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Abstract

To incorporate ontological concepts in natural language processing (NLP) it is often necessary to combine simple con-

cepts into complex concepts (post-coordination). This is especially true in consumer language, where a more limited

vocabulary forces consumers to utilize highly productive language that is almost impossible to pre-coordinate in an

ontology. Our work focuses on recognizing an important case for post-coordination in natural language: spatial rela-

tions between disorders and anatomical structures. Consumers typically utilize such spatial relations when describing

symptoms. We describe an annotated corpus of 2,000 sentences with 1,300 spatial relations, and a second corpus

of 500 of these relations manually normalized to UMLS concepts. We use machine learning techniques to recognize

these relations, obtaining good performance. Further, we experiment with methods to normalize the relations to an

existing ontology. This two-step process is analogous to the combination of concept recognition and normalization,

and achieves comparable results.

Introduction

Medical ontologies are fundamentally limited in the number of concepts and terms they contain. The range of potential

problems, treatments, tests, biological processes, and other concepts encountered in medicine is far too vast to encode

directly as concepts in an ontology. Instead, ontologies generally rely on attributes and relations to handle on-the-fly

concept creation. Further, for a given concept, it is often impossible to enumerate all the textual strings that can be used

to refer to that concept in natural language. The ontological solution for this problem is known as post-coordination,

where simple concepts are composed (or coordinated) into a more complex concept. Making full use of an ontology

when interpreting unstructured text therefore necessitates natural language processing (NLP) techniques.

The need to perform post-coordination is particularly strong in consumer language. Non-experts lack the breadth of

vocabulary that experts often use to describe medical concepts. Instead, consumers often rely on lengthy descriptions

with a reduced vocabulary when describing symptoms or conditions. This results in an increased need for post-

coordination. Consider the following three examples of consumer language:

(1) I am experiencing pain in my left leg.

(2) They measured his blood pressure and found it to be above acceptable levels.

(3) During the accident I sustained an injury to the back of my head and neck.

The first example corresponds to the UMLS concept Pain in left leg (C0564822 in UMLS 2014AB), yet the presence

of the word “my” in the middle of the phrase prevents the concept from being recognized by a simple lexicon lookup.

Instead, the concept Pain (C0030193) and Left leg (C0230443) need to be composed to find the pre-coordinated

concept in UMLS. In the second example, the patient has Hypertension (C0020538), but this has to be inferred

from the result of the high measurement. This is an example of where consumer language would likely differ from

that of medical professionals, who might simply state, “He has hypertension.” In the third example, no concept in

UMLS corresponds to the problem “injury to the back of the head and neck”. Instead, the problem concept Injury

(C3263722), the direction Back (C0205095), and anatomical locations Head (C0018670) and Neck (C0027530)

must be post-coordinated into an on-the-fly concept.

Unfortunately, short of complete natural language understanding, there is no general-purpose NLP technique for per-

forming post-coordination. Rather, methods must be used that target specific domains or linguistic phenomena. In

this paper, we limit our scope to a vital phenomena for understanding consumer-described symptoms and conditions:

the spatial relationships between disorders and anatomical locations. These are generally expressed in one of two

ways: (i) a noun compound (e.g., arm pain), or (ii) a grammatical relation between an indicator term such as a spatial
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preposition (e.g., in, on, at) and two or more concepts. While noun compounds describing spatial relationships are

quite common, they are often pre-coordinated in an ontology and are easier to automatically recognize due to their

contiguous nature. The grammatical relations describing spatial relationships are more likely to require special han-

dling and are more difficult to automatically recognize, and hence are the focus of this work. Examples (1) and (3)

above demonstrate the second type of spatial relation. While Example (2) contains a spatial relation (above), it does

not describe the relationship between the concepts of interest here and is therefore outside the scope of this paper.

In this work, we describe both manually annotated datasets and automatic NLP methods to extract disorder-anatomy

relations and normalize them to their appropriate UMLS CUIs. Specifically, the contributions of this paper are:

1. A manually annotated dataset based on the Spatial Role Labeling (SpRL) schema [1] to extract spatial relations

between disorders and anatomical locations.

2. An automatic SpRL method based on supervised machine learning.

3. A manually annotated dataset normalizing the extracted spatial relations to UMLS CUIs.

4. An evaluation of several existing automatic methods for normalizing text to CUIs, customized to handle the

extracted spatial relations.

