
De novo meta-assembly of ultra-deep

sequencing data

Hamid Mirebrahim1,*, Timothy J. Close2 and Stefano Lonardi1

1Department of Computer Science and Engineering and 2Department of Botany and Plant Sciences, University of

California, Riverside, CA 92521, USA

*To whom correspondence should be addressed.

Abstract

We introduce a new divide and conquer approach to deal with the problem of de novo genome as-

sembly in the presence of ultra-deep sequencing data (i.e. coverage of 1000x or higher). Our pro-

posed meta-assembler SLICEMBLER partitions the input data into optimal-sized ‘slices’ and uses a

standard assembly tool (e.g. Velvet, SPAdes, IDBA_UD and Ray) to assemble each slice individu-

ally. SLICEMBLER uses majority voting among the individual assemblies to identify long contigs that

can be merged to the consensus assembly. To improve its efficiency, SLICEMBLER uses a generalized

suffix tree to identify these frequent contigs (or fraction thereof). Extensive experimental results on

real ultra-deep sequencing data (8000x coverage) and simulated data show that SLICEMBLER signifi-

cantly improves the quality of the assembly compared with the performance of the base assem-

bler. In fact, most of the times, SLICEMBLER generates error-free assemblies. We also show that

SLICEMBLER is much more resistant against high sequencing error rate than the base assembler.

Availability and implementation: SLICEMBLER can be accessed at http://slicembler.cs.ucr.edu/.

Contact: hamid.mirebrahim@email.ucr.edu

1 Introduction

Since the early days of DNA sequencing, the problem of de novo

genome assembly has been characterized by insufficient and/or un-

even depth of sequencing coverage (see e.g. Ekblom et al., 2014).

Insufficient sequencing coverage, along with other shortcomings of

sequencing instruments (e.g. short read length and sequencing

errors) exacerbated the algorithmic challenges in assembling large,

complex genome—in particular those with high repetitive content.

Some of the third generation of sequencing technology currently on

the market, e.g. Pacific Biosciences (Eid et al. 2009) and Oxford

Nanopore (Clarke et al. 2009), offers very long reads at a higher

cost per base, but sequencing error rate is much higher. As a conse-

quence, long reads are more commonly used for scaffolding contigs

created from second generation data, rather than for de novo assem-

bly (English et al. 2012).

Thanks to continuous improvements in sequencing technologies,

life scientists can now easily sequence DNA at depth of sequencing

coverage in excess of 1000x, especially for smaller genomes like

viruses, bacteria or bacterial artificial chromosome (BAC)/YAC

clones. ‘Ultra-deep’ sequencing (i.e. 1000 x or higher) has already

been used in the literature for detecting rare DNA variants including

mutations causing cancer (Campbell et al. 2008), for studing viruses

(Beerenwinkel and Zagordi 2011; Widasari et al. 2014), as well as

other applications (Ekblom et al. 2014). As it becomes more and

more common, ultra-deep sequencing data are expected to create

new algorithmic challenges in the analysis pipeline. In this article,

we focus on one of these challenges, namely the problem of de novo

assembly. We showed recently that modern de novo assemblers

SPAdes (Bankevich et al. 2012), IDBA_UD (Peng et al. 2012) and

Velvet (Zerbino and Birney 2008) are unable to take advantage of

ultra-deep coverage (Lonardi et al. 2015). Even more surprising was

the finding that the assembly quality produced by these assemblers

starts degrading when the sequencing depth exceeds 500x–1000x

(depending on the assembler and the sequencing error rate). By

means of simulations on synthetic reads, we also showed in Lonardi

et al. (2015) that the likely culprit is the presence of sequencing

errors: the assembly quality degradation cannot be observed with

error-free reads, whereas higher sequencing error rate intensifies the

problem. The ‘message’ of our study (Lonardi et al. 2015) is that

when the data are noisy, more data are not necessarily better.

Rather, there is an error-rate-dependent optimum.

Independently from us, study (Desai et al. 2013) reached similar

conclusions: the authors assembled E. coli (4.6 Mb), S. kudriavzevii

(11.18 Mb) and C. elegans (100 Mb) using SOAPdenovo, Velvet,

ABySS, Meraculous and IDBA_UD at increasing sequencing depths

up to 200x (which is not ultra-deep according to our definition).

Their analysis showed an optimum sequencing depth (around 100x)

VC The Author 2015. Published by Oxford University Press. i9
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 31, 2015, i9–i16

doi: 10.1093/bioinformatics/btv226

ISMB/ECCB 2015

http://slicembler.cs.ucr.edu/
,
e.g.,
)
,
 –
e.g.,
,
``
''
i.e.,
,
,
is
paper
,
-
,
il
``
''
is
is
http://www.oxfordjournals.org/

for assembling these genomes, which depends on the specific gen-

ome and the assembler.

In addition to sequencing errors, real sequencing data are also

plagued by read duplications that contribute to uneven coverage.

Read duplication is typically attributed to polymerase chain reaction

amplification bias (Aird et al. 2011; Zhou et al. 2014). The presence

of highly duplicated reads complicates the task for assemblers when

they contain sequencing errors; if unique, it would be easy to detect

and remove them. As the coverage increases, the probability of an

overlap that involves duplicated reads agreeing to each other due to

sequencing errors becomes higher and higher. These new overlaps

can induce spurious contigs (typically short) or prevent the creation

of longer contigs. In turn, this manifests in a degradation of the as-

sembly quality (N50, number of misassemblies, portion of the target

genome covered, etc.). We also suspect that the removal of bubbles/

bulges from the de Bruijn graph [for details on bubbles/bulges, see

e.g. Zerbino and Birney (2008) or Bankevich et al. (2012)] is signifi-

cantly harder with ultra-deep sequencing data.

