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Abstract

Motivation: Detecting modules of co-ordinated activity is fundamental in the analysis of large bio-

logical studies. For two-dimensional data (e.g. genes�patients), this is often done via clustering or

biclustering. More recently, studies monitoring patients over time have added another dimension.

Analysis is much more challenging in this case, especially when time measurements are not

synchronized. New methods that can analyze three-way data are thus needed.

Results: We present a new algorithm for finding coherent and flexible modules in three-way data.

Our method can identify both core modules that appear in multiple patients and patient-specific

augmentations of these core modules that contain additional genes. Our algorithm is based on a

hierarchical Bayesian data model and Gibbs sampling. The algorithm outperforms extant methods

on simulated and on real data. The method successfully dissected key components of septic shock

response from time series measurements of gene expression. Detected patient-specific module

augmentations were informative for disease outcome. In analyzing brain functional magnetic res-

onance imaging time series of subjects at rest, it detected the pertinent brain regions involved.

Availability and implementation: R code and data are available at http://acgt.cs.tau.ac.il/twigs/.

Contact: rshamir@tau.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying modules of elements acting in concert is a fundamental

paradigm in interpreting, visualizing and dissecting complex

biomedical data. For two-dimensional data (e.g. genes versus condi-

tions), clustering is the simplest way to group the elements of one di-

mension (Hartigan, 1972). Biclustering seeks row and column

subsets that manifest similarity (Cheng and Church, 2000;

Hartigan, 1972; Madeira and Oliveira, 2004). Such analysis has

become standard in computational biology (Mitra et al., 2013;

Oghabian et al., 2014). Algorithms for finding biclusters differ in

how they define (and identify) biclusters (Madeira and Oliveira,

2004). For example, biclusters were defined as sub-matrices with

constant values (Hartigan, 1972), row or column additive or multi-

plicative values (Lazzeroni and Owen, 2002) and submatrices with

order preserving values (Ben-Dor et al., 2003).

Recent studies have extended the idea of biclustering to more

complex input structures beyond the standard row–column data

(Mitra et al., 2013). Meng et al. (2009) extended the classic Iterative

Signature Algorithm (ISA) (Bergmann et al., 2003) to analyze a sin-

gle matrix of time series data together with prior knowledge on gene

function to detect temporal transcription modules that are biologic-

ally meaningful. Li and Tuck (2009) introduced an algorithm for

joint analysis of ChIP-chip and gene expression data to find biclus-

ters that are likely to be regulated by similar transcription factors.

Waltman et al. (2010) and Dede and Ogul (2013) proposed three-

way clustering of gene-condition-organism data. The algorithm of

Waltman et al. (2010) uses sequence information to integrate data

across species, and a post-processing step allows detection of

species-specific information. Gerber et al. (2007) cluster tissues

hierarchically and then find the representative gene set of each tissue

cluster in the hierarchy.

A common data source that calls for three-way analysis is a col-

lection of gene expression profiles measured for a set of subjects

over a series of time points. Hence, the data are represented by a
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gene� subject� time 3D matrix (i.e. a tensor of order 3) (Mankad

and Michailidis, 2014; Zhao and Zaki, 2005). For such matrices,

Supper et al. (2007) presented EDISA, an extension of ISA that han-

dles a time-course vector for each gene–subject pair instead of a sin-

gle scalar. Extant models are limited in their ability to detect a signal

that is specific to a particular subject. For example, the set of genes

active under one subject in a module may only partially overlap

with the gene set of other subjects. Another limitation is the assump-

tion of synchronicity of time points across subjects. Although this

assumption is valid for technical repeats or well-tailored experi-

ments, it is less plausible in other situations, e.g. samples taken from

patients over time, due to possible heterogeneity in the response of

different patients.

Here, we introduce a new, flexible definition of a module suit-

able for three-way data where subjects have entities (e.g. genes)

measured over time, but time courses are unsynchronized among

the subjects. A core module is defined by a subset of the subjects

and a subset of the entities, along with subject-specific subset of

the time points. In addition, subjects may have private modules

that only partially coincide with the core set of entities. The as-

sumption is that the resulting submatrices will show values mark-

edly different from the whole matrix. A toy example is shown in

Figure 1A.

We developed a statistical framework and algorithm for ana-

lyzing such data. Our framework can detect core modules and for

each subject in a core module, a private module with relevant time

points. We developed a hierarchical Bayesian generative model for

the data and a procedure that aims to fit model parameters for a

given dataset. Our algorithm uses a regular biclustering solution as

a starting point and then performs iterative improvement using a

Gibbs sampling procedure. The algorithm is called TWIGS (three-

way module inference via Gibbs sampling). In simulations, we

show that TWIGS outperforms standard algorithms even when the

core modules have no additional subject-specific signal. When sub-

ject-specific signals exist, the ability of extant algorithms to detect

the core modules declines markedly, whereas the performance of

TWIGS remains high.

We demonstrate the advantage of our framework on experimen-

tal data from two different domains: gene expression and brain

functional magnetic resonance imaging (fMRI) signals. We first ana-

lyzed whole blood expression profiles, taken daily for 5 days from

14 patients after septic shock (Parnell et al., 2013). TWIGS detected

two core modules of up-regulated genes, showing enrichment for

different immune system processes. The first was related to response

to bacteria, whereas the second was related to regulation of T-cells.

