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Abstract

Motivation: The ability to jointly learn gene regulatory networks (GRNs) in, or leverage GRNs be-

tween related species would allow the vast amount of legacy data obtained in model organisms to

inform the GRNs of more complex, or economically or medically relevant counterparts. Examples

include transferring information from Arabidopsis thaliana into related crop species for food secur-

ity purposes, or from mice into humans for medical applications. Here we develop two related

Bayesian approaches to network inference that allow GRNs to be jointly inferred in, or leveraged

between, several related species: in one framework, network information is directly propagated be-

tween species; in the second hierarchical approach, network information is propagated via an

unobserved ‘hypernetwork’. In both frameworks, information about network similarity is captured

via graph kernels, with the networks additionally informed by species-specific time series gene

expression data, when available, using Gaussian processes to model the dynamics of gene

expression.

Results: Results on in silico benchmarks demonstrate that joint inference, and leveraging of known

networks between species, offers better accuracy than standalone inference. The direct propaga-

tion of network information via the non-hierarchical framework is more appropriate when there are

relatively few species, while the hierarchical approach is better suited when there are many spe-

cies. Both methods are robust to small amounts of mislabelling of orthologues. Finally, the use of

Saccharomyces cerevisiae data and networks to inform inference of networks in the budding yeast

Schizosaccharomyces pombe predicts a novel role in cell cycle regulation for Gas1

(SPAC19B12.02c), a 1,3-beta-glucanosyltransferase.

Availability and implementation: MATLAB code is available from http://go.warwick.ac.uk/system-

sbiology/software/.

Contact: d.l.wild@warwick.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The gene regulatory networks (GRNs) of related species should

share common topological features with one another by virtue of a

shared ancestry. Consequentially, the joint inference (JI) of GRNs

from gene expression datasets collected from different species

should result in better overall accuracy in the inferred networks, due

to the increased amount of data from which to learn the shared com-

ponents (Gholami and Fellenberg, 2010; Joshi et al., 2014; Kashima

et al., 2009; Zhang and Moret, 2010). Similarly, the leveraging of a

GRN that has been experimentally verified in one species into a

related species should also improve the accuracy of inferred net-

works. Both tasks are related, and require the leveraging of data

between species, either in the form of multiple time series gene ex-

pression datasets, as is the case for JI, or combinations of times ser-

ies gene expression data with experimentally verified networks

during network leveraging (NL). Due to the increasing availability

of heterogeneous datasets in a range of species, flexible approaches

to network inference that can be adapted to both JI and NL tasks

should be particularly useful, and would allow vast amounts of data

and information available in model organisms to be translated into

more complex or medically or economically relevant ones.

Although a number of methods that can directly leverage

networks from one species to another exist, such as network align-

ment algorithms (Clark and Kalita, 2014) or graph kernels
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(Towfic et al., 2009), these algorithms do not, typically, utilize other

available data, such as time series, to refine the networks.

Additionally, network alignment methods are of limited utility

where little is known about the network in one of the species. Some

existing approaches that could be adapted to, or have been applied

to, JI/NL between species exist, provided that the orthologues can

be mapped 1:1 between the species (Oates et al., 2014; Penfold

et al., 2012; Wang et al., 2006; Zhao et al., 2013). However, com-

plete lists of orthologues may not always exist or may be incomplete

or incorrect. One-to-one mapping, however, may not always be pos-

sible due to gene or chromosome duplications. This effect may be

particularly compounded in plant species where whole ancestral

genomes may be duplicated, or where hybridization events can re-

sult in multiple ancestral genomes being combined into a single

organism (Soltis and Soltis, 2009). In cases where no orthologues

are known beforehand, associations can be assigned within the in-

ference procedure (Gholami and Fellenberg, 2010). In the study by

Gholami and Fellenberg (2010) and other approaches for JI in mul-

tiple species (Joshi et al., 2014), inferred networks represent an aver-

age network rather than a species-specific one. Biologically, the set

of genes in one species may not fully correspond to the genes in an-

other due to loss of genes, emergence of proto-genes (Carvunis et al.,

2012) or horizontal gene transfers (Boto, 2010), and the network

connections themselves may undergo rearrangement due to evolu-

tionary processes acting on the promoter regions of the genes or on

coding sequences, or else due to context-specific effects arising in the

different experimental conditions. These differences in network

structure may be just as significant as the underlying similarities,

and should therefore be inferred alongside the core aspects of the

network, that is, while it is desirable to share information between

species, we nonetheless wish to retain species-specific elements.

Increasingly, it is common to measure time series data (Breeze

et al., 2011; Windram et al., 2012), from which directed graphs can

be inferred. Consequentially, new methods and approaches are

needed that can handle time series data, are flexible enough to deal

with multiple orthologues and can be readily adapted to both JI and

NL when required. Previous approaches that can do so include the

work by Zhang and Moret (2010), which uses heuristic models for

evolution, demonstrating the general usefulness of multi-species net-

work inference in silico and in Drosophila. In this article, we de-

velop two related Bayesian approaches to network inference

(Sections 2.1 and 2.2) that allow both the JI of GRNs in related spe-

cies from time series data, and the leveraging of networks from one

species to another, even when multiple copies of an orthologue exist.

In particular, each node in the respective networks may be assigned

a node label according to which orthologues the node has. This

labelling may come from manually curated lists of orthologues or

can be computed according to sequence similarity. Crucially, graph

kernels are used to quantify the similarity between labelled graphs,

allowing a joint prior to be placed over network topologies that fa-

vours, but does not strictly enforce, similarity between networks.