As sequencing errors are the source of the problem, one could at-

tempt to correct them before the assembly. Several stand-alone

methods have been proposed in the literature [see Yang et al. (2013)

for a recent survey], and several de novo assemblers [e.g. SPAdes

(Bankevich et al. 2012)] employ a preprocessing step for correcting

errors. Unfortunately, error correction is not very effective for ultra-

deep sequencing data. Most error correction tools are based on k-

mer spectrum analysis: the underlying assumption is that ‘rare’ k-

mers are likely to contain sequencing errors. As the depth of

sequencing increases, so does the number of occurrences of any k-

mer, including the ones that contain sequencing errors. In Lonardi

et al. (2015) and this article, we have collected experimental evi-

dence of the inefficacy of error-correction methods on the assembly

of ultra-deep sequencing data.

An alternative approach to deal with excessive sequencing data

is down-sampling. The idea of down-sampling is to disregard a frac-

tion of the input reads, according to some predetermined strategy.

The simplest approach is to randomly sample the input and only as-

semble a fraction of the reads. Although coverage reduction has

been primarily used for unbalanced data (Brown et al. 2012), we

have shown in Lonardi et al. (2015) that in the presence of ultra-

deep sequencing data, the assembly of a random sample of the input

reads only marginally improves the assembly quality compared with

the assembly of entire dataset. Diginorm (Brown et al. 2012) and

NeatFreq (McCorrison et al. 2014) are two examples of down-sam-

pling methods aimed to produce a more uniform coverage. They

both reduce coverage by selecting representative reads binned by

their median k-mer frequency. In general, down-sampling is not a

satisfactory technique to deal with large datasets, unless it is ex-

pected to remove most of the ‘bad’ reads and none of the ‘good’

reads. Otherwise, it has the undesirable effect of removing ‘critical’

reads, i.e. rare but error-free reads that can help bridge or fill assem-

bly gaps.

In this article, we address the question of how to create high-

quality assemblies when an ultra-deep dataset is available. We pro-

pose a meta-assembly method called SLICEMBLER that, unlike down-

sampling techniques, takes the advantage of the whole input dataset.

SLICEMBLER uses a divide-and-conquer approach: it ‘slices’ a large in-

put into smaller sets of reads, assembles each set individually (using

a standard assembler) and then merges the individual assemblies.

Our experimental results on real and synthetic data show that

SLICEMBLER can produce higher quality assemblies than the regular

assembly of entire dataset (before or after error correction), as well

as better assemblies compared with the assembly of random samples

of the reads. The assemblies produced by SLICEMBLER demonstrate

that, when an ultra-deep coverage dataset is available, it is possible

to create long contigs with no assembly errors. We believe these re-

sults can be considered the first step toward making ‘perfect

assemblies’. We also show that SLICEMBLER is less sensitive to

sequencing error rates, which could make it desirable for third-gen-

eration sequencing data.

2 Methods

The availability of ultra-deep sequencing data opens the opportunity

to construct assemblies from multiple independent samples of the

reads and then compare them with the objective either to (i) merge

them or (ii) discover assembly errors and correct them. SLICEMBLER is

based on majority voting: if a contig (or a fraction thereof) appears

in the majority of the individual assemblies, we assume that it is safe

to add that contig to the consensus assembly being built. SLICEMBLER

is a meta-assembler for second-generation paired-end short reads,

but its framework can be adapted to other type of sequencing data.

Figure 1 illustrates the proposed iterative algorithm. First,

SLICEMBLER partitions the reads into several smaller sets (slices). In

the second step, it assembles each set individually using a standard

assembler (e.g. Velvet, SPAdes, IDBA_UD or Ray). Third,

SLICEMBLER analyzes the individual assemblies and identifies long

common contigs (or fractions thereof) supported by a majority of

the assemblies. In the fourth step, it merges these common contigs

(or fractions thereof) to the partially constructed (consensus) assem-

bly being built. Before repeating steps 2, 3 and 4, any read that

maps to the consensus assembly is removed from the input.

2.1 ‘Slicing’ the input
In the first step, the set of input reads is partitioned into n distinct

slices. Each paired-end read is assigned to exactly one slice, although

it is also possible to assign a read to multiple slices. For simplicity,

each slice contains approximately the same number of reads. The

number of slices is determined from the desired depth of coverage

Ds for each slice. As we discussed in Lonardi et al. (2015), the cover-

age Ds is a critical parameter for the quality of assembly. To find a

good value for Ds, one can run the base assembler (e.g. Velvet,

SPAdes, Ray or IDBA_UD) on larger and larger samples of the input

and find the coverage that maximizes the chosen assembly statistics

(e.g. N50). Once the value of Ds is established, one can determine

the number of slices by computing n ¼ Dt=Ds, where Dt is the depth

of coverage for the whole input read set. Given the set of input

reads, the slice coverage Ds and the average read length, it is

straightforward to partition the reads into n slices with the desired

coverage.

2.2 Assembling the slices
In the second step, each of the n slices is assembled independently

with a standard assembler (e.g. Velvet, SPAdes, Ray or IDBA_UD),

possibly with different choices of the k-mer values in each slice.