Analysis of the subject-specific private modules revealed multiple en-

richments that illustrate patient-specific-activated biological proc-

esses. Hence, our analysis produced both shared and subject-specific

insights, highlighting biological pathways that repeatedly emerge as

up-regulated after septic shock, together with additional biological

functions particular to each patient. We also analyzed fMRI read-

ings for 20 subjects at rest (Vaisvaser et al., 2013). The data for each

subject are a matrix of 464 brain regions (parcels) measured over 94

time points at 3 s intervals. Each value in the matrix is the parcel’s

average blood-oxygen-level-dependent (BOLD) contrast. These lev-

els are indicators of the activity at that region. TWIGS revealed sev-

eral core modules of highly activated bi-lateral brain regions.

Reassuringly, the detected modules were enriched with regions that

are known to be active during rest. This analysis shows that our

framework is able to detect large functional networks that reappear

as activated across subjects and also highlight subject-specific activa-

tion patterns.

2 Methods

2.1 The probabilistic model
The input for our problem is summarized as a 3D matrix Z where

Zv;t;s is the activity level of the measured object v 2 1; . . . ;V, at time

t 2 1; . . . ;T, for subject s 2 1; . . . ; S. We will say that v and t repre-

sent the rows and columns of the matrix and s represents layers. In

gene expression data, v represents genes, whereas in fMRI, data v

represents brain regions (parcels or voxels). For uniformity, from

now on we use for v the term row or voxel. Here, we describe a hier-

archical probability model for generating a single module from the

distribution of Z.

We assume that there is a set of voxels Vf1; . . . ;Vg that tend to

have high values jointly in a subset of the subjects. V is specified by

the indicator vector H ¼ ðH1; . . . ;HVÞ, through the relation

V ¼ fv : Hv ¼ 1g. We assume that Hv � BernoulliðpVCÞ. Although

H marks the rows of the core module, the signal in each specific sub-

ject might change. The subject-specific voxel sets are specified by the

matrix HS ¼ fHS1;1; � � � ;HSV;Sg, where HSv;s ¼ 1 specifies that

voxel v participates in the module of subject s. The relation between

H and HS is as follows: if Hv¼1 then HSv;s � BernoulliðpsÞ, other-

wise HSv;s � Bernoulliðp0Þ.
We next model the time-series relations. C ¼ Ct;s 2 f0;1g indi-

cates whether the voxel set of subject s is active at time t. We assume

PrðC1;s ¼ 1Þ ¼ p1;1. The activity at time t ¼ 2; . . . ;T, depends on

the time window of size w � 1 before t. In times t ¼ 2; . . . ;w, the

time window is 1 � � � t � 1. Let C0t;s ¼ 1, if the time window of sub-

ject s right before time point t contains at least one active time point

and set C0t;s ¼ 0 otherwise. We assume that PrðCt;s ¼ 1jC0t;s ¼ 0Þ
¼ p1j0 and PrðCt;s ¼ 1jC0t;s ¼ 1Þ ¼ p1j1.

Finally, we assume that for v, t, s for which Ct;s ¼ 1 and

HSv;s ¼ 1; Zv;t;s � F1, otherwise Zv;t;s � F0. An overview of the

model hierarchy is shown in Figure 1B. We assume that

all hyper-parameters above have Beta prior distributions:

pVC � Betaða1; b1Þ; ps � Betaða2; b2Þ; p0 � Betaða3; b3Þ; p1;1 � Beta

ða4; b4Þ; p1j1 � Betaða5;b5Þ, p1j0 � Betaða6; b6Þ.

2.2 The Gibbs sampling algorithm
Our algorithm starts from a solution produced using a standard

biclustering algorithm and then applies iterative improvement

steps. In each step, all parameters are fixed except a single one

that is sampled according to its conditional probability. The order

of parameters matches the subsections below. This order is re-

peated cyclically k times. The output of the process is the set of

sampled values for each parameter in all iterations. We then ex-

tract the core modules and the subject-specific modules from this

output.

Fig. 1. Overview of the model. (A) A toy example of a core module (A) and its

private modules (B, C). (B) An overview of the dependencies in the hierarch-

ical model. P is the vector of subject-specific probabilities Ps
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(1) As Hv are Bernoulli realizations with success probability pVC:

pVCj � � � � Betaða1 þ jfv : Hv ¼ 1gj; b1 þ jfv : Hv ¼ 0gjÞ:

Similarly:

psj � � � � Betaða2 þ jfv : HSv;s ¼ 1;Hv ¼ 1gj;

b2 þ jfv : HSv;s ¼ 0;Hv ¼ 1gjÞ:

p0j � � � � Betaða3 þ jfv; s : HSv;s ¼ 1;Hv ¼ 0gj;

b3 þ jfv; s : HSv;s ¼ 0;Hv ¼ 0gjÞ;

p1;1j � � � � Betaða4 þ jfs : C1;s ¼ 1gj;

b4 þ jfs : C1;s ¼ 0gjÞ;

p1j1j � � � � Betaða5 þ jft; s : C0t;s ¼ 1;Ct;s ¼ 1gj;

b5 þ jft; s : C0t;s ¼ 1;Ct;s ¼ 0gjÞ;

p1j0j � � � � Betaða6 þ jft; s : C0t;s ¼ 0;Ct;s ¼ 1gj;

b6 þ jft; s : C0t;s ¼ 0;Ct;s ¼ 0gjÞ

(2) Hv is affected by pVC, and it affects the values of HSv;s for each s:

PrðHv ¼ 1;HSv;s ¼ 1j � � �Þ ¼ pVC � ps;

PrðHv ¼ 1;HSv;s ¼ 0j � � �Þ ¼ pVC � ð1� psÞ;

PrðHv ¼ 0;HSv;s ¼ 1j � � �Þ ¼ ð1� pVCÞ � p0;

PrðHv ¼ 0;HSv;s ¼ 0j � � �Þ ¼ ð1� pVCÞ � ð1� p0Þ:
Thus,

PrðHv ¼ 1;HSv;�j � � �Þ ¼ pVC � p
P

sHSv;s

s

� ð1� psÞ
P

sð1�HSv;sÞ;

PrðHv ¼ 0;HSv;�j � � �Þ ¼ ð1� pVCÞ � p
P

sHSv;s

0

� ð1� p0Þ
P

sð1�HSv;sÞ:

Therefore, the conditional posterior of Hv is:

PrðHv ¼ 1j � � �Þ ¼ PrðHv ¼ 1;HSv;�j � � �Þ
PrðHv ¼ 1;HSv;�j � � �Þ þ PrðHv ¼ 0;HSv;�j � � �Þ

(3) Given Ct;s, only the value of HSv;s affects the distribution of

Zv;t;s. Assume for now, that we condition on Hv¼1, then:

PrðZv;t;s;HSv;s ¼ 0jCt;s ¼ 0; � � �Þ ¼ ð1� psÞf0ðZv;t;sÞ;

PrðZv;t;s;HSv;s ¼ 1jCt;s ¼ 0; � � �Þ ¼ ps � f0ðZv;t;sÞ;

PrðZv;t;s;HSv;s ¼ 0jCt;s ¼ 1; � � �Þ ¼ ð1� psÞ � f0ðZv;t;sÞ;

PrðZv;t;s;HSv;s ¼ 1jCt;s ¼ 1; � � �Þ ¼ ps � f1ðZv;t;sÞ:

From the above, it is clear that when Ct;s ¼ 0:

PrðHSv;s ¼ 1jCt;s ¼ 0;Hv ¼ 1;Zv;t;s; � � �Þ ¼ ps;

PrðHSv;s ¼ 0jCt;s ¼ 0;Hv ¼ 1;Zv;t;s; � � �Þ ¼ 1� ps:

Therefore, a time point t in which Ct;s ¼ 0 will not affect the

marginal distribution of HSv;s. Let T 0s ¼ ft : Ct;s ¼ 1g, then:

PrðHSv;s ¼ 1;Zv;�;sjHv ¼ 1; � � �Þ

¼ ps �
Y

t2T 0s
f1ðZv;t;sÞ;

PrðHSv;s ¼ 0;Zv;�;sjHv ¼ 1; � � �Þ

¼ ð1� psÞ �
Y

t2T 0s
f0ðZv;t;sÞ:

On the basis of the equations above, we can calculate the condi-

tional posterior of HSv;s, given that Hv¼1, through:

PrðHSv;s ¼ 1jHv ¼ 1; � � �Þ

¼ PrðHSv;s ¼ 1;Zv;�;sjHv ¼ 1; � � �Þ
PrðHSv;s ¼ 0 _HSv;s ¼ 1;Zv;�;sjHv ¼ 1; � � �Þ

Similarly, the conditional posterior of HSv;s given that Hv¼0 can be

calculated by replacing every ps with p0 in the formulas above.

(4) As the value of C1;s affects the value of the time window C2;s; . . . ;

Cwþ1;s and the values of Zv;1;s with HSv;s ¼ 1:

PrðC1;s ¼ 1;C2;s; � � � ;Cwþ1;s;Z�;1;sj � � �Þ

¼ p1;1 � p1j1

Xwþ1

k¼2

Ck;s

� ð1� p1j1Þ

Xwþ1

k¼2

ð1� Ck;sÞ
�
Y

v:HSv;s¼1

f1ðZv;1;sÞ

Unlike the equation above, calculating the probability of C1;s ¼ 0

requires breaking the window into two parts. Assume that the time

window contains at least one active cell. Let l be the first time point

of C2;s; . . . ;Cwþ1;s that changes from 0 to 1. Thus:

PrðC1;s ¼ 0;C2;s; � � � ;Cwþ1;s;Z�;1;sj � � �Þ

¼ ð1� p1;1Þ �
Yl�1

k¼2

ð1� p1j0Þ
" #

� p1j0 � p1j1

Xwþ1

k¼2

Ck;s

�

ð1� p1j1Þ

Xwþ1

k¼2

ð1� Ck;sÞ
�
Y

v:HSv;s¼1

f0ðZv;1;sÞ

If there are no active cells in C2;s; � � � ;Cwþ1;s, then the calculation re-

duces to:

PrðC1;s ¼ 0;C2;s; � � � ;Cwþ1;s;Z�;1;sj � � �Þ

¼ ð1� p1;1Þ � ð1� p1j0Þw �
Y

v:HSv;s¼1

f0ðZv;1;sÞ

Finally, the conditional of C1;s can be calculated by:

PrðC1;s ¼ 1jC2;s; � � � ;Cwþ1;s;Z�;1;s; � � �Þ

¼ PrðC1;s ¼ 1;C2;s; � � � ;Cwþ1;s;Z�;1;sj � � �Þ
PrðC2;s; � � � ;Cwþ1;s;Z�;1;sj � � �Þ

The conditional probability of the event C1;s ¼ 0 is computed in the

same way.