The use of graph kernels in this way opens up a diverse suite of non-

parametric tools for characterizing network similarity within the in-

ference procedure, without the need to employ heuristic models of

evolution as in Zhang and Moret (2010). Finally, a Gaussian process

model is used to capture the dynamics of the time series gene expres-

sion data, conditional on network structure, in the individual spe-

cies, allowing for species-specific embellishments to the GRNs. In

Section 3, we characterize the performance of our methods using

three different graph kernels on a variety of in silico time series data-

sets and demonstrate that the methods are more accurate than

related approaches which do not share information between the

species (Penfold and Wild, 2011; Penfold et al., 2012). Furthermore,

we demonstrate that the methods are robust to small amounts of

orthologue mislabelling and node duplication. In Section 3.3, we use

these methods to leverage cell cycle networks from the budding yeast

Saccharomyces cerevisiae into the fission yeast Schizosaccharomyces

pombe alongside S.pombe time series gene expression data, and to

jointly infer networks in both S.pombe and S.cerevisiae from time

series gene expression datasets. This approach is able to recapitu-

late known interactions in the S.pombe cell cycle network and

identifies a novel role for Gas1, a 1,3-beta-glucanosyltransferase,

(SPAC19B12.02c) as a major hub in the S.pombe cell cycle. Finally,

in Section 4, we outline the advantages of this approach and discuss

other possible applications and future developments.

2 Leveraging orthologous networks via
Bayesian inference

Here, we outline two Bayesian approaches for the JI of GRNs in

several species from time series data. In the first framework

(Framework 1, Section 2.1), each species is allowed its own poten-

tially unique GRN, which may be informed by species-specific data,

with an unobserved hypernetwork acting to constrain the individual

GRNs to favour similar structures across the species (Fig. 1a). A

second approach (Framework 2, Section 2.2) directly propagates in-

formation between all datasets via a joint prior distribution over the

individual networks. In this case, the network structure associated

with each species directly influences the network structure of all

other species without the need of a hypernetwork (Fig. 1b).

2.1 Framework 1: leveraging orthologous networks via

a constraining hypernetwork
Given a set of d datasets collected in d species (for notational simpli-

city, we assume one dataset per species, with a shared indexing, i.e.

dataset i always corresponds to species i; this need not be true in gen-

eral and multiple datasets can be collected in a given species), denoted

X ¼ fXð1Þ; . . . ;XðdÞg where XðiÞ represents the data in species i

(a superscript is used throughout to denote dataset/species index), the

aim is to infer a set of GRNs, one for each of the d species

fGð1Þ; . . . ;GðdÞg, where the networks may be similar but not necessar-

ily identical. Here, the ith GRN GðiÞ ¼ ðN ðiÞ;EðiÞ; lðiÞÞ denotes a dir-

ected graph for species i with nodes N ðiÞ, edges EðiÞ and node labels

lðiÞ, where node labels can be assigned according to the set of ortho-

logues each node has, either based on manually curated lists, or else

through sequence similarity. Within the first model, a hypernetwork,

which must also be inferred, is used to constrain the individual net-

works in the different species, and is denoted G� ¼ ðN �;E�; l�Þ, and

has one node for each of the unique node labels across the d species.

The posterior distribution over networks is given by

PðGð1Þ; . . . ;GðdÞ;G� jX;U;bÞ / PðGð1Þ; . . . ;GðdÞ;G� j bÞ

�
Yd
j¼1

PðXðjÞ j GðjÞ;UðjÞÞ:
(1)

Here, b represents any free parameters in the joint prior

distribution over network structures, PðGð1Þ; . . . ;GðdÞ;G� j bÞ. The

term PðXðjÞ j GðjÞ;UðjÞÞ ¼ LðGðjÞ jUðjÞÞ=ZdataðUðjÞÞ represents the prob-

ability of observing the jth dataset conditional on network GðjÞ and

model parameters UðjÞ, with Lð�Þ used to denote a likelihood and

ZdataðUðjÞÞ a normalizing constant. The exact form of these data mod-

els, PðXðjÞ j GðjÞ;UðjÞÞ, will depend on the type of data available. For

time series gene expression data, suitable models include the Gaussian

process approach (Äijö and Lähdesmäki, 2009; Klemm, 2008; Penfold
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and Wild, 2011; Penfold et al., 2012) as outlined in Section 2.4, or

linear regression approaches (Oates et al., 2014). Other models will be

appropriate when dealing with different types of data such as the use of

Bayesian networks for collections of steady-state gene expression data,

in which case we would additionally require the individual networks be

directed acyclic graphs. A joint prior distribution over network struc-

tures is chosen to correspond to a Gibbs distribution:

PðGð1Þ; . . . ;GðdÞ;G� j bÞ ¼ exp ð�bEðGð1Þ; . . . ;GðdÞ;G�ÞÞ
ZGKðbÞ

; (2)

where EðGð1Þ; . . . ;GðdÞ;G�Þ represents an energy function capturing

dissimilarities between networks and ZGKðbÞ a normalizing constant

arising from the prior distribution over network structures. The par-

ameter b effectively controls the strength of influence of each of the

individual networks on the hypernetwork and vice versa: for b! 0,

the model recovers independent fitting to each of the species given

the species-specific data, while very large values of b increasingly fa-

vour similar networks. From the hierarchical structure of the model

in Figure 1a, it is clear that the GRNs are conditionally independent

of one another given the hypernetwork, and the joint prior becomes

EðGð1Þ; . . . ;GðdÞ;G�Þ ¼
Xd

j¼1

EðGðjÞ;G�Þ: (3)