Under the assumption that the number of reads in every slice is suffi-

cient for a complete assembly, the ideal outcome is that each of the

n assemblies covers the entire target genome. In practice, each as-

sembly is expected to contain a mixture of ‘good’ and ‘bad’ contigs

due to sequencing errors, repetitive regions and imperfections in the

assembly algorithms. The objective of the next step is to identify the

‘good portion’ of each contig by taking a majority vote among the

assemblies.

i10 H.Mirebrahim et al.

is
PCR
,
(
,
e.g.,
)
Since
(
)
(
,
)
``
''
e current manuscript
to
``
''
``
''
``
''
i.e.,
paper
``
''
,
s
to
``
''
1
2
e.g.,
,
``
''
In order
e.g.,
,
e.g.,
e.g.,
,
``
''
``
''
``
''

2.3 Finding frequently occurring substrings
In the third step, SLICEMBLER searches for long substrings that occur

exactly in the majority of individual assemblies. The input to this

step is a set of n assemblies S ¼ A1; A2; . . . ;Anf g where each as-

sembly Ai is represented as a set of contigs. Given a string s, we de-

fine c(s) as a subset T � S of assemblies in which s appears exactly

in at least one contig of each assembly in T. Given a minimum sup-

port u and minimum length l, SLICEMBLER identifies all maximal sub-

strings r such that jrj> l and jc(r)j>u, that is, r is longer than l

nucleotides and it appears in at least u assemblies. By maximal we

mean that if string r was extended by one extra symbol to the left or

to the right, then jc(r)j would decrease below threshold uþ1.

We call such substrings r, frequently occurring substrings (FOS).

Figure 2 illustrates four FOS detected from a set of five assemblies.

FOS1 occurs in four assemblies, whereas FOS2 appears in three of

them. FOS3 and FOS4 is a pair of overlapping substrings occurring

in three assemblies.

To find FOS, we build a generalized suffix tree on the contigs of n

assemblies (and their reverse complement), then use a variant of the

algorithm proposed in Hui (1992). In this algorithm, each input string

is assigned a distinct ‘color’. The algorithm uses the generalized suffix

tree to compute for each tree node u the number of distinct colors in

the subtree rooted at node u. The algorithm computes the number of

colors for each node in linear time in the length of the input strings.

Algorithm (Hui 1992), however, does not produce maximal sub-

strings. Once the internal nodes have the color information, to ensure

right-maximality our algorithm finds the deepest internal node u

(spelling out string r, jrj> l), such that jc(r)j>k. To guarantee left-

maximality, we take advantage of suffix links: if node u has a suffix

link to node v, and subtrees rooted at u and v have the same number

of leaves and colors then the string corresponding to v is not left-max-

imal and should not be reported. We mark all the nodes correspond-

ing to the loci of strings contained in string r, then the process above is

repeated to find the second longest FOS.

As we mentioned earlier, repetitive regions in the genome repre-

sent a major challenge for assemblers. Often a FOS includes a repeti-

tive pattern at the end due to disagreements among assemblies on

how many times that pattern should be repeated. The ends of each

FOS are critical for merging, which requires a prefix–suffix overlap.

Any error in these sections may prevent the algorithm from merging

overlapping FOS (discussed in Section 2.4 later). To avoid merging

errors in later steps, SLICEMBLER checks 20 bp at the ends of each

FOS. If a tandem repeat is found at any of the ends, all copies (ex-

cept one) of the repeated pattern are eliminated. Specifically, any

string in the form of abbþ (where jbj<10 bp) is replaced with ab.

2.4 Merging frequently occurring sequences
When detected FOS are overlapping (e.g. FOS3 and FOS4 in Fig. 2),

they can be merged to obtain longer FOS (FOS will also be merged to

the contigs in the consensus assembly being built). SLICEMBLER identi-

fies any FOS that has an exact suffix–prefix overlap (i.e. no mis-

matches/indels) with another FOS (or its reverse complement) and

determines the number of paired-end reads that connect each pair of

such overlapping FOS. A pair of FOS is merged if either (i) the exact

overlap is at least 100 bp or (ii) the exact overlap is 50–99 bp and the

number of paired end reads connecting them is at least Dt/1000 or (iii)

the exact overlap is 20–49 bp and the number of paired end reads con-

necting them is at least Dt/100. This idea of using paired-end read to

increase the confidence of an overlap is similar to the scaffolding step

used to order and orient contigs in de novo assemblers or specialized

scaffolding tools like (Pop et al. 2004).

2.5 SLICEMBLER algorithm
SLICEMBLER is an iterative meta-assembler. The main steps of slicing/

assembling/merging are executed iteratively until a predetermined

condition is met. Table 1 presents a sketch of our algorithm. As

described in Section 2.1, the number of slices is calculated from the

Fig. 1. SLICEMBLER’S pipeline: First, the input reads are partitioned into smaller slices (1). Each slice is assembled individually (2), and the resulting assemblies are

merged by a ‘majority voting’ process (3, 4). Before repeating these steps, any read in the input that maps to the consensus assembly is removed (6). When no

further merging is possible, the final consensus assembly is produced (7)

FOS 2

Assembly 1

Assembly 2

Assembly 3

Assembly 4

Assembly 5

FOS 1 FOS 3

FOS 4

Fig. 2. Examples of frequently occurring substrings (FOS) from five assemblies (FOS can overlap)