(5) For t 2 2; . . . ;T � 1, the value of Ct;s is affected by the value of

C0t;s, and it affects the value of Ct;s; . . . ;Cminðwþt;TÞ;s, and the val-

ues of Zv;t;s with HSv;s ¼ 1. Thus:

PrðCt;s ¼ 1;C�;s;Z�;t;sj � � �Þ

¼ p1j1C0t;s � p1j01�C0t;s � p1j1

Xminðwþt;TÞ

k¼tþ1

Ck;s

� ð1� p1j1Þ

Xminðwþt;TÞ

k¼tþ1

ð1� Ck;sÞ
�
Y

v:HSv;s¼1

f1ðZv;t;sÞ
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PrðCt;s ¼ 0;C�;s;Z�;t;sj � � �Þ

¼
Yminðtþw;TÞ

k¼t

p1j1Ck;s �C0k;s � p1j0Ck;s �ð1�C0
k;s
Þ

�
Yminðtþw;TÞ

k¼t

ð1� p1j1Þð1�Ck;sÞ�C0k;s

�
Yminðtþw;TÞ

k¼t

ð1� p1j0Þð1�Ck;sÞ�ð1�C0
k;s
Þ

�
Y

v:HSv;s¼1

f0ðZv;t;sÞ

Thus, PrðCt;s ¼ 1j � � �Þ can be calculated similarly to the calculations

in the previous section.

2.3 Setting f0 and f1

Here, we discuss two options for setting f0 and f1 and their hyper-

parameters: (i) a Bernulli-Beta model for binary data and (ii) a

Normal-Gamma model for normal distributions. Let A be the cells

within the module (including the core and private parts):

A ¼ fZv;t;s : Ct;s ¼ 1 ^HSv;s ¼ 1g. Let B be the cells outside the

module: B ¼ fZv;t;s : Ct;s ¼ 0 _HSv;s ¼ 0g
For binary data, we assume that Zv;t;s 2 f0;1g; f0 ¼ Bernoullið

pC0Þ and f1 ¼ BernoulliðpC1Þ. Thus, our model learns the back-

ground probability pC0 of observing a value of 1 and the probability

pC1 of observing 1 within the module. In this model, pC0 and pC1 fol-

low Beta posterior distributions:

pC0j � � � � Betaða7 þ jfi : Bi ¼ 1gj; b7 þ jfi : Bi ¼ 0gjÞ

pC1j � � � � Betaða7 þ jfi : Ai ¼ 1gj; b7 þ jfi : Ai ¼ 0gjÞ

In the continuous case, we assume that f0 is Nðl0;r0Þ and f1 is

Nðl1;r1Þ. Under the Normal-Gamma model, the prior distribution

for the mean l and the standard deviation r of a normal distribution

Nðl;rÞ is:

1=r � Gamma
v0

2
;
SS0

2

� �

l � N m0;
1

p0

� �

The conditional posteriors for Y ¼ ðy1; . . . ; ynÞ where for each i,

yi � Nðl;rÞ are:

1=rjY � Gammað1=2 � ðv0 þ nÞ;

1=2 � SS0 þ
Xn

i¼1

ðyi � yÞ2 þ n � p0

nþ p0
� ðy�m0Þ2Þ

 !

ljY;r � N
m0p0 þ ny

nþ p0
;

r
p0 þ n

� �

Thus, we apply the model above for A and B, thereby modeling f0
and f1 as normal distributions.

2.4 Finding multiple modules
To find a single module, we use a standard biclustering algorithm to

produce an initial solution and then use the Gibbs sampler to im-

prove it. The biclustering algorithm is applied on a 2D matrix M ob-

tained by concatenating the layers in Z, i.e. Mv;i ¼ Zv;t;s, where

i ¼ ðs� 1ÞSþ t. In this study, we tested Bimax (Prelic et al., 2006)

and ISA (Bergmann et al., 2003) as the base algorithms. To binarize

real-valued data Z to run Bimax, we use a threshold s: we set every

value Zv;t;s � s (< s) to 1 (0). By default, we set s to be the 0.9

quantile of the values in Z. After running the Gibbs sampler, we

take the mode of H, HS and C as the solution. By default, all hyper-

parameters of the Gibbs sampler are set to non-informative priors.

This means that the algorithm infers these parameters and thus no

tunning is required.

To find multiple modules, we tested two previously used heuris-

tics (Serin and Vingron, 2011; Shabalin et al., 2009). In the first

(Cheng and Church, 2000), which we call masker, we run the algo-

rithm iteratively on the residual matrix of Z. The residual matrix is

calculated by going over all cells in the module and updating their

values in Z. In the binary model, the update rule is to change all

module cells to zero. In the normal model, we subtract the mean of

f1 from the value of each cell.

The second heuristic, called filter, takes a set of biclusters U as

input and produces a reduced set. It first uses the overlap reduction

method of Serin and Vingron (2011): initially U0 ¼ ;, then the larg-

est module in U is added to U0 and all remaining modules with a

large overlap with it (we used Jaccard index � 0:5) are removed

from U. The process is repeated until U is empty. Next, we run the

Gibbs sampler on the original matrix Z starting with each module in

U0. The result is a set of new modules U00. Finally, as different mod-

ules in U0 might converge into similar modules in U00, the overlap re-

moval process is used again, taking U00 as input.