Within this framework, each dataset may possess a different value

for b, although here we concentrate on the case b ¼ bð1Þ ¼ bð2Þ ¼ bðdÞ.
In the previous work (Oates et al., 2014; Penfold et al., 2012; Werhli

and Husmeier, 2008), network dissimilarity was measured using the

structural Hamming distance between network j and the hypernet-

work, denoted EðGðjÞ;G�Þ ¼ dðGðjÞ;G�Þ. That is, the energy associated

with two networks is proportional to the distance between them, as

represented by a count of the number of times the edges in the two net-

works disagree. Here, we instead quantify similarity between two

networks using a graph kernel, KðGðjÞ;G�Þ, which naturally allows us

to capture the similarity between graphs even where duplicate nodes

exist, and can readily quantify more complex similarities in the net-

works that may be missed when using the structural Hamming

distance (see Section 2.3). Because we are now capturing network simi-

larity, rather than dissimilarity, we may take the following:

EðGð1Þ; . . . GðdÞ;G�Þ ¼ E0 �
Xd

j¼1

KðGðjÞ;G�Þ; (4)

where Kð�; �Þ represents a similarity measure between two graphs

and E0 ¼ maxGðjÞ ; ... ;G� f
Pd

j¼1 KðGðjÞ;G�Þg represents the maximal

similarity score possible, and increasing the value of the parameter

b acts to constrain the networks across species to favour increasing

similar structures, if possible. Nevertheless, if the networks are also in-

formed by species-specific time series datasets, this should allow the

model to identify correct network structures even when, for example,

orthologues have been mislabelled, provided enough data exist.

Consequently, this approach should be able to identify common as-

pects, increasing the overall accuracy of network reconstruction, while

still allowing the GRNs to possess species-specific embellishments.

When b and U are fixed, JI proceeds via a series of Gibbs updates

to the parental set of each of the nodes in each of the networks and

hypernetwork in turn (Supplementary Section S1). In some model

organisms, high-throughput yeast one-hybrid or ChIP-Seq experi-

ments have elucidated large sections of the GRNs, and a special case

of JI exists, in which the known network is fixed, allowing informa-

tion to be leveraged into other species. It is this special case that is

refered to as “NL” (Supplementary Materials Section S1.1).

2.2 Framework 2: direct leveraging of

orthologous networks
When leveraging network information directly between species as

indicated in Figure 1b, we have the following posterior distribution

over GRNs and model parameters:

PðGð1Þ; . . . ;GðdÞ jX;U;bÞ / PðGðdÞ; . . . GðdÞ j bÞ

�
Yd
j¼1

PðXðjÞ j GðjÞ;/ðjÞÞ;
(5)

where all terms are as previously described. To recap, XðjÞ and GðjÞ

represent the data and network in species j, with U denoting hyper-

parmeters in the data model, and b denoting parameters in the joint

prior distribution over networks. Here, the prior distribution over

network structures is again assumed to correspond to a Gibbs distri-

bution [Equation (2)], where the energy is calculated as the pairwise

contribution from all networks:

EðGð1Þ; . . . GðdÞ jbÞ ¼ E0 �
Xd

j¼1

Xd

i¼jþ1

KðGðjÞ;GðiÞÞ; (6)

where E0 ¼ maxGð1Þ ; ... ;GðdÞ f
Pd

j¼1

Pd
i¼jþ1 KðGðjÞ;GðiÞÞg. From Figure 1b,

it is apparent that the main difference here, compared with the previ-

ous framework, is that the networks are no longer conditionally inde-

pendent of one another given a hypernetwork. That is, each network

directly influences each other network through a joint prior. For

Fig. 1. Combining data from multiple species can be achieved in a number of different ways. One way of doing this is by leveraging data via an unobserved net-

work, referred to here as the ‘hypernetwork’. This is represented conceptually in (a) where each species has its own GRN, represented by the small inset graphs.

These networks are informed by species-specific datasets, represented by the links connecting the microarray to individual species. Additionally, the networks

will be influenced by (and influence in turn) the hypernetwork, represented by the link between the top (dinosaur) species and the two species of birds below. An

alternative approach is represented conceptually in (b). Again each species is represented pictorially, with the species-specific network represented by the small

inset graph. Each species GRN is informed by species-specific data (represented by a link between the microarrays and the species), as well as by the network of

each other species, represented here by a pairwise link between each individual species. Figures modified under Creative Commons license. Adapted from

Steveoc86 (2011), Hisgett (2012), Logan (2003), Lersch (2005) and Mueller (2007)
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fixed b and U, JI can proceed via a series of Gibbs updates of the

parental sets of each node in each species (Supplementary Section

S1), while NL can be approached by fixing the topology of any net-

work, allowing the propagation of information from that species to

all others.