5. A discussion of the fundamental limitations to this task based on error analysis of the above automatic methods.

Further, both annotated datasets are being made publicly available via the National Library of Medicine website.

Background

While not as well studied as temporal language in medical text, spatial language–especially spatial relations–has

nonetheless received considerable attention. Rindflesch et al. [2] describes how syntax relationships are crucial to the

semantic interpretation of anatomical relationships in cardiac catheterization reports. In particular, they focus on hand-

crafted rules for recognizing arterial branching relations as well as the locations of stenosis. Their method relies heavily

on the structured data source University of Washington Digital Anatomist [3] (UWDA), part of the Foundational Model

of Anatomy [4] (FMA). Closer to our approach are methods that utilize machine learning (ML) to relate disorders with

their anatomical locations. Roberts et al. [5] find relations between an inflammation term and its anatomical location

within radiology reports. Their method is able to recognize a single layer of relation nesting–that is, when two spatial

relations combine into a single conceptual relation (e.g., “inflammation on the wall of the gallbladder”). Dligach

et al. [6] similarly recognize anatomical locations for disorders. Their method is designed to operate on any type of

disorder, but they do not recognize nested relations. So in the phrase “skin tumor removed from behind his left ear”,

the anatomical location for the tumor would be the entire phrase “behind his left ear”. The lack of nesting can present

several difficulties, however. From a practical perspective, longer phrases are more difficult to recognize automatically.

From a linguistic perspective, the phrase still requires further semantic interpretation. In contrast to these two ML

methods, our approach can operate on any disorder term and places no restriction on the depth of nesting, and then

goes a step further by providing a semantic interpretation. Thus the method could understand a complex spatial phrase

such as “skin tumor on the side of the elbow of his left arm”.

Also, unlike any of the previous approaches, our focus is on consumer language instead of clinical language. Con-

sumer language has been explored in the past as a means of supporting health information seeking [7,8,9] and making

medical terms more comprehensible [10] for consumers. This work fits more in the former category, where a semantic

understanding of consumer language enables systems that connect consumers with health information resources. In

previous work with consumer language, we have focused on co-reference [11] and question classification [12,13].

Outside of medicine, spatial relations have received more attention. Several schemas have been proposed for natural

language, including SpatialML [14], SpRL [1], and ISO-Space [15]. Of these, ISO-Space is the most recent and likely

the best developed, especially for representing highly-specified geographic descriptions. For under-specified relations,

however, ISO-Space and SpRL are largely interchangeable. For our purposes here, therefore, we use SpRL due to its

relative simplicity in the knowledge that our annotations could easily be transformed to ISO-Space in the future should

the need arise. SpRL was utilized in two SemEval tasks, in 2012 [16] and 2013 [17], while a hybrid SpRL/ISO-Space

representation was used in the SemEval 2014 SpaceEval task [18]. Successful approaches to these tasks have combined

supervised ML, syntactic parsing, and integration of real-world knowledge [19].
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Post-coordination is generally studied in the context of ontologies and medical coding. For instance, Oniki et al. [20]

discuss best practices for pre- and post-coordinating concepts when creating a structured knowledge source based on

Clinical Element Models (CEMs). Conversely, Dhombres et al. [21] employ post-coordination when utilizing a struc-

tured knowledge source, SNOMED CT, to extend its phenotype coverage. The best known NLP system to perform

post-coordination is SemRep [22], which utilizes MetaMap’s [23] option to identify and normalize short phrases. Sem-

Rep then identifies relations (e.g., treatment for, location of) that in many cases can be thought of as post-coordinations.

However, SemRep does not, nor does any NLP application we are aware of, attempt to normalize these relations back

into an ontology to determine if there is an equivalent pre-coordinated concept as described in this paper.

Instead, the most similar NLP task to the one presented in this paper is the combination of concept recognition and

concept normalization. [24,25] In this comparison, concept recognition would be analogous to SpRL relation extraction,

while concept normalization would be analogous to relation normalization. In theory, an approach similar to concept

recognition/normalization could be used here, but would likely perform poorly for two reasons: (a) concept recognizers

typically use sequential classifiers, which perform poorly with long concept spans such as those in Examples (1)-(3)

above, and (b) concept normalizers attempt to use all the words in the concept, but the relation structure recognizes

that some of the words aren’t relevant (e.g., “my” in Example (1)). In the Discussion, we provide some insights as to

how comparable our results are to the state-of-the-art in concept recognition/normalization.