De novo meta-assembly of ultra-deep sequencing data i11

il
In order
``
''
-
next
s
s
e.g.,
-
i.e.,
,
1
2
-
3
-
shows

chosen slice coverage (DS). The input read set is partitioned into n

slices (line 2). The rest of the algorithm is performed iteratively (lines

3–19) until the total length of the consensus assembly F meets or ex-

ceeds the target genome size, or no sufficiently long FOS can be

found. At the beginning of a new iteration, SLICEMBLER assembles the

reads in each slice individually (lines 4–6). Next, a generalized suffix

tree T is created from the contigs in the individual assemblies (both

forward and reverse complement) (line 7). Using the suffix tree,

SLICEMBLER produces the set of maximal substrings longer than l

bases that occur in at least u assemblies (out of n, line 11). The FOS

set could contain any number of strings (including none). Then,

SLICEMBLER checks whether FOS overlapping with the current con-

sensus assembly meet the conditions described in Section 2.4 and

merges them (line 12). The parameter u is set to n initially, so

SLICEMBLER first tries to determine whether there is any FOS that ap-

pears in all the assemblies. If no new FOS is found, the support u is

decreased (by one) and the loop is repeated. The parameter u is

decreased until at least one FOS is detected or u becomes smaller

than n/2. If u becomes smaller than n/2, the minimum length l is

halved and u is initialized again to n. We selected n/2 as the ‘turning

point’ because we would not trust any common substring that ap-

pears in the minority of the assemblies. The initial value for l is one-

fifth of the size of the target; based on our observations, using a

larger value for the initial value of l is unlikely to improve the results

but makes SLICEMBLER slower. The iterative process stops when l

drops below lmin, which is desired minimum contig length in the

final assembly (lmin is user-defined, typically 200–500 bp). If l is

below lmin and no new FOS have been identified in the current iter-

ation (line 17), SLICEMBLER’s iterative process is terminated and the

consensus assembly is reported.

Before starting a new iteration, all the reads in each slice are

mapped to all detected FOS in the current consensus assembly. Each

paired end read that maps exactly to any contig in the current as-

sembly is removed (lines 18-19), and only the remaining reads are

assembled in the next iteration. Note that we do not repartition the

read sets after this step, because although the number of reads de-

creases, so does the size of the target we are supposed to reconstruct.

There is one exception to this strategy of read elimination. Recall

that to be able to merge the FOS set with the current assembly, the

strings have to overlap a minimum number of bases. To make sure

that this will be possible in future iterations, reads that are mapped

close to the ends of contigs of the current assembly are not

eliminated.

Like any other assembly pipeline, gap filling and scaffolding can

be applied at the end of the process to improve the quality of final

assembly. In this case, gap filling is easier than usual because of the

high quality of contigs produced by SLICEMBLER and the very large

number of reads available for filling the gaps. Also, the number of

gaps to be filled at the end is relatively small since SLICEMBLER fills

some of the gaps during the merging process (see Fig. 4 for an ex-

ample). The merging step uses small FOS identified in the later iter-

ations to ‘glue’ adjacent contigs.

3 Experimental results

We implemented SLICEMBLER in Python. Our tool can be accessed at

http://slicembler.cs.ucr.edu/. SLICEMBLER is a meta-assembler; its per-

formance directly depends on the base assembler. In the following

experiments, we used Velvet as the base assembler, unless stated

otherwise. The performance of SLICEMBLER using other base assem-

blers (IDBA_UD, Ray and SPAdes) is presented in Section 3.3. The

number of slices and the sequencing error rate for the input reads

are other factors that critically influence the quality of the final as-

sembly. We study these issues in Section 3.4 and Section 3.5.

Recall that at the end of every iteration, all reads are mapped to

the partially constructed assembly to detect bridge reads (to be used

later in the merging step) and to eliminate reads that are already rep-

resented in the assembly. SLICEMBLER uses BWA (Li and Durbin

2009) to find perfect alignments (no mismatches, no gaps) for this

purpose. We used a minimum contig length lmin¼200 (which is the

default parameter for SLICEMBLER). We did not use any gap filling or

scaffolding tool on the final assemblies. All experiments were carried

on a Linux server with 20 computing cores and 194 GB of RAM.

3.1 Ultra-deep sequencing of barley BACs
To carry out experiments on real ultra-deep data, we sequenced a

set of 16 BAC genomic clones of barley (Hordeum vulgare L.) on an

Illumina HiSeq2000 at UC Riverside at a depth of coverage

8000 x–15 000 x. The average read length was about 88 bases after

quality trimming; reads were paired-end with an average insert size

of 275 bases. Another set of 52 barley BACs was sequenced by the

Department of Energy Joint Genome Institute using Sanger sequenc-

ing. As the primary DNA sequences for each of these 52 BACs were

assembled in one solid contig [details in Lonardi et al. (2015)], we

assumed these Sanger-based assemblies to be the ‘ground truth’ or

‘reference’. Five ultra-deep sequenced BACs had such a reference, so

we used them to objectively evaluate the performance of SLICEMBLER.

To have an equal-sized input dataset for all BACs, we used only

8000x worth of coverage. These five barley BAC clones, hereafter

referred as BAC 1–5 have the following lengths: 131 747 bp,

108 261 bp, 110 772 bp, 111 748 bp and 102 968 bp, respectively.

We should remind the reader that the barley genome is highly repeti-

tive. Approximately 84% of the genome consists of mobile elements

or other repeat structures (International Barley Genome Sequencing

Consortium et al., 2012).

Table 1. A sketch of SLICEMBLER’s algorithm

Inputs Input reads (S), slice coverage (DS), min contig length

(lmin), size of the target genome (ltarget)

Output Set of contigs (F)

1 F / Ø

2 Partition S into n slices S1,S2, . . . , Sn each of

which has coverage DS

3 while (jFj< ltarget) do

4 A / Ø

5 for i /1 to n do

6 A / A [Assemble(Si)

7 T / GeneralizedSuffixTree

(A, ReverseComplement(A))

8 u / n

9 l / ltarget/5

10 while (l> lmin)

11 FOS / FindFOS(T, u, l)

12 if (FOS=Ø) then F / MergeFOS(FOS, F)

13 break

14 else if (u> n/2) then u / u – 1

15 else l / l/2

16 u / n

17 if (l<5 lmin) and (FOS 5 Ø) then break

18 for i / 1 to n do

19 Si / FindUnmappedReads(F, Si)

20 return F

i12 H.Mirebrahim et al.