For both heuristics, we define when to add a module to the final

output. When using masker, we add modules until the first time a

module is rejected. A module is accepted if it is large enough and the

difference jf1 � f0j for it is large enough. In the binary case, we set

pC1 > 0:5 and in the normal case we set l > 0:3. Setting the minimal

module size depends on the application and on the size of the input

data. By default, we set the minimal size of a core module to 5 rows

and 5 time points (combining all subjects).

2.5 Performance measures
In the results below, we compare algorithms on simulated data. In

each case, we compare the known H, HS, C to the algorithm output

H0;HS0;C0 using the Jaccard coefficient. For example, the Jaccard

score of H and H0 is:

JðH;H0Þ ¼ jfi; Hi ^H0igj
jfi; Hi _H0igj

When the data contain more than one module we use the running

max average of all pairwise Jaccard scores. Given the known

solution H ¼ ðH1; . . . ;Hk1
Þ and the algorithm output

H0 ¼ ðH01; . . . ;H0k2
Þ the running max average score is:X

i21;...;k1

max
j21;...;k2

JðHi;H
0
jÞ

� �
þ

X
j21;...;k2

max
i21;...;k1

JðHi;H
0
jÞ

� �

k1 þ k2

The same method is used for HS and C.

3 Results

3.1 Simulations
Our simulations setup was as follows. We set V¼500, T¼50,

S¼10 and create an initial matrix Z in which all values are zero.

We then add modules to Z in which all values are 1 and later add

noise according to the tested model (binary or normal). To define a

new module, we first need to randomly select the rows and columns

of each subject s. Time points are selected randomly with w¼1,

p1;1 ¼ 0:05; p1j1 ¼ 0:6 and p1j0 ¼ 0:1. Rows are selected randomly

as follows. We first select randomly 20 rows i1 . . . i20 for the

i20 D.Amar et al.



core module. Then, we add row r to the private module of subject s

with probability p0s if r 2 fi1 . . . i20g, otherwise r is added with prob-

ability p00.

Adding random noise to the data depends on the tested model.

In the binary case, we randomly replace Zv;t;s with 1� Zv;t;s, with

probability pw if (v, t, s) belongs to the private module of s and with

probability po otherwise. In the normal model for each (v, t, s)

within the private module of s we select ev;t;s � Nð0;rwÞ, otherwise

we select ev;t;s � Nð0;roÞ. We then add the noise by updating

Zv;t;s ¼ Zv;t;s þ ev;t;s. We tested scenarios of a single module with

and without subject-specific signals and of multiple modules.

3.2 Case 1: a single core module
In this test, we set p0s ¼ 1 and p00 ¼ 0. This case represents the stand-

ard biclustering task because there is no subject-specific signal.

Thus, biclustering algorithms are expected to achieve high

performance.

The results are shown in Figure 2A and B. Each algorithm was

tested on 10 instances and the average Jaccard score, which quanti-

fies the agreement between the known solution and the algorithm

output, is shown. We set high noise levels both in the binary data

(Fig. 2A)—p0w ¼ p0o ¼ 0:25 and in the normal data (Fig. 2B)—

r0w ¼ r0o ¼ 1. The Bimax algorithm had a low Jaccard score in most

cases, since its output covered only a small part of the true bicluster.

Although the false-positive rate was very low (<0.01 both for the

bicluster rows and columns), the true-positive rate was low as well

(<0.25). ISA performed much better, especially in terms of identify-

ing H and HS. Using TWIGS to improve the solution was beneficial:

it was able to keep the high performance of ISA for H and HS and to

considerably improve the score of C. It greatly improved the Bimax

solution in all criteria. For example, in the normal data, the score of

C went up from 0.053 to 0.93. The ISA solution improved from

0.63 to 0.95 using TWIGS. Notably, this improvement was achieved

with only 50 sampling iterations, which took less than 7 s on average

(over simulation repeats). Thus, this boost in performance was

achieved at a low cost of running time. We kept this number of iter-

ations also in subsequent analyses. Note, however, that when the

data are much larger (e.g. jTj > 1000), the running time could in-

crease to several minutes.

We also tested a binary case in which the noise levels were not

symmetric: we set p0w ¼ 0:5 and p0o ¼ 0:1. The results are shown in

Supplementary Figure 1. In this case, the Bimax–Gibbs combination

reached the top performance in all measurements, with very high

scores: 0.92 (H), 0.86 (HS) and 0.93 (C). The performance of both

ISA and Bimax was low (all scores were <0.7), indicating that

standard algorithms have difficulty in such noise levels.

3.3 Case 2: a core module with subject-specific signal
In this test, we set p0s ¼ 0:9 and p00 ¼ 0:01. Thus, this scenario is dif-

ferent from standard biclustering and triclustering tasks in two

ways: (i) not all shared rows are necessarily part of each private

module and (ii) each private module is likely to contain additional

rows that are not shared among all subjects.

The results (averaged over 10 instances) are shown in Figure 2C

and D. The noise levels were p0w ¼ p0o ¼ 0:25 in the binary data

Fig. 2C) and r0w ¼ r0o ¼ 1 in the normal data (Fig. 2D). Similar to

Case 1, Bimax had low scores because it typically covered only a

small perfect fraction of the module, whereas ISA reached higher

performance. However, the performance of ISA was much lower

than in Case 1. For example, in the normal data the score of H,

which represents the core module rows, dropped from 0.87 in Case

1 to 0.57. This result demonstrates a weakness of standard bicluster-

ing algorithms when the data contain subject-specific signal: the al-

gorithms might fail to discover even the shared information. In

contrast to ISA and Bimax, TWIGS improved the solution consider-

ably in all measures. For example, the score of H and C was >0.89

when starting with the Bimax solution.