Methods

We begin by describing the two sets of annotated data. Next, we describe the process of automatically extracting

spatial relations from text. Finally, we describe how these relations are automatically normalized to UMLS concepts.

A. Data

In this section, we describe two different manually annotated data sets: (1) a set of spatial relations in natural language

text, and (2) a set of normalizations from the extracted spatial relations to UMLS concepts. Both datasets are publicly

available from the U.S. National Library of Medicine (NLM) website.1

Spatial Relations: To gather a set of consumer-written texts likely to contain spatial relations, we started with a large

set of emails and online form requests sent to the NLM customer service team. Every year, NLM receives over 40,000

such requests, several thousand of which are manually classified by NLM staff as consumer health questions pertaining

to diseases, conditions, and therapies. From these, we extracted 1,976 sentences containing (1) at least one term from

UMLS in the DISORDER semantic group, [26] (2) at least one term from UMLS in the ANATOMY semantic group, and

(3) a preposition between one UMLS term of each type. Next, two medical experts–an MD/PhD (LR) and medical

librarian (SS)–double-annotated spatial relations using a simplified Spatial Role Labeling (SpRL) schema. [1] SpRL

defines a spatial relation between three main elements:

1. SPATIALINDICATOR: The word or phrase (typically a preposition) that acts as a trigger for the spatial relation.

2. TRAJECTOR: The object whose spatial position is being described.

3. LANDMARK: The location of the TRAJECTOR.

In our case, the LANDMARK is almost always an anatomical location from UMLS (hereafter, an ANATOMY anno-

tation), while the TRAJECTOR is usually a DISORDER but can be an ANATOMY as well. Figure 1 shows how two

of the example phrases from the Introduction would be annotated in SpRL using Brat [27]. In the simple example in

Figure 1(a), the SPATIALINDICATOR “in” connects the TRAJECTOR “pain” with the LANDMARK “left leg”. In the

more complex example in Figure 1(b), there are two connected spatial relations: (i) a DISORDER-ANATOMY relation

connects the TRAJECTOR “injury” to its LANDMARK “back”, then (ii) an ANATOMY-ANATOMY relation connects

“back”, this time a TRAJECTOR, to two LANDMARKs, “head” and “neck”. The annotators were allowed to manually

add or edit DISORDER or ANATOMY terms. Approximately 7% of DISORDERs were manually created, while around

8% of ANATOMYs were manually created. Since the focus of this paper is relation extraction and normalization, we

do not address automatic concept extraction. The UMLS and manual terms are distinguished in the publicly available

data, though no distinction is made between them in the experiments below.

1http://lhncbc.nlm.nih.gov/project/consumer-health-question-answering

1085



(a)

(b)

Figure 1: Spatial Role Labeling for Examples (1) and (3).

From the 1,976 sentences, a total of 1,291 SpRL relations were annotated. To assess agreement, we consider one

annotator’s labels as the “gold” set and measure the other annotator’s labels against this with F1-measure (if the

annotators were switched, F1 would be the same, while precision and recall would be reversed). Using this method, the

inter-annotator agreement has an F1 of 88.9 for SPATIALINDICATORs, 81.5 for TRAJECTORs, 86.2 for LANDMARKs,

and 72.67 for the complete relation (i.e., exact match for every argument). The annotators reported their agreement

improving over time, where many of the disagreements were the result of ungrammatical and medically incorrect

consumer language.

Concept Normalization: Instead of uninterrupted text spans, here we consider relations to refer to concepts. Any

text not part of a SPATIALINDICATOR, TRAJECTOR, or LANDMARK–such as the word “my” in Example (1)–is not

considered part of the concept. Further, we consider the fully-nested relation of all DISORDERs and ANATOMYs con-

nected through some SpRL relation–such as merging the DISORDER-ANATOMY and ANATOMY-ANATOMY relations

in Example (3) into one nested spatial relation. The nested structure of these two examples would be:

(1) pain (3) injury

in: left leg to: back

of: head

of: neck

This nested structure is then used to normalize relations to an ontology. We used 514 such nested relations from the

SpRL relations above and manually normalized them to UMLS concepts as follows. The same two annotators as above

double-annotated both the nested relations as well as parts of the relations. Normalizing parts of a relation to UMLS

enables two useful applications: (1) post-coordination of concepts when the full relation has no UMLS concept, and

(2) assignment of codes to parts of a larger concept to specify its deep structure. For the two examples above, the

annotated items would be:

(1) phrase: pain in left leg (3) phrase: injury to back of head and neck term: back

term: pain phrase: back of head and neck term: head

term: left leg term: injury term: neck

Here, a “phrase” is the result of a relation, while “term” is an individual DISORDER or ANATOMY. We only distinguish

for the purpose of evaluation. For each phrase/term, the UMLS Terminology Services (UTS) API2 is queried for po-

tential concepts belonging to either the Disorder or Anatomy semantic groups. Both the words and approximate

matching functions were used, since in our exploratory experiments both these had better recall than the other match-

ing functions. The top 10 results per matching function were retrieved, de-duplicated, and sorted by CUI instead of

relevance rank to reduce biasing the annotators toward choosing the top result. The annotators then chose the correct

normalization or indicated that none of the concepts were proper normalizations. Table 1 shows an example of how

one phrase and one term were annotated.

There were a total of 1,747 annotated phrases and terms. Around 66% of the annotations had a concept normalization

(i.e., a pre-coordinated concept in UMLS). Phrases (relations) were far more likely to not have a valid normalization.

74% of the phrases had no normalization, and thus require post-coordination of their component terms to be properly

interpreted. By comparison, only 15% of the individual DISORDER and ANATOMY terms have no normalization.

About half of the terms without a normalization are the result of manually creating DISORDER and ANATOMY terms

that were not in UMLS. The rest are the result of none of the candidate normalizations being judged valid by the

annotators. Inter-annotator agreement was fairly good at 84.8%.

2https://uts.nlm.nih.gov/home.html#apidocumentation
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Phrase or Term Candidate Concepts Gold Concept

Phrase: C0006118 [Neoplastic Process]: Brain Neoplasms ⇐=

tumors in her brain C0007798 [Neoplastic Process]: Cerebral Ventricle Neoplasms

C0025149 [Neoplastic Process]: Medulloblastoma

C0025286 [Neoplastic Process]: Meningioma

C0153633 [Neoplastic Process]: Malignant neoplasm of brain

C0220603 [Neoplastic Process]: childhood brain tumor

C0220624 [Neoplastic Process]: adult brain tumor

C0220650 [Neoplastic Process]: Metastatic malignant neoplasm to brain

C0496899 [Neoplastic Process]: Benign neoplasm of brain, unspecified

C0677866 [Neoplastic Process]: Brain Stem Neoplasms

Term: C0000735 [Neoplastic Process]: Abdominal Neoplasms

tumors C0001429 [Neoplastic Process]: Adenolymphoma

C0001624 [Neoplastic Process]: Adrenal Gland Neoplasms

C0003463 [Neoplastic Process]: Anus Neoplasms

C0003614 [Neoplastic Process]: Appendiceal Neoplasms

C0005695 [Neoplastic Process]: Bladder Neoplasm

C0005967 [Neoplastic Process]: Bone neoplasms

C0006118 [Neoplastic Process]: Brain Neoplasms

C0006160 [Neoplastic Process]: Brenner Tumor

C0027651 [Neoplastic Process]: Neoplasms ⇐=

C0877578 [Neoplastic Process]: Treatment related secondary malignancy

C3844254 [Finding]: No proper value is applicable in this context...

C3844255 [Finding]: A valid date value is provided in item Date...

C3844256 [Finding]: A proper value is applicable but not known...

Table 1: Examples of the candidate concepts provided to the annotators for normalization (2nd column), as well as the

proper normalization selected by the annotators (3rd column).

Figure 2: Automatic Spatial Role Labeling Architecture

B. Spatial Role Extraction

Figure 2 presents the architecture of our ML-based SpRL relation extractor. We utilize a pipeline method where

DISORDERs and ANATOMYs (from their respective UMLS semantic groups) are pre-annotated. Next, SPATIALINDI-

CATORs are extracted. Then, for each SPATIALINDICATOR, TRAJECTORs and LANDMARKs are identified. These

steps are described in detail below except for the pre-annotation, which is described in the Data section.