2.3 Network similarity via graph kernels
The models outlined in Sections 2.1 and 2.2 rely on our ability to

evaluate how similar or dissimilar two graphs are. Here, we chose to

do so via graph kernels, which, informally, represent a function of

two graphs that quantifies their similarity (Shervashidze et al.,

2011). Graph kernels fall broadly into three categories: (i) those

based on similarities of the walks and paths in the respective graphs;

(ii) those based on similarities in limited-sized subgraphs and (iii)

those based on sub-tree patterns. We use an example of each of the

three types of graph kernel, discussed below:

� Shortest path graph kernel: For two graphs Gð1Þ ¼ ðNð1Þ;Eð1Þ; lð1ÞÞ
and Gð2Þ ¼ ðNð2Þ;Eð2Þ; lð2ÞÞ, we may first calculate the shortest path

graphs Sð1Þ ¼ ðNð1Þ;Eð1Þsp ; l
ð1ÞÞ and Sð2Þ ¼ ðNð2Þ;Eð2Þsp ; l

ð2ÞÞ, with the

shortest path graph kernel defined as:

Kshortest pathðGð1Þ;Gð2ÞÞ ¼
X

eð1Þ2E
ð1Þ
sp

X
eð2Þ2E

ð2Þ
sp

k1
walkðeð1Þ; eð2ÞÞ:

where kwalkð�; �Þ represents a positive definite kernel over walks of

length 1, that is, over edges in the shortest path graphs. If edges in

the graphs are unweighted, a Dirac delta function may be used,

that is, we may sum over all edges in the respective networks with

kwalkðe1; e2Þ ¼ 1 if the edges match and 0 otherwise. Here, for

labelled graphs, edges are considered as matching if they both con-

nect a node with label l with a node with label m. See also

Borgwardt and Kriegel (2005).

� Graphlet kernels: The similarity between two graphs may be eval-

uated by first decomposing each graph into limited-size graphlets. The

k-spectrum fGð1Þ is defined as the vector containing the count of each

of the different graphlets of size k in Gð1Þ. Given a second graph Gð2Þ,
the similarity between the two graphs can be evaluated as follows:

KgðGð1Þ;Gð2ÞÞ ¼ f>Gð1Þ fGð2Þ : (7)

When the two graphs vary in size, the counts may be heavily

skewed. Here, the k-spectrum may be normalized to frequency,

DGð1Þ ¼ fGð1Þ=NGð1Þ , where NGð1Þ is the total number of graphlets

in Gð1Þ. We then have KgðGð1Þ;Gð2ÞÞ ¼ D>Gð1ÞDGð2Þ . See also

Supplementary Figure S1 and Shervashidze et al. (2009, 2011).

� Weisfeiler–Lehman (WL) kernel: The WL kernel evaluates

the similarity between two graphs by comparing sub-tree

patterns (Shervashidze et al., 2011). Specifically, the node in the

respective graph is re-labelled according to which nodes they are

connected to. For example, the nodes in the initial graph, denoted

Gð1Þ ¼ Gð1Þ0 ¼ ðV;E; lÞ, may be re-labelled according to neighbours

of each node to generate a new graph Gð1Þ1 ¼ ðV;E; l1Þ. Here,

the nodes and edges are conserved, but the updated labels con-

tain information about the immediate neighbourhood of each

node. The hth round of re-labelling generates the graph

Gð1Þi ¼ ðV;E; liÞ. For an h-step WL kernel, we thus have the se-

quence of graphs fGð1Þ0 ; . . . ;Gð1Þh g and the WL kernel may be eval-

uated as follows:

K
ðhÞ
WLðG

ð1Þ;Gð2ÞÞ ¼ kðGð1Þ0 ;Gð2Þ0 Þ þ . . . þ kðGð1Þh ;Gð2Þh Þ; (8)

where kð�; �Þ represents a positive definite base kernel. We use

h¼2 throughout, and an illustrative example for a two-step WL

kernel is included in Supplementary Figure S2.

In general, graphs that are similar will have higher scores

than graphs that are different. Although the three graph kernels

tested in this study were all designed for labelled graphs, this

need not be the case in general, and a significant number of

graph kernels exist for quantifying the similarity or dissimilarity

between unlabelled graphs. The use of labelled graphs within this

context could be considered advantageous, because it allows us

to encode the assumption that orthologues should be regulated by

genes that themselves are orthologous. Here, the assignment of

labels may be done using manually curated lists or BLAST recip-

rocal best hits.

2.4 Gaussian process model for gene expression
Within this article, we will deal exclusively with time series data,

and therefore use the Gaussian process model outlined by Klemm

(2008), which has been shown to outperform many state-of-the-art

approaches on a range of in silico and biological benchmarks

(Hickman et al., 2013; Penfold and Wild, 2011; Penfold et al.,

2012). For this model, the dynamics of a gene i in species j evolve as

follows:

x
ðjÞ
i ðt þ 1Þ ¼ f ðxðjÞðtÞ;Pa

ðjÞ
i Þ þ eðjÞ; (9)

where x
ðjÞ
i ðtÞ denotes the expression level of gene i in dataset j at

time t, xðjÞðtÞ the expression of all genes in the system at time t, Pa
ðjÞ
i

represents the parents of gene i in dataset j, e represents

some (Gaussian) observational noise (that may be dataset specific)

and f ð�Þ indicates an unknown non-linear function specific to data-

set j. Because of the nature of the model, we may split the data into

an input, XðjÞn , and output, y
ðjÞ
i , set of data as follows:

XðjÞn ¼

x
ðjÞ
1 ðt1Þ . . . x

ðjÞ
gðjÞ
ðt1Þ

..
. . .

.

