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ABSTRACT Inferring scene geometry and camera motion
from a stream of images is possible in principle, but it is an
ill-conditioned problem when the objects are distant with respect
to their size. We have developed a factorization method that can
overcome this difficulty by recovering shape and motion without
computing depth as an intermediate step. An image stream can be
represented by the 2F x P measurement matrix of the image
coordinates ofP points tracked through F frames. Under ortho-
graphic projection this matrix is ofrank 3. Using this observation,
the factorization method uses the singular value decomposition
technique to factor the measurement matrix into two matrices,
which represent object shape and camera motion, respectively.
The method can also handle and obtain a full solution from a
parffally filed-in measurement matrix, which occurs when fea-
tures appear and disappear in the image sequence due to occlu-
sions or tracking failures. The method gives accurate results and
does not introduce smoothing in either shape or motion. We
demonstrate this with a series of experiments on laboratory and
outdoor image streams, with and without occlusions.

Section 1. Introduction

The structure from motion problem-recovering scene ge-
ometry and camera motion from a sequence of images-has
attracted much of the attention of the vision community over
the last decade. Yet it is common knowledge that existing
solutions work well for perfect images but are very sensitive
to noise. We present a method that we have developed called
the factorization method, which can robustly recover shape
and motion from a sequence of images without assuming a
model of motion, such as constant translation or rotation.
More specifically, an image sequence can be represented

as a 2F x P measurement matrix W, which is made up of the
horizontal and vertical coordinates of P points tracked
through F frames. If image coordinates are measured with
respect to their centroid, we prove the rank theorem: under
orthography, the measurement matrix is of rank 3. As a
consequence of this theorem, we show that the measurement
matrix can be factored into the product oftwo matrices R and
S. Here, R is a 2F x 3 matrix that represents camera rotation,
and S is a 3 x P matrix that represents shape in a coordinate
system attached to the object centroid. The two components
of the camera translation along the image plane are computed
as averages of the rows of W. When features appear and
disappear in the image sequence due to occlusions or tracking
failures, the resultant measurement matrix W is only partially
filled in. The factorization method can handle this situation
by growing a partial solution obtained from an initial full
submatrix into a full solution with an iterative procedure.
The rank theorem precisely captures the nature of the

redundancy that exists in an image sequence and permits a
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large number of points and frames to be processed in a
conceptually simple and computationally efficient way to
reduce the effects of noise. The resulting algorithm is based
on the singular value decomposition, which is numerically
well-behaved and stable. The robustness of the recovery
algorithm in turn enables us to use an image sequence with a
very short interval between frames (an image stream), which
makes feature tracking relatively easy.
We have demonstrated the accuracy and robustness of the

factorization method in a series of experiments on laboratory
and outdoor sequences, with and without occlusions.
Section 2. Relation to Previous Work
In Ullman's (1) original proof ofexistence of a solution for the
structure from motion problem under orthography, as well as
in the perspective formulation in ref. 2, the coordinates of
feature points in the world are expressed in a world-centered
system of reference. Since then, however, this choice has
been replaced by most computer vision researchers with a
camera-centered representation of shape (3-12, t, t). With
this representation, the position of feature points is specified
by their image coordinates and by their depths, defined as the
distances between the camera center and the feature points,
measured along the optical axis. Unfortunately, although a
camera-centered representation simplifies the equations for
perspective projection, it makes shape estimation difficult,
unstable, and noise sensitive.
There are two fundamental reasons for this. First, when

camera motion is small, effects of camera rotation and trans-
lation can be confused with each other; for example, small
rotation about the vertical axis and small translation along the
horizontal axis both generate a very similar change in an
image. Any attempt to recover or differentiate between these
two motions, though doable mathematically, is naturally noise
sensitive. Second, the computation of shape as relative
depth-for example, the height of a building as the difference
ofdepths between the top and the bottom-is very sensitive to
noise, since it is a small difference between large values. These
difficulties are especially magnified when the objects are
distant from the camera relative to their sizes, which is usually
the case for interesting applications such as site modeling.
The factorization method we present in this paper takes

advantage of the fact that both difficulties disappear when the
problem is reformulated in world-centered coordinates, un-
like the conventional camera-centered formulation. This new
(old-in a sense) formulation links object-centered shape to
image motion directly, without using retinotopic depth as an
intermediate quantity, and leads to a simple and well-behaved
solution. Furthermore, the mutual independence of shape
and motion in world-centered coordinates makes it possible
to cast the structure-from-motion problem as a factorization

tHeel, J., Proceedings of the DARPA Image Understanding Work-
shop, May 23-26, 1989, Palo Alto, CA, pp. 702-713.
tSpetsakis, M. E. & Aloimonos, J., Proceedings of the IEEE Work-
shop on Visual Motion, March 1989, Irvine, CA, pp. 229-237.
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problem, in which a matrix representing image measurements
is decomposed directly into camera motion and object shape.
We have previously introduced this factorization meth-

od,§$ where we treated the case of single-scan line images in
a flat, two-dimensional world. In ref. 13 we presented the
theory for the case of arbitrary camera motion in three
dimensions and full two-dimensional images. This paper
extends the factorization method for dealing with feature
occlusions as well as presenting more experimental results
with real-world images. Debrunner and Ahuja (14, 11) have
pursued an approach related to ours but using a different
formalism. Assuming that motion is constant over a period,
they provide both closed-form expressions for shape and
motion and an incremental solution (one image at a time) for
multiple motions by taking advantage of the redundancy of
measurements. Boult and Brown** have investigated the
factorization method for multiple motions, in which they
count and segment separate motions in the field of view of the
camera.