For candidate SPATIALINDICATORs, we consider all prepositions, adverbs, and participles. Some light verbs (such as

have and get) can be indicators, but not sufficiently often to merit their inclusion here. We use Stanford CoreNLP [28]

to perform part-of-speech tagging. The primary goal in candidate selection is recall: incorrect indicators can still be

filtered out by the classifier, but missing indicators cannot be recovered. This recall-based technique achieves 98%

recall with a precision of 14%. This precision is sufficiently high to ensure the training data is not overly imbalanced,

thus giving the machine learning classifier below the opportunity to filter out most of the incorrect candidates. A

binary support vector machine [29] (SVM) then classifies candidates as positive or negative. The primary consideration

in deciding whether a word is actually a SPATIALINDICATOR is its context, especially its relationship with nearby

DISORDER and ANATOMY terms. With that in mind, the features used by this SVM are shown in Table 2(a).

Since SPATIALINDICATORs are the central element of an SpRL relation, candidate TRAJECTORs and LANDMARKs

are defined in terms of the DISORDER/ANATOMY concept and the SPATIALINDICATOR (e.g., in Example (3), “head”

is a valid LANDMARK for “of” but not for “to”). For a given SPATIALINDICATOR, all DISORDER and ANATOMY terms

within its sentence are considered as candidate TRAJECTORs and LANDMARKs (a DISORDER is rarely a LANDMARK,

but this is possible). Then, two binary SVMs (one TRAJECTOR, one LANDMARK) classify candidates as positive or

negative. The primary consideration for a positive TRAJECTOR/LANDMARK is its relationship with its SPATIALINDI-

CATOR, especially its syntactic relationship (using syntactic dependencies obtained from CoreNLP). With this in mind,

the TRAJECTOR features are shown in Table 2(b), while the LANDMARK features are shown in Table 2(c).
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(a) SPATIALINDICATOR features (b) TRAJECTOR features

fI1 The SPATIALINDICATOR candidate’s words. fT1 The TRAJECTOR candidate’s words.

fI2 The part-of-speech of the candidate. fT2 The word distance between the candidate and its

fI3 If the next token is also a SPATIALINDICATOR candidate. SPATIALINDICATOR.

fI4 The word distance to the nearest ANATOMY. fT3 The dependency distance between the candidate and its

fI5 The word distance to the nearest DISORDER. SPATIALINDICATOR.

fI6 The dependency distance to the nearest ANATOMY. fT4 The words between the candidate and its

fI7 The dependency distance to the nearest DISORDER. SPATIALINDICATOR.

fI8 The words between the candidate and the nearest ANATOMY. fT5 The dependency path between the candidate and its

fI9 The words between the candidate and the nearest DISORDER. SPATIALINDICATOR.

fI10 The dependency path between the candidate and the nearest ANATOMY. (c) LANDMARK features

fI11 The dependency path between the candidate and the nearest DISORDER. fL1 The LANDMARK candidate’s parts-of-speech.

fI12 The types of the UMLS terms on the left and right of the candidate, fL2 The equivalent of fT2.

along with the candidate itself. For example, Example (1) would be fL3 The equivalent of fT3.

DISORDER-in-ANATOMY. Example (3) contains both fL4 The equivalent of fT4.

DISORDER-to-ANATOMY and ANATOMY-of-ANATOMY. fL5 The equivalent of fT5.

Table 2: Features used by the (a) SPATIALINDICATOR, (b) TRAJECTOR, and (c) LANDMARK methods.

Post-processing. We then consider two post-processing modules, one for SPATIALINDICATORs and one for both

TRAJECTORs and LANDMARKs. The NoArgFilter prunes any SPATIALINDICATORs that do not have either a TRA-

JECTOR or LANDMARK. Since most SpRL relations have all three elements, this filter is essentially a voting strategy

where, if the two argument classifiers agree an indicator has no argument, then it is likely that the indicator classifier

erred. Then, the AddCoords heuristic adds a new TRAJECTOR or LANDMARK if an existing TRAJECTOR or LAND-

MARK is separated by a concept of the same type (DISORDER/ANATOMY) by an and or an or. This helps identify

errors where only one item in a coordination (e.g., “head and neck”) is marked as an argument.

C. Spatial Relation Normalization

Given a sentence containing at least one SpRL relation, the same process as described in the Data section is used to

obtain the fully-nested relations as well as the sub-parts of the nested relation. For the purpose of this paper, we are not

proposing any new methods for normalizing concepts. Instead, we evaluate baseline and existing methods for concept

normalization, and customize these methods for the spatial relation structure. Since existing concept normalization

methods expect a word sequence instead of a relation, we use all the words in any element of the relation just as

for generating concept candidates from UTS. We also filter out any concepts that do not belong to the Disorder or

Anatomy semantic groups.