-
-
if
``
''
,
-
ase
airs
in order
``
''
http://slicembler.cs.ucr.edu/
in order
twenty
In order
bacterial artificial chromosome (
)
,
-
,
(JGI)
Since
(
)
``
''
``
''
In order
,
-
,
,
,
,
,
,

3.2 Quality of SLICEMBLER’s assemblies
SLICEMBLER divided each of the five ultra-deep BAC inputs into 10 sli-

ces (Ds¼800 x coverage). We showed in Lonardi et al. (2015) that

such coverage is expected to provide a ‘good’ assembly in terms of

N50, longest contig, number of misassemblies (i.e. misjoined con-

tigs) and percentage of the target genome covered. We compared the

performance of SLICEMBLER to three alternative methods, namely (A)

assemble all reads (8000x coverage) with the same assembler used in

SLICEMBLER, (B) run error-correction [using Racer (Ilie and Molnar

2013)] on all reads (8000x coverage) then assemble the corrected

reads with the same assembler used in SLICEMBLER and (C) assemble

each of the slices (800x coverage) individually and consider the aver-

age statistics over the 10 slices (down-sampling).

Figure 3 summarizes the assembly statistics collected with

QUAST (Gurevich et al. 2013) for SLICEMBLER compared with

methods A, B and C described above. The base assembler was

Velvet (hash value 69). Several observations on Figure 3 are in order.

First, note that for most of the BACs, down-sampling at 800 x leads

to better quality assemblies than the assembly of all the reads at

8000 x. This is consistent with our previous results (Lonardi et al.

2015). Second, error correction increases the quality of assemblies

for most of the BACs. At the same time, error correction affects

negatively other statistics like duplication ratio and N50.

Finally and more importantly, observe that in the majority of

cases, SLICEMBLER generates the highest quality assemblies.

Its assemblies are less fragmented, which is reflected by a smaller

number of contigs, longer longest contigs and higher N50. Also,

SLICEMBLER’s assemblies cover a higher fraction of the target genome

and they have a much smaller number of misassembly errors com-

pared with the other approaches. In fact, SLICEMBLER’s assemblies are

almost error-free. BAC 4 is the only exception: although SLICEMBLER’s

assembly of BAC 4 has fewer misassemblies than the assembly of all

the reads before or after error correction, it contains more errors than

the average downsampling-based assembly. The slightly higher num-

ber of assembly errors for SLICEMBLER is due to the merging step, which

could be made more conservative. SLICEMBLER’s contigs also contained

less mismatches and indels compared with the other methods (data

not shown). Finally, note that SLICEMBLER’s assemblies are less inflated

than the other approaches. The assembly of all the reads, with or

without error correction, has quite large duplication ratio.

0

10

20

30

40

50

60

BAC 1 BAC 2 BAC 3 BAC 4 BAC 5

Number of contigs

0
5

10
15
20
25
30
35
40

BAC 1 BAC 2 BAC 3 BAC 4 BAC 5

Size of longest contig (Kbps)

0

5

10

15

20

BAC 1 BAC 2 BAC 3 BAC 4 BAC 5

N50 (Kbps)

70%

75%

80%

85%

90%

95%

100%

BAC 1 BAC 2 BAC 3 BAC 4 BAC 5

Percentage of reference covered

98%

99%

100%

101%

102%

103%

104%

BAC 1 BAC 2 BAC 3 BAC 4 BAC 5

Duplication ratio (%)

0

2

4

6

8

10

12

BAC 1 BAC 2 BAC 3 BAC 4 BAC 5

Number of misassemblies

Velvet(8000x)

Racer+Velvet(8000x)

Velvet(800x)

Slicembler+Velvet(8000x)

Fig. 3. Summary of assembly statistics on five barley BACs sequenced at 8000x. We compared SLICEMBLER (using Velvet) with three alternative methods: Velvet on

the entire dataset, RacerþVelvet on the entire dataset and the average performance of Velvet on the slices of 800 x each (see legend). Ground truth was based on

Sanger-based assemblies. Statistics were collected with QUAST for contigs longer than 500 bp

BAC 1

BAC 2

BAC 3

Fig. 4. An illustration of SLICEMBLER’S progressive construction of the consensus assembly for BACs 1, 2 and 3 (‘snapshots’ are taken every five iterations). Each

box represents a perfect alignment between that contig and the reference. Light green boxes indicate a new FOS compared with the previous snapshot. Circles

point to gaps closed or contig extended via the merging process (picture created with CLC sequence viewer)

De novo meta-assembly of ultra-deep sequencing data i13

ten
,
``
''
i.e.,
,
A
,
B
(
)
,
,
C
ten
to
,
,
,
to
to

To illustrate the progress during SLICEMBLER’s iterative refine-

ments, Figure 4 shows the status of the consensus assembly created

for BACs 1, 2 and 3 every five iterations. Each box represents a per-

fect alignment of a SLICEMBLER’s contig to the reference genome (no

insertion/deletion/mismatches allowed). Observe that in the last iter-

ation 85–95% of the target genome is covered by the error-free con-

tigs. In the first iterations, most of the target genome is covered by

large FOS. In later iterations, FOS are smaller but they can connect

adjacent contigs or extend them (see red circles). Most of the small

gaps between the contigs are composed by repetitive patterns. These

gaps are induced by the ‘trimming’ step of the algorithm, which

eliminates repetitive patterns from the ends of FOS to avoid false

overlaps. A gap-filling tool can easily close these small gaps during

the finishing step.

