Abstract
Visual performance on many simple pattern discrimination tasks can be accurately predicted by quasi-linear models composed of oriented linear filters followed by simple contrast nonlinearities. However, many complex discrimination tasks require highly nonlinear processes for their explanation. Evidence is provided for two nonlinear processes in pattern discrimination: (i) one process involves a sequence of filtering, rectification, and subsequent filtering to extract texture boundaries; (ii) the second process results from contrast gain-control processes. It is suggested that quasi-linear processes and nonlinear texture-boundary processes, each with an appropriate contrast gain control, may operate in parallel to provide the basis for all higher-level visual analyses.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albrecht D. G., Hamilton D. B. Striate cortex of monkey and cat: contrast response function. J Neurophysiol. 1982 Jul;48(1):217–237. doi: 10.1152/jn.1982.48.1.217. [DOI] [PubMed] [Google Scholar]
- Albright T. D. Form-cue invariant motion processing in primate visual cortex. Science. 1992 Feb 28;255(5048):1141–1143. doi: 10.1126/science.1546317. [DOI] [PubMed] [Google Scholar]
- Bauman L. A., Bonds A. B. Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex. Vision Res. 1991;31(6):933–944. doi: 10.1016/0042-6989(91)90201-f. [DOI] [PubMed] [Google Scholar]
- Bonds A. B. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Vis Neurosci. 1989;2(1):41–55. doi: 10.1017/s0952523800004314. [DOI] [PubMed] [Google Scholar]
- Bonds A. B. Temporal dynamics of contrast gain in single cells of the cat striate cortex. Vis Neurosci. 1991 Mar;6(3):239–255. doi: 10.1017/s0952523800006258. [DOI] [PubMed] [Google Scholar]
- De Valois R. L., Albrecht D. G., Thorell L. G. Spatial frequency selectivity of cells in macaque visual cortex. Vision Res. 1982;22(5):545–559. doi: 10.1016/0042-6989(82)90113-4. [DOI] [PubMed] [Google Scholar]
- Graham N., Beck J., Sutter A. Nonlinear processes in spatial-frequency channel models of perceived texture segregation: effects of sign and amount of contrast. Vision Res. 1992 Apr;32(4):719–743. doi: 10.1016/0042-6989(92)90188-o. [DOI] [PubMed] [Google Scholar]
- Greenlee M. W., Heitger F. The functional role of contrast adaptation. Vision Res. 1988;28(7):791–797. doi: 10.1016/0042-6989(88)90026-0. [DOI] [PubMed] [Google Scholar]
- Grossberg S., Mingolla E. Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations. Percept Psychophys. 1985 Aug;38(2):141–171. doi: 10.3758/bf03198851. [DOI] [PubMed] [Google Scholar]
- Heeger D. J. Normalization of cell responses in cat striate cortex. Vis Neurosci. 1992 Aug;9(2):181–197. doi: 10.1017/s0952523800009640. [DOI] [PubMed] [Google Scholar]
- Hirsch J., Hylton R. Limits of spatial-frequency discrimination as evidence of neural interpolation. J Opt Soc Am. 1982 Oct;72(10):1367–1374. doi: 10.1364/josa.72.001367. [DOI] [PubMed] [Google Scholar]
- Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968 Mar;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein S. A., Levi D. M. Position sense of the peripheral retina. J Opt Soc Am A. 1987 Aug;4(8):1543–1553. doi: 10.1364/josaa.4.001543. [DOI] [PubMed] [Google Scholar]
- Landy M. S., Bergen J. R. Texture segregation and orientation gradient. Vision Res. 1991;31(4):679–691. doi: 10.1016/0042-6989(91)90009-t. [DOI] [PubMed] [Google Scholar]
- Legge G. E., Foley J. M. Contrast masking in human vision. J Opt Soc Am. 1980 Dec;70(12):1458–1471. doi: 10.1364/josa.70.001458. [DOI] [PubMed] [Google Scholar]
- Levi D. M., Klein S. A., Aitsebaomo A. P. Vernier acuity, crowding and cortical magnification. Vision Res. 1985;25(7):963–977. doi: 10.1016/0042-6989(85)90207-x. [DOI] [PubMed] [Google Scholar]
- Malik J., Perona P. Preattentive texture discrimination with early vision mechanisms. J Opt Soc Am A. 1990 May;7(5):923–932. doi: 10.1364/josaa.7.000923. [DOI] [PubMed] [Google Scholar]
- Movshon J. A., Thompson I. D., Tolhurst D. J. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J Physiol. 1978 Oct;283:53–77. doi: 10.1113/jphysiol.1978.sp012488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachmias J., Sansbury R. V. Letter: Grating contrast: discrimination may be better than detection. Vision Res. 1974 Oct;14(10):1039–1042. doi: 10.1016/0042-6989(74)90175-8. [DOI] [PubMed] [Google Scholar]