We evaluated the following methods:3

1. tfidf pref: (Baseline) Ranks the candidates (returned by the UTS method described in the Data section) using

TF-IDF scored cosine similarity between the relation and the concept’s preferred name. Document frequencies

are derived from a recent version of PubMed Central (PMC).

2. tfidf all: (Baseline) The same as tfidf pref, but uses every concept name instead of just the preferred name.

3. UTS[exact]: The top result for the UTS exact matching function.

4. UTS[approximate]: Same except for the UTS approximate function.

5. UTS[left trunc]: Same except for the UTS leftTruncation function.

6. UTS[right trunc]: Same except for the UTS rightTruncation function.

7. UTS[words]: Same except for the UTS words function.

8. UTS[norm words]: Same except for the UTS normalizedWords function.

9. UTS[norm str]: Same except for the UTS normalizedString function.

10. UTS[vote]: A combination of the above seven UTS methods using a simple voting strategy. Ties are broken by

choosing the concept with the lower CUI number.

Here, the TF-IDF based methods provide simple baselines based on a standard similarity metric. They should work

3More details on the UTS methods can be found on the project website: https://uts.nlm.nih.gov/doc/devGuide/webservices/metaops.html
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P R F1

SPATIALINDICATOR 87.3 86.0 86.7

+ NoArgFilter 96.8 85.8 91.0

TRAJECTOR 88.9 81.3 84.9

+ AddCoords 87.6 82.0 84.7

LANDMARK 89.3 82.6 85.8

+ AddCoords 88.7 83.5 86.0

Table 3: SpRL Results

Overall Phrases Terms

Method Acc. P R F1 Acc. P R F1 Acc. P R F1

tfidf pref 61.8 49.8 57.7 53.5 77.0 41.0 59.9 48.7 54.4 51.6 57.4 54.3

tfidf all 40.6 21.9 25.3 23.5 72.6 29.7 43.4 35.3 24.9 20.3 22.6 21.4

UTS[exact] 79.4 79.2 71.6 75.2 79.3 94.3 21.7 35.3 79.5 78.7 79.2 79.0

UTS[approximate] 69.3 63.1 66.0 64.5 80.8 57.6 64.5 60.9 63.6 64.0 66.2 65.1

UTS[left trunc] 44.0 23.1 22.8 23.0 75.6 40.9 17.8 24.8 28.5 22.0 23.6 22.8

UTS[right trunc] 44.8 26.5 26.1 26.3 78.9 71.7 21.7 33.3 28.1 24.6 26.8 25.7

UTS[words] 74.9 67.0 76.7 71.6 84.7 60.7 84.2 70.5 70.2 68.2 75.6 71.7

UTS[norm words] 57.1 62.3 42.1 50.3 73.2 25.0 0.7 1.3 49.1 62.5 48.5 54.6

UTS[norm str] 78.6 72.4 76.1 74.2 89.4 75.3 72.4 73.8 73.2 72.0 76.7 74.3

UTS[vote] 76.4 73.3 71.6 72.4 81.9 92.5 32.4 47.8 73.8 72.4 77.6 74.9

Table 4: UMLS Normalization Results

well when relations have a high word overlap with the valid concept, but they do not utilize UMLS in any way. Instead,

the UTS API utilizes the structure of UMLS to return candidate normalizations, performing its own internal ranking

(though we are not aware of any way in which the internal scores are exposed through the API). In contrast to the

systems evaluated in the ShARe/CLEF 2013 task [24], UTS is not limited simply to DISORDER concepts, and is thus

more appropriate for our evaluation, which includes many ANATOMY concepts.

Results

The SpRL method is evaluated using 10-fold cross validation. The results are shown in Table 3. The best SPA-

TIALINDICATOR performance (including the NoArgFilter) has an F1 of 91.0, while the best TRAJECTOR classifier

(without the AddCoords heuristic) has an F1 of 84.9, and the best LANDMARK classifier (with the AddCoords heuris-

tic) has an F1 of 86.0. The post-processing NoArgFilter produced a significant gain in precision, from 87.3 to 96.8,

for almost no cost to recall. The AddCoords heuristic, however, had only a small effect. In many cases, the classifiers

were able to find coordinated TRAJECTORs and LANDMARKs without the AddCoords heuristic, which makes sense

as the syntactic dependency features should be identical for both sides of the coordination. Overall, these results are

quite good, even a bit high compared to similar relation extraction tasks.