As mentioned above, at the end of each iteration, SLICEMBLER

maps the current set of input reads to the consensus assembly: any

read that is mapped exactly is discarded. This allows SLICEMBLER

(and its base assembler) to ‘focus’ on the parts of the genome/BAC

that are still missing from the consensus assembly. Because FOS in

early iterations are ‘safer’ to be added to the consensus assembly, the

set of reads discarded in early iterations are expected to be of higher

quality. To this end, we determined the percentage of reads at each

iteration of SLICEMBLER that could be mapped exactly (i.e. no mis-

matches/indels) to the reference genome. Figure 5 shows these per-

centages for the first 15 iterations in the assembly of the five BACs.

Observe that the percentage of high-quality reads is about 85% in

early iterations.

As the number of iterations increases, the percentage of high-

quality reads in the input monotonically decreases. In the last few it-

erations, the percentage stays somewhat flat because later FOS are

shorter, so the additional number of high-quality reads mapped to

these FOS is also small.

3.3 The choice of the base assembler
Recall that SLICEMBLER is a meta-assembler, and its performance de-

pends on the performance on the base assembler. To evaluate the in-

fluence of base assembler on the assembly quality, we compared

several assemblers, namely Velvet (Zerbino and Birney 2008),

SPAdes (Bankevich et al. 2012), Ray (Boisvert et al. 2010) and

IDBA_UD (Peng et al. 2012).

Experimental results for BAC 3 are shown below in Table 2. We

compared the assembly produced by Velvet, SPAdes, Ray and

IDBA_UD on all the reads (8000x) against the assemblies created by

SLICEMBLER in conjunction with the corresponding base assembler.

SLICEMBLER was run on 10 slices (800x each). The k-mer used was 69

for Velvet and Ray. For IDBA_UD and SPAdes, the reported assem-

bly was based on three different k-mers (29, 49 and 69).

Observe that among the stand-alone assemblers, IDBA_UD and

SPAdes created higher quality assemblies compared with Velvet and

Ray. However, regardless of the choice of the base assembler,

SLICEMBLER improved the quality of the assemblies.

The only ‘negative’ statistics for SLICEMBLER is that it introduced

a few more errors in the assemblies created using IDBA_UD and

SPAdes. We determined that these additional errors were due to in-

correct merging in later iterations. Also, SLICEMBLER had a slightly

higher duplication ratio than SPAdes. Other than these, SLICEMBLER

significantly improved all other statistics. In fact, similar results

were observed on the other four BACs (data not shown). In general,

Fig. 5. The percentage of reads (y axis) at each iteration of SLICEMBLER (x axis)

that map exactly (i.e. zero mismatches/indels) to the reference on the five

ultra-deep sequenced BACs

0
10
20
30
40
50
60
70
80
90

100

0% 0.50% 1% 2%

Number of contigs

Slicembler

Velvet

0
5

10
15
20
25
30
35

0% 0.50% 1% 2%

Size of longest contig (Kbp)

0

5

10

15

20

25

30

0% 0.50% 1% 2%

N50 (Kbp)

75

80

85

90

95

100

0% 0.50% 1% 2%

Percentage reference covered

97%

99%

101%

103%

105%

0% 0.50% 1% 2%

Duplication ratio (%)

0

100

200

300

400

500

0% 0.50% 1% 2%

mismatches + indels per 100 kbp

Fig. 6. The effect of increasing sequencing error rates on the quality of assemblies created by Velvet and SLICEMBLERþVelvet. Input paired-end reads were gener-

ated using wgsim with a coverage of 3000x using BAC 3 as a reference. For SLICEMBLER, simulated read sets were divided into six slices. Statistics were collected

with QUAST for contigs longer than 500 bp

i14 H.Mirebrahim et al.

%-
``
''
``
''
``
''
i.e.,
fifteen
ten
to
``
''

SLICEMBLER created higher quality assemblies when used in conjunc-

tion with IDBA_UD and SPAdes

3.4 The choice of depth of coverage for each slice
The depth of coverage in each slice is critical to optimize on the

quality of the assemblies. If the depth of coverage is too low, the as-

sembly of each slice will be fragmented, which will be reflected in

shorter FOS. On the other hand, more slices can increase the confi-

dence in choosing FOS due to more ‘votes’ available. For this rea-

son, we decided to use simulations to study the tradeoffs of the

depth of coverage in each slice. To this end, we used wgsim (https://

github.com/lh3/wgsim) to generate synthetic datasets with 500x,

1000x, 2500x, 5000x, 7500x and 10 000x reads at 1% sequencing

error rate (no indels) based on the reference sequence of BAC 3.

Each dataset was assembled with SLICEMBLER using Velvet as the

base assembler by dividing the input into 10 slices, so that the cover-

age in each slice was 50x, 100x, 250x, 500x, 750x and 1000x.

Table 3 shows the usual quality statistics for the assemblies on

simulated reads. Observe that SLICEMBLER’s best performance is

observed when slices are in the 100x–500x coverage range. When

the slice coverage is lower than 100x, assemblies are more frag-

mented due to insufficient coverage. When the slice coverage is

higher than 500x, we experience the negative effects of ultra-deep

sequencing data on the quality of the individual assemblies: FOS be-

come smaller and the final assembly is more fragmented. Note that

despite the 1% sequencing error rate, SLICEMBLER was able to create

error free contigs for all cases.