..
.

x
ðjÞ
1 ðtnðjÞ�1Þ . . . x

ðjÞ
gðjÞ
ðtnðjÞ�1Þ

2
66664

3
77775; y

ðjÞ
i ¼

x
ðjÞ
i ðt2Þ

..
.

x
ðjÞ
i ðtnðjÞ Þ

2
6664

3
7775;

where gðjÞ and nðjÞ represent the number of genes and time series ob-

servation in species j. Here, we assign the unknown function a

Gaussian process prior (Rasmussen and Williams, 2006), denoted

by f ð�Þ � GPðlðxðjÞðtÞÞ; CðxðjÞðtÞ; xðjÞðt0ÞÞÞ, and may analytically cal-

culate the probability of observing the output for gene i, y
ðjÞ
i , condi-

tional on the parental set Pa
ðjÞ
i and observations XðjÞn :

PðyðjÞi jXðjÞn ;Pa
ðjÞ
i Þ ¼

ð
df PðyðjÞi j f;XðjÞn ;Pa

ðjÞ
i Þ � Pðf jXðjÞn ;Pa

ðjÞ
i Þ:

Under a Gaussian noise model, this integral is analytically tract-

able, and we thus have y
ðjÞ
i jX

ðjÞ
n ;Pa

ðjÞ
i � Nð0;K/ðjÞ

i

þ r2
n;iIÞ, where

0 represents a vector of zeros of length ðnðjÞ � 1Þ and I represents

an ðnðjÞ � 1� nðjÞ � 1Þ identity matrix (Rasmussen and Williams,

2006). Here, /ðjÞi represents the hyperparameters of the Gaussian

process prior, the interpretation of which will depend on the

choice of covariance function. In this case, as with previous

works (Penfold and Wild, 2011; Penfold et al., 2012), the func-

tional form of the covariance function was chosen to be the

squared exponential and the hyperparameters /ðjÞi ¼ fr
ðjÞ
n;i;r

ðjÞ
f ;i; l

ðjÞ
i g

represent the standard deviation of the observation noise, stand-

ard deviation of the process and characteristic length scale, node
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i in species j. The parents of a given gene are not known a priori

however, but are learnt via Bayes’ rule:

PðPa
ðjÞ
i jX

ðjÞ
n ; y

ðjÞ
i ; /̂

ðjÞ
i Þ ¼

PðyðjÞi jXðjÞn ;Pa
ðjÞ
i ; /̂

ðjÞ
i ÞPðPa

ðjÞ
i ÞP

pa2PcðT Þ
PðyðjÞi jXðjÞn ; pa; /̂

ðjÞ
i ÞPðpaÞ

:

where PcðT Þ denotes the truncated power set of putative regulators/

transcription factors for gene i in dataset j. That is, we only consider

combinations of regulators up to maximum cardinality c, where we

use c¼2 throughout. Although this imposes a limit on the max-

imum number of genes that can regulate another simultaneously, no

such limits exist in the networks derived from the marginal probabil-

ities for regulation, which can be calculated from the full joint distri-

bution. Finally, the hyperparameters may be estimated by

maximizing

/̂
ðjÞ
i ¼ arg/max

X
pa2PðT Þ

PðyðjÞi jXðjÞn ; pa;/ÞPðpaÞPð/Þ:

Within this framework, the probability for each parental set may

therefore be pre-computed for each of the individual species, along-

side an estimation of /ðjÞi , which may be substituted directly into

Equations (1) and (5).

3 Results

In Sections 3.1 and 3.2, we characterize the performance of the

Orthologous Causal Structure Identification (OCSI) algorithm on in

silico benchmarks for which there are known gold standards and

compare with the Causal Structure Identification (CSI) algorithm

(Penfold and Wild, 2011). In Section 3.3, we use OCSI to leverage

cell cycle networks from S.cerevisiae into S.pombe, and also perform

JI in both species.

3.1 In silico networks with 1:1 mapping of nodes
The OCSI algorithm was initially tested using dataset 5 from the

DREAM4 10-gene network challenge. This dataset consist of five

time series generated under five different conditions from an identi-

cal network. Because these networks are identical, this benchmark

does not test inference in multiple species with duplicate nodes (it

should be noted, however, that the dynamics in each of the five time

series are perturbed, and this situation might therefore reflect infer-

ence using closely related species in which the underlying network

has been conserved). Nonetheless, this benchmark is an important

case that establishes any initial advantages that might exist, com-

pared with stand-alone inference, and allows us to gauge how differ-

ent graph kernels behave within the context of network inference. In

general, the use of hierarchical modelling allows more accurate re-

construction of networks than standalone inference (Bourque and

Sankoff, 2004; Oates et al., 2014; Penfold et al., 2012; Wang et al.,

2006), and the same appears to be true for OCSI, with the WL ker-

nel performing better than the other graph kernels tested.

Furthermore, the hierarchical model/Framework 1 appeared to be

more stable when many datasets were used, with the non-hierarch-

ical model/Framework 2 more stable when fewer datasets were con-

sidered. Full details about initial benchmarking are included in

Supplementary Section S2.

3.2 In silico networks with duplicate nodes
A second set of in silico data was used to benchmark the perform-

ance of OCSI, this time on networks that contain duplicate nodes.

These datasets represented five species that are related as shown in

Figure 2a. A core network in species A was modelled based on the

repressilator (Elowitz and Leibler, 2000); a second species B has an

identical network structure as species A, but the dynamics have been

perturbed. Duplication of the repressilator network of species A re-

sulted in an intermediate species I, which is not observed.