The results of the concept normalization methods are shown in Table 4. The baseline methods (tfidf pref and tfidf all)

performed poorly compared to the best UTS methods. Given that the UTS methods have a better understanding of

the UMLS structure and can utilize it for retrieval (e.g., understanding synonymy), they perform quite a bit better

and should form the baseline for any future work. However, the individual UTS methods varied significantly, both

by method and by the type of concept they were normalizing. UTS[exact] had the best F1 on individual terms

(79.0), but performed quite poorly with the relation phrases (35.3). UTS[approximate] performed decently, but well

below the best methods for each concept type. This confirmed our pre-existing observations when experimenting

with the methods, as the UTS[approximate] method does a good job of retrieving the correct candidate in the top

10, but a poor job of ranking the correct candidate first. It is therefore good for annotation, but not ideal as a run-

time system. The other method used in annotation, UTS[words], performed better, but was still outperformed by

other methods. UTS[left trunc] and UTS[right trunc] where quite poor in general, followed by UTS[norm words].

UTS[norm str] was the most consistent method, and also the best performing method for phrases (73.8). As might

be expected when forming an ensemble method from highly noisy constituent methods, UTS[vote] was unable to

outperform the best individual methods. For future work, methods should be compared either to UTS[norm str], or

to the use of UTS[exact] for individual terms and UTS[norm str] for phrases.
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Discussion

Using the system described above, many of the detailed concepts found within consumer text can be mapped into

an ontology containing either pre-coordinated terms or that allows for spatial post-coordination. Given the informal

language often utilized in consumer text, such a method is often necessary to gain a more complete semantic un-

derstanding. We now discuss the general types of errors made by the system, how some of these errors illustrate

limitations to our approach, and how they motivate future work on this task.

As is typical with consumer-authored text, many of the system’s errors were the result of ungrammatical and error-

prone language. This includes misspellings (e.g., “ifection” instead of infection, “boh legs” instead of both legs),

missing punctuation (e.g., “pain cramping, redness and swelling”), and incorrect tense (e.g., “fingers are stick together

by her skin”). These errors are compounded by the fact that many of the consumer information requests were submitted

by non-native English speakers, resulting in text that can be difficult to understand (SPATIALINDICATORs in bold):

(4) i had got sunburn effect before 3 year on my both hands.

(5) i have pain on ma left side under the ribis n difficult on urinating seeming as if threz something blocking is it

connected to the kidneys

Other errors were the result of using UMLS directly as a lexicon. While this removes the need to run a noisy concept

recognition system, and while the UMLS terms should be far easier to normalize, using UMLS directly introduces

noise as well. As stated above, between 7-8% of the DISORDER and ANATOMY terms needed to be manually created

(thus indicating recall issues), but precision issues are an effect as well. For instance, mrs (in the phrase “mrs. p gupta”)

and mm (in the phrase “1-3 mm”) are both marked as DISORDERs, and could easily result in mistaken TRAJECTORs.

In many cases, the resulting errors were relatively innocuous, as in the following:

(6) ...she developed water behind her eye balls...

Here, UMLS does not contain the full phrase “eye balls” (though it does contain “eye ball”, but we performed no

stemming for relation extraction). Instead, “eye” is selected as the LANDMARK. Also see Example (8) below.

As with many relation extraction approaches, long distance relations often prove problematic. Consider the example:

(7) The cancer cells are in the fluid, around the lung, and in the trachea lymph nodes...

Here, “cancer cells” is the TRAJECTOR for all three SPATIALINDICATORs, but the classifier fails to identify it as the

TRAJECTOR for the second and third indicators. The dependency parser should attach all three prepositions to the

verb “are”, but instead it attaches “around” and the second “in” to the noun “fluid”. Thus, the dependency paths are

atypical for TRAJECTORs, and the classifier misses this argument. Prepositional phrase attachment is a very common

source of syntax parsing errors, and the choice of attaching the preposition to the nearer word is typical.

Another common problem is SPATIALINDICATORs missing either a TRAJECTOR or a LANDMARK. For instance:

(8) Is matastatic non small cell lung cancer able to spread to the spine and brain in as little as 1 month?