3.4 Case 3: multiple modules
Here, we tested the performance of TWIGS with filter and masker

on data with five core modules, each with it own subject-specific sig-

nals, using as before p0s ¼ 0:9 and p00 ¼ 0:01. The results are shown

in Figure 3. As expected, the results were lower than in the single

core module tests. Nonetheless, the results were still high in spite of

the high noise levels.

Unlike the previous cases, using masker with Bimax as the base

algorithm was much better than all other algorithms. For example,

in the binary case (Fig. 3A), it reached scores of 0.86 and 0.8 for H

Fig. 2. Simulation results for data with a single module. Each bar represents the average over 10 repeats. (A) Case 1: no subject-specific signal. (B) Case 2: with

subject-specific signals. The Bimax-Gibbs variant was later chosen as the default TWIGS algorithm
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and C respectively, where all other algorithms had scores below 0.6.

In the normal data, we observed a sharp decrease in performance

when setting the noise levels to r0 ¼ 1 as in the previous sections,

see Supplementary Figure 2. With a bit lower noise levels of 0.75,

the results were similar to the binary case (Fig. 3B). Interestingly,

forcing high mean value in f1 (i.e. by setting m0 � 1 and high p0 con-

stant in the Normal-Gamma model, see Section 2) achieved higher

performance scores. For example, setting the mean value to 1.5 im-

proved the score of H from 0.8 to 0.9 and the score of C from 0.71

to 0.77. We discovered that the non-informative variant had some

detrimental instances in which some core modules were grouped to-

gether (average number of detected modules was 4.2), whereas

enforcing high mean for f1 detected the correct number of core

modules.

On the basis of the above results, from this point on, we used the

Bimax-Gibbs-masker as the default variant of the TWIGS

algorithm.

3.5 Gene expression data
We tested the performance of TWIGS by analyzing transcriptional

response of patients to sepsis. Parnell et al. (2013) monitored pa-

tients after septic shock. For up to 5 days after sepsis, blood samples

were taken daily, and whole blood gene expression was measured

using Illumina microarrays. The dataset contained 14 patients for

which five profiles, one for each day after sepsis, were available.

Our goal was to detect up-regulated biological functions after septic

shock. Therefore, for each subject we calculated the log fold change

between time points 2; 3; 4; 5 and the first time point. We binarized

the data by setting a threshold of 2 for the fold change (i.e. 1 for the

log fold change) and ran masker with Bimax as the base algorithm.

See the Supplementary Text for additional analyses using the non-

binarized data and for sensitivity analysis of the binarization thresh-

old. We set the minimal size of the detected core module to 10 rows

and 10 columns (number of time points from all patients) and f1 to

have pC1 > 0:5. Using these stop criteria in masker, a single small

module of 5 genes was detected over 20 repeats in which we inde-

pendently and randomly shuffled the values of each row in the input

matrix.

Two core modules were detected on the real expression matrix.

The first covered 11 patients and 53 genes. The second covered

seven patients and 62 genes. Four patients were represented in both.

Distinct private modules were assigned to each subject in each mod-

ule. Thus, a total of 20 modules (core or private) were detected in

the analysis. GO enrichment analysis [using EXPANDER (Ulitsky

et al., 2010)] detected significant enrichment (0.05 FDR) in 19 of

the modules. The two detected core modules differed in their en-

riched biological functions. The first was highly enriched with genes

related to killing of cells of other organisms (P ¼ 2:7E� 11) and re-

sponse to bacterium (P ¼ 2:2E� 9Þ.The second core module was

enriched with functions that were more specific to T-cell activity

(e.g. regulation of T cell activation P ¼ 4:5E� 10). Thus, TWIGS

identified a fuzzy partition of the subjects into two main branches of

the immune system and also pointed out the relevant up-regulated

genes.

The private modules in the solution were often much larger than

the core modules. For example, in the first core module, the private

modules of subjects 19 and 24 contained more than 450 genes each.

The first core module and the enrichment analysis results of its pri-

vate modules are shown in Figure 4. See Supplementary Figure 3 for

the results of the second core module. Only biological functions that

were not significant in the core modules are shown. The figure illus-

trates how our analysis provides a complementary view to the core

modules. That is, although the core modules indicate which biolo-

gical functions tend to reappear across subjects, the private modules

reveal additional enrichments that are sometimes much more spe-

cific biologically. For example, the private module of subject 24 was

highly enriched with genes related to viral infectious cycle

(P ¼ 1:7E� 9). The network also highlights patients without sub-

ject-specific unique enrichments (subjects 30, 46, 49 and 50) and

two hubs: subjects 24 and 19. Strikingly, out of the 11 patients cov-

ered by this core module, these two patients had much larger private

modules and they were the only patients that did not survive the sep-

tic shock.