Subsequent loss of nodes, loss of connections and a perturbation of

dynamics in species I resulted in species C. Species D also derives

from species I via loss of edges, and finally species E is derived from

species D via a perturbation of the dynamics. For each species, a

time series of messenger RNA (mRNA) expression was generated

consisting of 21 time points, as shown in Figure 2b. Full details of

the models, including information about data generation, can be

found in Supplementary Section S3. Benchmarking of the OCSI al-

gorithm was undertaken as follows: (i) a five species case, in which

mRNA time series are observed for species A through E inclusive

(species I is not observed); (ii) a two species case, in which mRNA

time series are observed for species C and D and (iii) a two species

case in which the network in either species A or C is known and

fixed, and inference of the network of species D is undertaken by

jointly leveraging the network of species A/C alongside time series

mRNA expression data of species E. For the five species case, the

area under the receiver operating characteristic curve (AUC) for the

various species is shown for the WL graph kernel in Figure 2c–e,

where dashed (red) lines indicate the AUC under stand-alone infer-

ence, and solid (blue) lines indicate AUC as a function of b for the

two OCSI frameworks outlined in this article. The top row indicates

performance when network information is directly leveraged

(Framework 2), while the bottom row indicates performance when

information is leveraged via a hypernetwork (Framework 1).

The average AUC over all 5 species as a function of b is shown in

Figure 2d, while the marginal likelihood at various values of b is

shown in Figure 2e. When b is small, accuracy of OCSI corresponds

to that found using stand-alone inference, as expected. For inter-

mediate values of b (over the range tested), OCSI improves the ac-

curacy of reconstructed networks, particularly in species B, C and E,

where AUC has increased from ½0:78; 0:59;0:79� in the stand-alone

inference to ½1; 0:95; 0:97� in Framework 1 and ½1; 0:95; 0:96� in

Framework 2. For species D, reconstruction from the time series

data is already nearly perfect (AUC ¼ 0:86), but nonetheless some

increase in AUC is observed, with a value of 0.89 in Framework 1

and 0.91 in Framework 2. For species A, in which the network has

been reconstructed from time series data with AUC ¼ 1, the per-

formance of OCSI at intermediate values of b remains 1, indicating

that there is no degradation in network reconstruction in species for

which the data are highly informative. As b increases further, per-

formance begins to degrade, both in terms of accuracy as measured

by the AUC, and in terms of increased variance in the estimated

AUC of multiple Markov Chain Monte Carlo (MCMC) runs. A

similar trend is seen for the average AUC as a function of b, that is,

the AUC averaged over all five species shows initially increases from

0.79 to 0.95 in both frameworks before degrading at higher values

of b. For Framework 1, in which information is propagated via an

hypernetwork, the peak performance occurs at approximately b¼3,

while for Framework 2, in which information is directly propagated

between species, peak performance occurs at approximately b¼1.

In this case, Framework 1 appears to be more stable than

Framework 2, that is, the range of b over which the algorithm yields

improved AUC compared with standalone inference is greater, sug-

gesting that, in cases where the normalizing constant cannot be com-

puted and b must be set arbitrarily, Framework 1 may be more

useful. In our example, we were able to estimate the marginal
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likelihood (Supplementary Section S1.3), which is indicated in

Figure 2e. Here, the value of b that corresponds to the greatest mar-

ginal likelihood corresponds well to the region in which the AUC is

highest. Performance of the graphlet kernel and shortest path graph

kernels did not appear to be considerably better than standalone in-

ference over the range of b tested (data not shown).

For the two species case, the AUC is shown in Supplementary

Figure S7b–d. Here, networks were reconstructed using species C

and D. As with the five species case, the AUC for small values of b
corresponded well to standalone inference in both frameworks. For

species C, as b increased, the AUC increased from 0.59 in the stand-

alone inference to 0.96 in Framework 1 and 0.98 in Framework 2.

Because species D already had good reconstruction accuracy from

the time series data alone, further improvements may not have been

expected. Nonetheless, a small increase in AUC was seen, rising

from 0.86 in the standalone inference to 0.89 in Framework 1 and

0.88 in Framework 2. Overall, the average AUC rose from 0.72 in

standalone inferences to 0.91 and 0.92 in Frameworks 1 and 2, re-

spectively (Supplementary Figure S7c). As with the five dataset case,

if b was increased too much the accuracy of the algorithms began to

diminish, with AUC falling and increasingly varied, suggesting that

for high values of b exploration of the parameter space may be diffi-

cult, with chains becoming stuck in suboptimal modes. For the two

dataset case, Framework 2 appeared to be more stable than

Framework 1, that is, the range over b in which the performance

is greater than standalone was larger in Framework 2 than it

was in Framework 1. Estimation of the marginal likelihood

(Supplementary Figure S7d) suggests that the region in which the

marginal likelihood was greatest corresponds well to the values of b
for which the AUC was highest. Performance of the graphlet kernel

and shortest path graph kernels did not appear to be considerably

better than standalone inference over the range of b tested (data not

shown).

Finally, OCSI was used to jointly leverage network information

from one species, alongside time series gene expression data from

another. Here, we used two examples, in the first instance the net-

work in species A was assumed to be known, and was thus fixed,

and leveraged into species E, alongside time series data for species

E. In the second example, the network C was assumed to be known,

and was thus fixed and leveraged into species E. The performance in

terms of reconstruction of the network in species E when the net-

work in A was fixed is shown as a function of b in Supplementary

Figure S8, with the accuracy in the reconstruction of network

E when species C’s GRN is fixed as shown in Supplementary Figure

S9. In both cases, the accuracy of network reconstruction in species

E (in terms of AUC) increased from 0.71 in the standalone inference

to ½0:96; 0:97� in Framework 1 and Framework 2, respectively,

when GRN of species A is fixed, and to 0.96 in both frameworks
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Fig. 2. (a) Relationships between species. The network in species A is represented by the repressilator. Species B evolved from A, conserving the general architec-

ture of the repressilator but with the underlying dynamics perturbed. Species I evolved from A via a duplication of the repressilator. Species C evolved from spe-

cies I via loss of a node, loss of edges and perturbation of the dynamics. Species D evolved from species I via loss of edges. Species E evolved from D via a

perturbation of the dynamics. (b) Simulated mRNA time series for the five species. (c) AUC for the five species using the non-hierarchical/Framework 2 (top) and

hierarchical/Framework 1 (bottom) versus b. (d) AUC averaged over all species versus b. (e) Estimated marginal likelihood versus b
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when the GRN of species C was fixed. In all cases, the AUC was op-

timal or near optimal when the marginal likelihood was greatest.