3.5 Effect of sequencing error rate in the reads
De novo assemblers are quite sensitive to sequencing error rate in

the input reads. Even assemblers that have a preprocessing step for

error correction (e.g. SPAdes) have difficulties handling errors when

the depth of coverage is very high (Lonardi et al. 2015). Because

SLICEMBLER relies on majority voting for common contigs in the slice

assemblies, we wondered whether it would be more resilient com-

pared with its base assembler. To this end, we used wgsim to gener-

ate datasets at 3000x coverage with increasing sequencing error

rate, namely 0% (errorless), 0.5%, 1% and 2% error rate based on

BAC 3. We assembled each set with SLICEMBLERþVelvet using six sli-

ces of 500x coverage each. Results are reported in Figure 6.

First, note that SLICEMBLER was not able to improve the quality of

assembly when the reads are error-free. This is consistent with the re-

sults in Lonardi et al. (2015) for error-free reads. Velvet and other de

novo assemblers are capable of producing high-quality assemblies

when reads are error-free, since there are no imperfections in the de

Bruijn graph. More importantly, observe that as the sequencing error

rate increases, the performance of Velvet quickly degrades, whereas

the performance of SLICEMBLER is unaffected (despite using Velvet as

the base assembler). Particularly remarkable is the number of mis-

matches and indels per 100 kb, which stays at zero for SLICEMBLER for

all the tested error rates (up to 2%). There were no misassemblies in

the assemblies created by both Velvet and SLICEMBLER.

4 Discussion and conclusion

Advancement in sequencing technologies has been reducing sequenc-

ing costs exponentially fast. Ultra-deep sequencing is now feasible,

especially for smaller genomes and clones. We expect that in the

near future life, scientists will sequence ‘as much as they want’ be-

cause the sequencing cost will be a minor component of total project

costs. This explosion of data will create new algorithmic challenges.

We have shown previously that popular modern de novo assemblers

are unable to take advantage of ultra-deep coverage, and the quality

of assemblies starts degrading after a certain depth of coverage.

SLICEMBLER is an iterative meta-assembler that solves this problem: it

takes advantage of the whole dataset and significantly improves the

final quality of the assembly. The strength of SLICEMBLER is based on

the majority voting scheme: in our experiments, FOS selected by

Table 2. Comparing BAC assemblies produced with IDBA_UD, Velvet, SPAdes and Ray to the assemblies produced by SLICEMBLER in conjunc-

tion with the same assembler; the numbers in bold represent the best assembly statistic between SLICEMBLER and the coresponding base

assembler

Methods Number

of contigs

Percent

ref covered

Duplication

ratio

Misassembliesjmismatches

per 100 kb

N50 Longest

contig

IDBA_UD (8000x) 34 97.0% 1.010 0j0.93 7335 13 889

SLICEMBLERþ IDBA (10 slices of 800 x) 13 97.0% 1.010 0j1.1 16 121 31 161

Velvet (8000x) 39 94.7% 1.027 10j20.0 3649 16 048

SLICEMBLERþVelvet (10 slices of 800 x) 14 95.1% 1.001 0j0 12 178 16 128

SPAdes (8000x) 49 95.7% 1.006 0j0.94 9129 21 872

SLICEMBLERþ SPAdes (10 slices of 800 x) 11 96.9% 1.024 0j1.2 27 685 31 158

Ray (8000x) 35 80.0% 1.003 0j0 3996 7186

SLICEMBLERþRay (10 slices of 800 x) 24 88.0% 1.000 0j0 7192 12 842

Statistics were collected with QUAST for contigs longer than 500 bp.

Table 3. Quality statistics for SLICEMBLER’S assemblies for simulated

reads with different depth of coverage; the number in bold repre-

sent the best assembly statistic in each row

500x 1000x 2500x 5000x 7500x 10 000x

Number of contigs 20 12 11 10 18 38

Longest contig 27 364 31 823 31 946 31 950 21 865 9425

N50 6707 26 275 26 288 26 267 12 428 3643

Percent refer.

covered

90.6% 88.7% 94% 93.9% 92.9% 84.7%

Duplication ratio 1 1 1 1 1 1

Misassemblies 0 0 0 0 0 0

Mismatches

and indels

0 0 0 0 0 0

We used 10 slices in all experiments (i.e. the coverage for each slice was

50x, 100x, 250x, 500x, 750x and 1000x). Statistics were collected with

QUAST for contigs longer than 500 bp.

De novo meta-assembly of ultra-deep sequencing data i15

``
''
https://github.com/lh3/wgsim
https://github.com/lh3/wgsim
,
,
,
,
,
ten
,
-
e.g.,
,
Since
to
,
il
p
``
''
,
requently
ccurring
ubstrings

SLICEMBLER from the slice assemblies never contain errors with the

exception of FOS belonging to the very ends of the target genome,

which are not as reliable because coverage tends to be lower.

SLICEMBLER extracts high-quality contigs from the slice assemblies,

and it prevents contigs containing mis-joins and calling errors to be

included in the final assembly.

Experiments on a set of ultra-deep barley BACs and simulated

data show that our proposed method leads to higher quality assem-

blies than the corresponding base assembler. We also demonstrated

that SLICEMBLER is more resilient to high sequencing error rates than

its base assembler. Our proposed algorithm is expected to work for

genomes of any length, but the current implementation of

SLICEMBLER has been tested only on relatively small genomic target

sequences for which real ultra-deep coverage is now available. For

SLICEMBLER to scale to larger genomes, its efficiency must be im-

proved. SLICEMBLER has to execute the base assemblers tens to hun-

dreds of times (depending on the number or slices and iterations).