3.6 fMRI data
Vaisvaser et al. (2013) collected brain fMRI data from 20 male sub-

jects at rest over 94 time points. In this technique blood flow

(BOLD) intensity is measured at every voxel of the brain along time,

providing levels of some 100 000 voxels every 2–3 s. The level re-

flects the activation intensity of the brain voxel. Standard fMRI pre-

processing was applied on the raw data as reported in (Vaisvaser

et al., 2013). We used a whole brain functional parcellation to trans-

form the data into 517 brain parcels (Craddock et al., 2012). Parcels

were masked to include gray matter voxels only using the WFU Pick

Atlas Tool (Maldjian et al., 2003; Stamatakis et al., 2010) and 54

parcels that had � 5 gray matter voxels were excluded. For each

subject, average BOLD value across all gray matter voxels was cal-

culated within each parcel at each time point. As is standard practice

Fig. 3. Simulation results for data with five core modules. Each bar represents the average over 10 repeats. (A) Binary data. (B) Normal data. The Bimax-Gibbs-

masker variant was later chosen as the default TWIGS algorithm
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in fMRI analysis (Birn, 2012), to reduce the effect of physiological

artifacts and nuisance variables, the whole-brain mean signal, six

motion parameters, cerebrospinal fluid and white matter signals

were regressed out of the parcel signals. The result is a matrix Ms for

each subject s, in which rows are parcels and columns are time

points. We standardized the signal of each row in Ms by subtracting

the mean and dividing by the standard deviation. This normalization

allows us to find relative changes in the activity of brain regions to

highlight temporally activated regions (Rana et al., 2013).

We ran TWIGS with the normal model, Bimax as the initial solu-

tion finder and masker. With non-informative priors, the algorithm

converged to large modules with relatively low mean value (<0.5).

As we were interested in highly activated brain regions, we reset the

mean of f1 to a high value: we tested l1 ¼ 1:5 and l1 ¼ 2. As in the

simulations, using such prior improved the results considerably since

the non-informative variant tended to merge core modules with high

mean value. No module was detected when running the algorithm

after randomly and independently shuffling each row of the data

matrix (20 repeats).

Unlike in the gene expression analysis, each subject participated

in each core module. For l1 ¼ 2 (Fig. 5A), four core modules were

detected (labeled 1A–4A), with an average of 48.5 parcels. For l1

¼ 1:5 (Fig. 5B), five core modules were detected (labeled 1B–5B),

with an average of 66.4 parcels. Out of the five core modules de-

tected using l1 ¼ 1:5, four had a parallel core module detected using

l1 ¼ 2. In addition, modules 1A and 1B maintained similar spatial

structure and size and so did 3A and 3B. Modules 2A and 4A were

larger than their counterparts.

We evaluated the parcel sets of the identified core modules by

comparing them to known functional annotations of the brain (Yeo

et al., 2011). The results show that our analysis detected well-known

functional modules that are expected to share common activation

patterns both during task and at rest. In both solutions, core module

1 was enriched with regions that are involved in visual processing in

the occipital lobe of both hemispheres (q � E� 11) (Belliveau et al.,

1991). Core module 2B was enriched with parcels located within

the ventral attention network, which is involved in bottom-up ori-

enting of attention (q � 0:02) (Fox et al., 2006). In both solutions,

Fig. 4. A module summarizing patient response to sepsis. Top: the first core module heatmap. Bottom: the subject-specific enrichments. The red stripes in each

patient’s node represent the time points that were covered by its private module. An edge between a subject and a category (blue node) indicates that the sub-

ject-specific module was enriched for that category
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core module 3 was enriched with parcels located in regions that are

involved in sensori-motor processing (q � 1E� 11) and in parcels

located within regions of the dorsal attention network, which is

involved in top-down orienting of attention (q � 0:03) (Fox et al.,

2006). Modules 4A and 4B were enriched with parcels located in

the default mode network (q � 1E� 4), which is composed mainly

of midline structures and is involved in self referential functions that

include remembering the past as well as planning the future, and the

frontoparietal control network, which is responsible for adaptive be-

havior (q � 1E� 7) (Dosenbach et al., 2007). Finally, core module

5B contained 29 parcels and was enriched with regions that are

involved in visual processing (q � 5E� 9) and with parcels that are

located within the dorsal attention network (q � 0:001).

Inspecting the private modules, we observed large heterogeneity

in their tendency to overlap with their core module parcels and in

the number of time points. Figure 5C and D shows the results for

core module 4B. This module is of particular interest as it was en-

riched with both the default mode network and the frontoparietal

control networks. Patterns of co-activation between these two

networks have been reported before and suggested to support goal-

directed thought processes (Spreng et al., 2010). On average, each

private module covered 44.4% of the core module parcels (Fig. 5C)

and contained 15.5 time points. In addition, in 18 out of 20 subjects,

the overlap between the subject-specific parcels and the core module

parcels was significant (hyper-geometric P<0.001). Other modules

had much higher coverage. For example, core module 1B had mean

coverage of 64.4% and a larger number of time points (mean 23),

see Supplementary Figure 4.

When including the private modules in the enrichment analysis,

15 out of 20 private modules of core module 4B were also enriched

with the default mode network. The frontoparietal control network

was identified in 12 of the 20 subjects. Although to a much lower

extent than in the gene expression analysis, we also detected subject-

specific signal. For example, ventral attention enrichment was iden-

tified in 4 out of 20 subjects but not in the core module. This sug-

gests a tendency of these four subjects to engage in bottom-up

processing (e.g. be more attentive to sensory stimuli) during goal-

directed thought processes. These results demonstrate the advantage

of our multi-subject analysis: it was able to detect large functional

networks that reappear as activated across subjects and even high-

light subject-specific activation patterns.