However, inference in the non-hierarchical framework appeared to

be more stable over a greater range of b than the hierarchical ver-

sion, suggesting that when normalizing constant could not be esti-

mated, direct leveraging of networks from model organisms to more

relevant ones is best approached with Framework 2.

3.3 Leveraging cell cycle networks in yeast
We have applied OCSI to infer cell cycle networks in S.pombe, for

which the GRN is less well characterized than S.cerevisiae. Here, we

use OCSI Framework 2 to perform three types of inference: (i) in the

first instance, the GRN of S.cerevisiae was directly propagated to

S.pombe utilizing graph kernels, that is, without utilizing any time

series data, effectively representing samples from the prior distribu-

tion; (ii) in the second instance, the S.cerevisiae network was utilized

alongside S.pombe time series to infer an S.pombe cell cycle net-

work, that is, an NL task and (iii) in the third instance, time series

from both species were used to perform JI, with the S.cerevisiae net-

work used as a prior. This inference is represented graphically in

Supplementary Figure S10. Genes and regulatory connections

involved in the S.cerevisiae cell cycle were identified from Li et al.

(2004) and used to construct a fixed S.cerevisiae network, with

genes involved in the S.pombe cell cycle identified from Bushel et al.

(2009). Additional genes were introduced into both lists based on

the manually curated orthologue list of PombBase (Wood et al.,

2012). In total, 157 genes were identified for S.cerevisiae with 165

connections between them and 100 genes for S.pombe. These genes

included 17 duplicated genes, 7 S.cerevisiae-specific nodes and

53 S.pombe-specific nodes (full lists of genes can be found for

S.cerevisiae and S.pombe in Supplementary Files S1 and S2, respect-

ively). The S.pombe transcriptional time series data were taken from

Rustici et al. (2004) and S.cerevisiae time series taken from Cho

et al. (1998), Spellman et al. (1998), Pramila et al. (2006) and

Granovskaia et al. (2010).

Approximately 60% of the top 100 connections were common

between the JI and NL approaches, with around 50% of the top

1000 connections in common, suggesting broad agreement between

the two approaches. Although literature connections for S.pombe

are less well documented than for S.cerevisiae, some known connec-

tions were found using BioGRID (Stark et al., 2006), while pre-

dicted S.pombe protein interactions could be found in Pancaldi et al.

(2012), and were used to evaluate preliminary performance of all

three runs (Supplementary Table S1). In general, the agreement be-

tween inferred networks and available literature was relatively low

(�2� 12% represented true positives), reflecting the fact that less is

known about the S.pombe cell cycle network than the S.cerevisiae

network. Indeed, the ground truth connections used here may not

represent casual or direct interactions that we are attempting to infer

here, and any lack of agreement should therefore be interpreted with

caution. Nonetheless, the JI of networks and NL approaches yielded

greater agreement than expected by chance, and additionally ap-

peared to have greater agreement with the literature than when we

directly leverage the S.cerevisiae network into S.pombe using graph

kernels without using additional time series data.

OCSI was able to capture several important regulatory links

among the S.pombe cell cycle genes. In S.pombe, the MCB-binding

factor transcription complex (where MCB is Mlu1 Cell cycle Box),

which contains the Cdc10, Res1 and Res2 proteins, is responsible

for the cell cycle-regulated transcription of many genes during G1

phase of the cell cycle (Bertoli et al., 2013). Genes that are regulated

by the MBF complex include G1 cyclins (Cig2), proteins required

for loading the mini-chromosome maintenance helicase to DNA rep-

lication origins (Cdc18 and Cdt1) and cell cycle-regulated transcrip-

tion factors (Yox1 and Tos4). Our data recapitulate many of the

known interactions and dependencies identified previously by others

(full networks available in Supplementary Files S4–S6). In addition,

both JI and NL identify Gas1 as a cell cycle-regulated gene involved

in the transcription of MBF-regulated genes, including Mrc1, Cdt2,

Rad21, Msh6 (Figure 3), as well as a variety of other genes, repre-

senting one of the most highly connected hubs. Gas1 is a 1,3-beta-

glucanosyltransferase that elongates and rearranges 1,3-beta-glucan

side chains, which are cross-linked with 1,6-beta-glucan, chitin and

proteins to form the main layer of the cell wall (Mouyna et al.,

2000; Ragni et al., 2007). In budding yeast, cells lacking Gas1 have

weakened and abnormal cell walls and are sensitive to cell wall-

perturbing drugs. Recently, however, a surprising new role for Gas1

activity has been identified in the regulation of transcriptional silenc-

ing at rDNA loci (Eustice and Pillus, 2014; Ha et al., 2014; Koch

and Pillus, 2009). In particular, it has been suggested that Gas1

physically interacts with Sir2, an nicotinamide adenine dinucleotide

(NAD)þ-dependent histone deacetylase that is a subunit of the

rDNA silencing complex (RENT: regulator of nucleolar silencing

and telophase exit), to repress Pol II-dependent transcription at the

rDNA locus (Huang and Moazed, 2003). The observations that in

budding yeast a pool of Gas1 both localizes to the nuclear periphery

(Huh et al., 2003) and interacts with other diverse components of

the chromatin modifying machinery (www.thebiogrid.org) support

a role for Gas1 in transcriptional regulation. One possibility is that

Gas1 may interact physically with the MBF complex to mediate cell

cycle-regulated transcription of MBF-regulated genes or a subset of

those genes that are involved in cell wall biogenesis in fission yeast.