Here, the SPATIALINDICATOR “to” should have a TRAJECTOR (“non small cell lung cancer”) and two LANDMARKs

(“spine” and “brain”). While the classifier found both LANDMARKs, it missed the TRAJECTOR. With very few ex-

ceptions, all SPATIALINDICATORs should have a TRAJECTOR. But doing this through a post-processing heuristic by

simply forcing the nearest concept to be the TRAJECTOR hurts performance. In this case, for example, the nearest

concept is actually “able”, which is a Finding in UMLS. Instead, in future work, we plan to integrate more intelli-

gent post-processing to enforce constraints such as “Every SPATIALINDICATOR should have at least 1 TRAJECTOR”

directly on top of the output of each classifier.

Since the normalization methods evaluated here are either baseline (TF-IDF) or existing (UTS) methods, we omit

a detailed error discussion and instead provide some insights on what may enable future methods to improve on

normalization performance. The fundamental issue with the evaluated methods is that they consider the concept as

a phrase, not as a relation, and thus miss out on potentially useful information. When normalizing a relation, a very

similar process to that of post-coordination can be used to identify potentially pre-coordinated concepts. That is,

identify the individual argument terms (which almost all of the UTS methods do with higher performance than the
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full phrases), then identify valid pre-coordinations. For instance, the phrase “fracture on his thigh bone” results in

the TRAJECTOR fracture with LANDMARK thigh bone. The UTS[words] method identified the concept C0840234

(Fracture of bone in neoplastic disease; pelvic region and thigh), which is overly specific because it indicates the cause

of the fracture (a bone tumor). Through relations in UMLS, it can be determined that C0840234 is a pathological

fracture and thus too specific, avoiding this incorrect normalization. This type of method would clearly require a

significant understanding of the UMLS relation structure and is beyond the scope of this work, but this work does

provide the required NLP methods to enable such ontological methods by extracting and structuring spatially related

concepts from text. A second, but also fundamental limitation of the normalization approaches used here is the lack

of context employed. The context surrounding a relation likely provides valuable clues as to its proper interpretation.

As addressed in the Background section, this normalization process is largely analogous to the types of concept nor-

malization performed in the CLEF task [24], though that task is limited to DISORDERs. While evaluating an automatic

system in that task (e.g., DNorm [25]) would be an unfair comparison based on the type of data, some discussion on the

results of the CLEF task and that of this work might provide some useful insights. The CLEF task evaluated systems

in two different ways. First, an end-to-end evaluation (“strict”) that required systems to correctly recognize disorder

concepts and then normalize the disorders to their UMLS CUIs. Since errors could occur at either the recognition

or normalization stage, the results of this evaluation essentially form a lower bound to normalization performance. A

second evaluation (“relaxed”) then measured performance of normalization on only those disorders that were correctly

recognized. Since the correctly recognized disorders were likely to be shorter terms resembling those in the training

data, the relaxed evaluation essentially forms an upper bound to normalization performance. The best system on the

strict measure, DNorm, achieved a strict accuracy of 58.9% and a relaxed accuracy of 89.5%. By comparison, in our

data the UTS[exact] method has an accuracy of 79.4%. This suggests that the UTS method, though far simpler than

DNorm, is not likely to be substantially worse, but would likely nonetheless be outperformed by DNorm if that system

were to be tailored to our spatial relations. Due to the complexity of such a project, we leave this idea to future work.

Conclusion

This paper described a method for extracting and normalizing spatial relations between disorders and anatomical

structures. While the method might still generalize to physician and other clinical notes, our focus was on consumer

language. We have described two new annotated corpora for these tasks: (1) a corpus of spatial relations from con-

sumer health requests, and (2) a set of annotated concept normalizations for many of the relations from the first corpus.

A machine learning-based method is used to automatically perform spatial relation extraction on the first corpus. Then,

a set of baseline and existing methods are used to automatically perform concept normalization on the second corpus.

Both achieve good performance, though we have identified several areas of future work to improve upon these results.
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27. P Stenetorp, S Pyysalo, G Topić, T Ohta, S Ananiadou, and J Tsujii. BRAT: a web-based tool for NLP-assisted

text annotation. In EACL, pages 102–107, 2012.

28. CD Manning, M Surdeanu, J Bauer, J Finkel, SJ Bethard, and D McClosky. The Stanford CoreNLP Natural

Language Processing Toolkit. In ACL: System Demonstrations, pages 55–60, 2014.

29. R-E Fan, K-W Chang, C-J Hsieh, X-R Wang, and C-J Lin. LIBLINEAR: A Library for Large Linear Classifica-

tion. Journal of Machine Learning Research, 9:1871–1874, 2008.

1092