Obviously, SLICEMBLER is expected to be significantly slower than the

base assembler. For example, SLICEMBLER was around 50x slower

than Velvet to assemble BAC 1. Most of the computational effort in

SLICEMBLER is spent in finding FOS (this required construction of the

generalized suffix tree), merging FOS (this requires computing exact

prefix–suffix overlaps) and mapping the reads (this requires running

BWA) at every iteration. One way to increase the algorithm speed

would be to process the slices in parallel. Another possible improve-

ment would be to map the reads to each slice assembly only once

and process the alignment file to determine which reads should be

passed to the following iteration, instead of mapping the reads to

the slice assembly from scratch in every iteration. We are also work-

ing on improving the merging step, to prevent mis-joins. More

advanced approaches for merging contigs, like methods proposed

for merging draft assemblies (Nijkamp et al. 2010; Soueidan et al.

2013; Vicedomini et al. 2013), may improve the quality of

SLICEMBLER results. We plan to release soon an improved version of

SLICEMBLER implemented in Cþþ.

To conclude, the results presented in this article indicate the pos-

sibility of having (almost) perfect assemblies when the depth of

coverage is very high. Although there is more work to be done to

achieve a perfect assembly, we believe that SLICEMBLER represents a

significant step forward in this direction.

Acknowledgements

We thank Weihua Pan (UC Riverside), Hind Alhakami (UC Riverside) and

Prof. Pavel Pevzner (UC San Diego) for early comments on this study.

Funding

This work was supported in part by the U.S. National Science Foundation

[DBI-1062301] and [IIS-1302134], by the USDA National Institute of Food

and Agriculture [2009-65300-05645], by the USAID Feed the Future program

[AID-OAA-A-13-00070] and the UC Riverside Agricultural Experiment

Station Hatch Project CA-R-BPS-5306-H.

Conflict of Interest: none declared.

References

Aird,D. et al. (2011) Analyzing and minimizing PCR amplification bias in

Illumina sequencing libraries. Genome Biol., 12, R18.

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm

and its applications to single-cell sequencing. J. Comput. Biol., 19,

455–477.

Beerenwinkel,N. and Zagordi,O. (2011) Ultra-deep sequencing for the ana-

lysis of viral populations. Curr. Opin. Virol., 1, 413–418.

Boisvert,S. et al. (2010) Ray: simultaneous assembly of reads from a mix

of high-throughput sequencing technologies. J. Comput. Biol., 17,

1519–1533.

Brown,C.T. et al. (2012) A reference-free algorithm for computational nor-

malization of shotgun sequencing data. arXiv:1203.4802.

Campbell,P.J. et al. (2008) Subclonal phylogenetic structures in cancer re-

vealed by ultra-deep sequencing. Proc. Natl. Acad. Sci. USA, 105,

13081–13086.

Hui,L. (1992) Color set size problem with applications to string matching. In:

Apostolico,A. et al. (eds.), Combinatorial Pattern Matching. Springer,

Berlin Heidelberg, pp. 230–243.

Clarke,J. et al. (2009) Continuous base identification for single-molecule

nanopore DNA sequencing. Nat. Nanotechnol., 4, 265–270.

Desai,A. et al. (2013) Identification of optimum sequencing depth especially

for de novo genome assembly of small genomes using next generation

sequencing data. PLoS One, 8, e60204.

Eid,J. et al. (2009) Real-time DNA sequencing from single polymerase mol-

ecules. Science, 323, 133–138.

Ekblom,R. et al. (2014) Patterns of sequencing coverage bias revealed by

ultra-deep sequencing of vertebrate mitochondria. BMC Genomics, 15,

467.

English,A.C. et al. (2012) Mind the gap: upgrading genomes with

Pacific Biosciences RS long-read sequencing technology. PLoS One, 7,

e47768.

Gurevich,A. et al. (2013) QUAST: quality assessment tool for genome assem-

blies. Bioinformatics, 29, 1072–1075.

Ilie,L. and Molnar M. (2013) RACER: rapid and accurate correction of errors

in reads. Bioinformatics, 29, 2490–2493.

International Barley Genome Sequencing Consortium. et al. (2012) A physical,

genetic and functional sequence assembly of the barley genome. Nature,

491, 711–716.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

Lonardi,S. et al. (2015) When less is more: “slicing” sequencing data improves

read decoding accuracy and de novo assembly quality. Bioinformatics, doi:

10.1093/bioinformatics/btv311 (in press).

McCorrison,J.M. et al. (2014) NeatFreq: reference-free data reduction and

coverage normalization for de novo sequence assembly. BMC

Bioinformatics, 15, 357.

Nijkamp,J. et al. (2010) Integrating genome assemblies with MAIA.

Bioinformatics, 26, i433–439.

Peng,Y. et al. (2012) IDBA-UD: a de novo assembler for single-cell and meta-

genomic sequencing data with highly uneven depth. Bioinformatics, 28,

1420–1428.

Pop,M. et al. (2004) Hierarchical scaffolding with Bambus. Genome Res., 14,

149–159.

Soueidan,H. et al. (2013) Finishing bacterial genome assemblies with Mix.

BMC Bioinformatics, 14, S16.

Vicedomini,R. et al. (2013) GAM-NGS: genomic assemblies merger for next

generation sequencing. BMC Bioinformatics, 14, S6.

Widasari,D.I. et al. (2014) A deep-sequencing method detects drug-resistant

mutations in the hepatitis B virus in indonesians. Intervirology, 57,

384–392.

Yang,X. et al. (2013) A survey of error-correction methods for next-gener-

ation sequencing. Brief. Bioinform., 14, 56–66.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read

assembly using de Bruijn graphs. Genome Res., 18, 821–829.

Zhou,W. et al. (2014) Bias from removing read duplication in ultra-deep

sequencing experiments. Bioinformatics, 30, 1073–1080.

i16 H.Mirebrahim et al.

s
In order
-
in order
,
,
paper <?A3B2 show [AuthorQuery id=

	btv226-TF1
	btv226-TF2