Further experiments will be needed to test this possibility.

4 Discussion

Deciphering complex biological networks and elucidating how those

networks influence emergent properties increasingly rely on piecing

together many diverse sets of experimental data. The ability to lever-

age data from several related species is particularly desirable, and

would allow the vast amount of information obtained in model

Fig. 3. A small sub-network of the Schizosaccharomyces pombe cell cycle net-

work inferred using OCSI (Framework 2). This network was able to recapitulate

known aspects of the S.pombe cell cycle network including relationships

among Res1 (SPBC725.16), Res2 (SPAC22F3.09c), Cdc10 (SPBC336.12c), Yox1

(SPBC21B10.13c), Tos4 (SPAP14E8.02) and Mrc1 (SPAC694.06c), and predicts a

novel role for Gas1 (SPAC19B12.02c) as a key regulator of Yox1,

Tos4(SPAP14E8.02), Mrc1, Cig2 (SPAPB2B4.03), Cdt1(SPBC428.18), Cdt2

(SPBC11B10.09) and Msh6 (SPCC285.16c), among others. Here, we also indicate

if connections were found from NL (dashed edges), JI (dotted edges) or both

(solid edges)
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organisms to be translated into more medically or economically rele-

vant ones. Possible applications include the joint learning of GRNs

associated with disease progression in mice and humans, or the dir-

ect leveraging of networks associated with seed yield, seed quality,

stress tolerance or resistance that have been constructed in the model

plant Arabidopsis into crops. Despite the underlying similarities in

the GRNs of closely related species, however, significant evolution-

ary differences may still exist that can confound standard

approaches to inferring GRNs from large-scale transcriptomics

data. Here, we have developed two Bayesian approaches to network

inference that allow for such leveraging of interspecies data. These

models perform better than a related approach on in silico bench-

marks, and are robust to small amounts of orthologue mislabelling

and to gene duplication. We have also successfully used them to le-

verage information about the S.cerevisiae cell cycle network into

S.pombe, and also performed JI between S.cerevisiae and S.pombe.

Our analysis of the networks in S.pombe showed some agreement

with the literature, although the true positive rate was relatively

low, perhaps reflecting that the ‘gold standard’ networks we used

did not necessarily contain many direct interactions. Nonetheless,

our method identified a number of known key cell cycle interactions

and predicted a novel role for Gas1 (SPAC19B12.02c) in cell cycle

activities.

The methods outlined here share many of the same principles as

earlier works (Zhang and Moret, 2010). Our methods, however,

rely on graph kernels to capture the similarity between labelled

graphs, rather than explicit evolutionary models. Broadly speaking,

the labelling procedure requires that nodes to be assigned to groups,

which can be informed by manually curated lists of orthologues, or

on the basis of sequence similarity (Kashima et al., 2009). Because

the networks are additionally informed by time series data, the

method is robust to some mislabelling of nodes, although more

adaptive procedures can be envisaged in which node labels are as-

signed, or refined, within the inference procedure (Gholami and

Fellenberg, 2010). In general, there is no explicit requirement to use

labelled graph kernels, although doing so represents an effective

way of encoding biological expectations that orthologues function

similarly between species. Graph kernels for unlabelled graphs do

exist, and could be used within OCSI, which would favour similar

structures between the networks as a whole, without placing any im-

plicit restraints on where a given node belongs with respect to the

others: that is, the joint prior in the method would favour similar

network properties rather than similar biological positioning. One

possible future line of work could focus on combining labelled and

unlabelled graph kernels for situations in which only smaller sets of

orthologues can be identified. The diversity of graph kernels, how-

ever, may be problematic, as it is not immediately clear which graph

kernels yield the best results for a given situation. Here, we have

used three different graph kernels, with the WL kernel appearing to

offer better performance than the graphlet and shortest path kernels

overall. It is not currently clear why this might be, although one pos-

sibility is that the graphlet and shortest path kernels are not suited

to the small or densely connected networks we used for benchmark-

ing. Alternatively, the choice of b for the shortest path and graphlet

kernels may be inappropriate. Future approaches might therefore

look to address how to tune b automatically within the algorithm as

in Penfold et al. (2012). It has been noted, however, that at high val-

ues of b, the MCMC procedure, that is, a Gibbs update of the paren-

tal set of each node in turn, begins to fail due to the high modality in

the parameter space. To develop approaches that can tune b, more

advanced MCMC algorithms will be needed (Calderhead and

Girolami, 2009). Alternatively, another promising approach would

be to automatically combine multiple graph kernels together allow-

ing for increased flexibility in characterizing network similarity, al-

beit at additional computational costs.

Finally, as well as the flexibility conferred on the inference

process by using graph kernels, our approach allows the possibility

of exploiting other properties of graph kernels. Because the

graph kernels we have used are positive semi-definite, this will allow

algorithms that not only jointly infer networks over species, but also

tie those networks to phenotypic observations via a separate

Gaussian process model utilizing the graph kernels as a covariance

function.
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