but chf wbc pain inr … 
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Table 2. Results on the 2010 i2b2 data set. 

Features Precision  Recall F1-score 

Baseline features 0.848 0.755 0.799 

  +RawEmb (ranking) 0.848 0.768 0.806 

 
  +BinEmb (ranking) 0.849 0.797 0.822 

  +ProtoEmb (ranking) 0.849 0.786 0.816 

  +RawEmb (word2vec) 0.847 0.766 0.804 

  +BinEmb (word2vec) 0.846 0.790 0.817 

  +ProtoEmb (word2vec) 0.852 0.782 0.815 

  +BrownCluster 0.847 0.788 0.816 

  +BrownCluster+BinEmb (ranking) 0.851 0.806 0.828 

 

Table 3. Results on the 2014 SemEval data set. 

Features Precision  Recall F1-score 

Baseline features 0.782 0.727 0.754 

  +RawEmb (ranking) 0.775 0.758 0.767 

  +BinEmb (ranking) 0.781 0.774 0.778 

  +ProtoEmb (ranking) 0.784 0.748 0.766 

  +RawEmb (word2vec) 0.778 0.750 0.764 

  +BinEmb (word2vec) 0.779 0.764 0.771 

  +ProtoEmb (word2vec) 0.789 0.752 0.770 

  +BrownCluster 0.778 0.756 0.767 

  +BrownCluster+BinEmb (ranking) 0.783 0.780 0.781 

 

All the unsupervised word representation features (including Brown clusters and word embeddings) improved the 

performances of the clinical NER systems. Further analysis found that the performance improvements are mainly 

from the recall. For example, the combined features from word embeddings and Brown clusters improved the recall 

by 5.3% for SemEval data and 5.1% for the i2b2 data, respectively. This is consistent with the previous research 

from the biomedical literature
14

. The performances of using the two word embeddings are comparable between the 

two challenge data sets. The ranking based word embedding algorithm from Collobert et al.
23

 performed slightly 

better than the word2vec.  

Among the three strategies for using the neural word embeddings, the binarized embedding feature method achieved 

the best F1-score on both of the challenge data sets. Previous research
14

 from the biomedical literature showed that 

when using a moderate sized corpus (about 42,402 sentences), the Brown cluster feature is superior to the raw word 

embedding feature (1.2% vs 0.49% on JNLPBA corpus, and 2.1% vs 1.53% on BioCreAtIvE II GM corpus). Our 

study showed that the binarized embedding feature derived from a much larger corpus (403,871 notes) could be 

better than the Brown cluster feature (2.3% vs %1.7 for the i2b2 data and 2.4% vs 1.3% for the SemEval data). This 

could be explained on the basis of the study by Wang and Manning
25

, where the authors showed that the discrete 

high-dimension feature space works better in conventional machine learning models. Another possible reason may 

be that the marginal benefit of capturing the multi-aspect relations from a big unlabeled corpus is higher than the 

benefit from a moderate sized corpus. The distributed prototype feature was comparable to the binarized embedding 

feature. However, the distributed prototype feature benefitted the precision more than the binarized embedding 

feature. 

To examine what the neural word embeddings captured in the real-valued matrix, we calculated the nearest 

neighbors using the embedding. Table 4 shows several nearest neighbor examples from the ranking based neural 

word embeddings. We can see that the neural word embeddings capture a wide range of semantic relations in both 

the general English domain (e.g., number, time unit, verb) and the clinical domain (e.g., gender, modifier, disorder, 

laterality, body location, medication). The embeddings also captured the semantic relations involving the clinical 

abbreviations (e.g., yr-year, l-left and r-right). 
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Table 4.  Examples of nearest neighbor words from the ranking based word embeddings.  

Word Top ten nearest neighbors 

one two three four several five six another long 0 large 

year week month weeks yr years days yo old months wk 

stopped restarted initiated discontinued held started begun added weaned titrated diuresed 

female male woman man gentleman ga gestation boy m infant 

mildly moderately markedly slightly severely grossly diffusely somewhat widely!relatively extremely 

 
enlarged prominent edematous thickened widened collapsed dilated opacified atrophic calcified imaged 

right left l r bilateral anterior rt proximal posterior lower upper 

atrium ventricle subclavian arm calf forearm jugular thigh orbit flank elbow 

warfarin allopurinol decadron methadone labetalol hydrochlorothiazide captopril spironolactone  

fluconazole haldol metformin 

 

This research has limitations. The corpora used in this research are well preprocessed. However, the real world 

clinical notes are much noisy and heterogeneous. The comparison between neural world embeddings was conducted 

on a single conventional machine learning model (CRFs). The neural network model usually has high complexity, 

which may not fit well on the small corpus. We didn’t consider the hybrid systems and the existing knowledge bases 

(such as UMLS). We simplified the system to examine the promise of neural word embeddings – automatically 

learn knowledge from unlabeled clinical corpora. The best models in the i2b2 challenges (with the best F1-score of 

0.852) and SemEval challenge (with the best F1-score of 0.813) show that the existing knowledge and more 

complex feature combinations could further improve the performance. It’s interesting to further examine the world 

embeddings in the deep neural network based classifiers and combine the existing knowledge bases into word 

embeddings.  

Automatic feature learning from deep neural networks explore rich feature spaces, thus saving the clinical NLP 

researchers from time-consuming feature engineering. This study showed promising results of using deep neural 

networks to capture distributed word representations from a large unlabeled clinical corpus to improve the 

performance of clinical NER systems. Compared with labeled corpus, the unlabeled corpora are much easy to 

collect. The distributed word embedding features can be adapted to any other clinical NLP system. Moreover, this 

unsupervised knowledge is low cost - without any involvement of domain knowledge. 

Conclusion 

This paper studied the neural word embeddings for clinical NER. We systematically compared two popular neural 

word embedding algorithms and three strategies for deriving distributed word representation features from word 

embeddings. We also compared the distributed word representation feature with another widely used Brown cluster 

feature. Evaluation using two challenge datasets showed that the binarized embedding features derived from a large 

unlabeled corpus could remarkably benefit the clinical NER systems. The word embedding features can be easily 

adapted to any other clinical NLP research. 
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