- Ohzawa I., Sclar G., Freeman R. D. Contrast gain control in the cat visual cortex. Nature. 1982 Jul 15;298(5871):266–268. doi: 10.1038/298266a0. [DOI] [PubMed] [Google Scholar]
- Ohzawa I., Sclar G., Freeman R. D. Contrast gain control in the cat's visual system. J Neurophysiol. 1985 Sep;54(3):651–667. doi: 10.1152/jn.1985.54.3.651. [DOI] [PubMed] [Google Scholar]
- Olzak L. A., Thomas J. P. Configural effects constrain Fourier models of pattern discrimination. Vision Res. 1992 Oct;32(10):1885–1898. doi: 10.1016/0042-6989(92)90049-o. [DOI] [PubMed] [Google Scholar]
- Olzak L. A., Thomas J. P. When orthogonal orientations are not processed independently. Vision Res. 1991;31(1):51–57. doi: 10.1016/0042-6989(91)90073-e. [DOI] [PubMed] [Google Scholar]
- Phillips G. C., Wilson H. R. Orientation bandwidths of spatial mechanisms measured by masking. J Opt Soc Am A. 1984 Feb;1(2):226–232. doi: 10.1364/josaa.1.000226. [DOI] [PubMed] [Google Scholar]
- Schiller P. H., Sandell J. H., Maunsell J. H. Functions of the ON and OFF channels of the visual system. 1986 Aug 28-Sep 3Nature. 322(6082):824–825. doi: 10.1038/322824a0. [DOI] [PubMed] [Google Scholar]
- Sclar G., Maunsell J. H., Lennie P. Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 1990;30(1):1–10. doi: 10.1016/0042-6989(90)90123-3. [DOI] [PubMed] [Google Scholar]
- Sillito A. M. Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. J Physiol. 1979 Apr;289:33–53. doi: 10.1113/jphysiol.1979.sp012723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutter A., Beck J., Graham N. Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model. Percept Psychophys. 1989 Oct;46(4):312–332. doi: 10.3758/bf03204985. [DOI] [PubMed] [Google Scholar]
- Westheimer G., McKee S. P. Spatial configurations for visual hyperacuity. Vision Res. 1977;17(8):941–947. doi: 10.1016/0042-6989(77)90069-4. [DOI] [PubMed] [Google Scholar]
- Westheimer G. The spatial sense of the eye. Proctor lecture. Invest Ophthalmol Vis Sci. 1979 Sep;18(9):893–912. [PubMed] [Google Scholar]
- Wilson H. R., Cowan J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J. 1972 Jan;12(1):1–24. doi: 10.1016/S0006-3495(72)86068-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson H. R. Discrimination of contour curvature: data and theory. J Opt Soc Am A. 1985 Jul;2(7):1191–1199. doi: 10.1364/josaa.2.001191. [DOI] [PubMed] [Google Scholar]
- Wilson H. R., Ferrera V. P., Yo C. A psychophysically motivated model for two-dimensional motion perception. Vis Neurosci. 1992 Jul;9(1):79–97. doi: 10.1017/s0952523800006386. [DOI] [PubMed] [Google Scholar]
- Wilson H. R., Humanski R. Spatial frequency adaptation and contrast gain control. Vision Res. 1993 May;33(8):1133–1149. doi: 10.1016/0042-6989(93)90248-u. [DOI] [PubMed] [Google Scholar]
- Wilson H. R., McFarlane D. K., Phillips G. C. Spatial frequency tuning of orientation selective units estimated by oblique masking. Vision Res. 1983;23(9):873–882. doi: 10.1016/0042-6989(83)90055-x. [DOI] [PubMed] [Google Scholar]
- Wilson H. R. Model of peripheral and amblyopic hyperacuity. Vision Res. 1991;31(6):967–982. doi: 10.1016/0042-6989(91)90204-i. [DOI] [PubMed] [Google Scholar]
- Wilson H. R. Responses of spatial mechanisms can explain hyperacuity. Vision Res. 1986;26(3):453–469. doi: 10.1016/0042-6989(86)90188-4. [DOI] [PubMed] [Google Scholar]
- Wilson H. R., Richards W. A. Curvature and separation discrimination at texture boundaries. J Opt Soc Am A. 1992 Oct;9(10):1653–1662. doi: 10.1364/josaa.9.001653. [DOI] [PubMed] [Google Scholar]
- Wilson H. R., Richards W. A. Mechanisms of contour curvature discrimination. J Opt Soc Am A. 1989 Jan;6(1):106–115. doi: 10.1364/josaa.6.000106. [DOI] [PubMed] [Google Scholar]
- von der Heydt R., Peterhans E., Baumgartner G. Illusory contours and cortical neuron responses. Science. 1984 Jun 15;224(4654):1260–1262. doi: 10.1126/science.6539501. [DOI] [PubMed] [Google Scholar]
- von der Heydt R., Peterhans E. Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity. J Neurosci. 1989 May;9(5):1731–1748. doi: 10.1523/JNEUROSCI.09-05-01731.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]