3.7 Comparison to related algorithms
Extant algorithms for three-way data analysis were mainly de-

veloped for gene expression data. Triclustering (Zhao and Zaki,

2005) assumes that a module is a subcube created by one subset in

each of the three dimensions. This setting is too rigid for simultan-

eous analysis of responses in many patients. Figures 4 and 5 show

that our modules are not triclusters since the time points and gene

Fig. 5. Results of the fMRI analysis. (A) The core module rows of the solution with l1 ¼ 2. (B) The core module rows of the solution with l1 ¼ 1:5. (C, D) Examples

of subject-specific statistics. This example shows the results for core module 4B. (C) The percent of core module parcels covered by the private modules.

Asterisks indicate subjects whose private module had a significant overlap (hyper-geometric P � 0:001) with the core module. (D) The number of time points in

each private module
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set of each private module differ under the same core module.

Another type of three-way analysis seeks biclusters < G0; S0 > where

G0 is a set of genes and S0 is a set of subjects, such that all genes in

G0 manifest a similar time response across all subjects in S0. Two

such algorithms are EDISA (Supper et al., 2007), which seeks high

correlation between subjects across time points, and the plaid model

of Mankad and Michailidis (2014), which extends (Lazzeroni and

Owen, 2002) and seeks up- or down-regulated time responses.

Finally, Gerber et al. (2007) simultaneously cluster tissues and genes

to produce biclusters, while accounting for three possible time re-

sponses for each tissue when introduced to a drug. However, this

analysis answers very different questions than TWIGS as it assumes

a hierarchical structure of tissue clusters without overlap, whereas

we analyze a single tissue over many time points at rest and allow

overlapping core modules.

We compared TWIGS to seven methods: ISA (Bergmann et al.,

2003), Bimax (Prelic et al., 2006), SAMBA (Tanay et al., 2004),

EDISA (Supper et al., 2007), the plaid model (Mankad and

Michailidis, 2014), sliding window analysis of fMRI data (Allen et al.,

2014) and modularity analysis of fMRI data (Rubinov and Sporns,

2010, 2011). For each method, we tested a wide range of its internal

parameters to fine tune it for the tested dataset. The Supplementary

Text provides all details; here we give a brief overview.

Our comparison shows that except for modularity analysis

(which enforces using all subjects by the method’s definition), extant

methods have difficulties in finding modules that cover many sub-

jects. TWIGS provides an almost 2-fold improvement in the ability

to find modules that cover many patients. For example, on average,

modules identified by EDISA on the sepsis data covered less than

five patients compared with nine by TWIGS. The sliding window

analysis, which estimates the covariance matrix of each time win-

dow and then clusters all windows from all subjects, had an average

coverage of less than 10 on the fMRI data, whereas TWIGS covered

all 20 subjects. TWIGS was comparable to other methods in enrich-

ment analysis for known biological functions in terms of: (i) the

total number of covered functions, (ii) the strength of the detected

enrichments and (iii) the fraction of modules with enriched terms.

When consolidating scores 1–3 using non-parametric ranking,

TWIGS ranked first.

When applying the plaid model to the sepsis data, it tended to

find much larger gene sets. However, these modules manifested a

very mild up-regulation response compared with the TWIGS mod-

ules. The fMRI modularity analysis method of Rubinov and Sporns

(2010, 2011) partitioned the brain into clusters, each containing one

of our core modules. TWIGS’s subject-specific module augmenta-

tions provided additional biological results.

4 Discussion

We presented a novel problem formulation and algorithm for flex-

ible three-way clustering of multi-matrix time course data. We

defined a core module as (i) a set of rows that are likely to be active

together across a set of subjects and (ii) a set of active time points in

each covered subject. In addition, each core module has subject-spe-

cific private modules that can contain additional genes and have

high overlap with the core module. The set of active time points of a

module can vary in size and times among subjects.

Our model is much more flexible than existing models. First, it

allows different active time points for each subject, thereby accom-

modating heterogeneity and asynchrony in the response of different

subjects. Second, different subjects can differ in their underlying fea-

tures (rows) and time points (columns). The row set of a particular

subject in a module does not necessarily cover all core module rows.

This property was crucial in the analysis of fMRI data, where it

allowed discovering core modules that better covered active brain

regions. In addition, the row set of a private module can contain

additional rows that represent subject-specific signal. This property

was crucial in the gene expression case as it allowed discovering pa-

tient-specific up-regulated immune processes.

We compared TWIGS to seven other methods and showed that

extant methods have difficulties in finding modules that cover many

subjects, whereas TWIGS easily finds modules that represent a bio-

logical function shared by many subjects. In addition, our method

outperformed other methods in terms of enrichment analysis. We

employed additional metrics for evaluation in each domain. Other

comparison criteria can be used in the future, e.g. test-likelihood or

perplexity.

Our current analysis has some limitations that can be addressed

by future studies. First, we assume that the data originated from two

distributions f0 and f1. Other approaches could be considered, such

as row-based or column-based additive models (Lazzeroni and

Owen, 2002). Second, our basic model deals with only a single mod-

ule at a time. More complex models and algorithms could be pro-

posed to directly model multiple modules. Finally, additional tests

are needed to fully exploit the abilities of the model. For example,

we focused only on testing a time window of size 1 to find homogen-

ous highly activated private modules.
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