Section 3. The Factorization Method

Given an image stream, suppose that we have tracked P
feature points over F frames. We then obtain trajectories of
image coordinates {(Ufp, Vfp)1f = 1, . . . , F, p = 1, . . . , P}.
We write the horizontal feature coordinates Ufp into an F x
P matrix U: we use one row per frame and one column per
feature point. Similarly, an F x P matrix V is built from the
vertical coordinates Vfp. The combined matrix of size 2F x P

U
W= V

is called the measurement matrix. The rows of the matrices
Uand V are then registered by subtracting from each entry the
mean of the entries in the same row:

Ufp = Ufp - af Vfp = Vfp - bf, [3.1]

1 P 1 P
where af = - I Ufp and bf = - E Vfp. This produces two

PP m c Pp =1
new F x P matrices U = [,afp,] and VF = [i3fp]. The matrix

FIG. 1. Systems of reference used in our problem formulation.

system. Under orthography, all projection rays are then
parallel to the cross product of if and jf:

kf = if X jf.

From Fig. 1, we see that the projection (Ufp, vfp)-i.e., the
image feature position-of point sp = (xp, yp, Zp)T onto frame
f is given by the equations

Ufp = if(Sp - tf) Vfp = jf(Sp - tf),

where tf = (af, bf, cf)T iS the vector from the world origin to
the origin of image framef. Here note that since the origin of
the world coordinates is placed at the centroid of object

1 P
points, - s, = 0.

Pp=1
We can now write expressions for the entries 1fip and Vfp

defined in Eqs. 3.1 ofthe registered measurement matrix. For
the registered horizontal image projection we have

Ufp = Ufp - af = if(sp-tf)- if(Sq- tf)

=if Sp p 1 Sq) = ifTSp. [3.2]

We can write a similar equation for Vfp. To summarize,
- .T -
Ufp = If Sp Vfp = jfSp. [3.3]

is called the registered measurement matrix. This is the input
to our factorization method.

3.1. The Rank Theorem. We now analyze the relation
between camera motion, shape, and the entries of the regis-
tered measurement matrix W. This analysis leads to the key
result that W is highly rank-deficient.

Referring to Fig. 1, suppose we place the origin ofthe world
reference system x-y-z at the centroid of the P points {sp =
(xp, yp, zp)T, p = 1,...., P}, in space that corresponds to the
P feature points tracked in the image system. The orientation
of the camera reference system corresponding to frame
number f is determined by a pair of unit vectors, if and jf,
pointing along the scan lines and the columns of the image,
respectively, and defined with respect to the world reference

§Tomasi, C. & Kanade, T., Proceedings of the Third International
Conference in Computer Vision (ICCV), December 1990, Osaka.
$Tomasi, C. & Kanade, T., Proceedings of the DARPA Image
Understanding Workshop, September 1990, Pittsburgh, pp. 258-270.
IDebrunner, Christian, H. & Ahuja, N., Proceedings of the 10th
International Conference on Pattern Recognition, June 1990, At-
lantic City, NJ, pp. 384-389.

**Boult, T. E. & Brown, L. G. Proceedings of the IEEE Workshop
on Visual Motion, October 1991, pp. 179-186.

Because ofthe two sets ofF x P equations (3.3), the registered
measurement matrix W can be expressed in a matrix form:

[3.4]

[3.5]

W =RS,

where iT

Ji

JF

represents the camera rotation, and

S = [S1i.. SP]

is the shape matrix. The rows ofR represent the orientations
of the horizontal and vertical camera reference axes through-
out the stream, while the columns of S are the coordinates of
the P feature points with respect to their centroid.

[3.6]

Proc. Natl. Acad. Sci. USA 90 (1993)

---A"s.



Proc. Natl. Acad. Sci. USA 90 (1993) 9797

Since R is 2F x 3 and S is 3 x P, Eq. 3.4 implies the
following.
RANK THEOREM. Without noise, the registered measure-

ment matrix W is at most of rank 3.
The rank theorem expresses the fact that the 2F x P image

measurements are highly redundant. Indeed, they could all be
described concisely by giving F frame reference systems and
P point coordinate vectors, if only these were known.
From the first and the last line of Eq. 3.2, the original

unregistered matrix W can be written as

W = RS + teT, [3.7]

where t = (al, ... , aF, bl, ... , bF)T is a 2F-dimensional
vector that collects the projections of camera translation
along the image plane (see Eq. 3.2), and epT = (1, . . ., 1) is
a vector of P ones. In scalar form,

Uf=if$+a Vfi=jfS + bf. [3.8]

Comparing with Eqs. 3.1, we see that the two components of
camera translation along the image plane are simply the
averages of the rows of W.

In the equations above, if and jf are mutually orthogonal
unit vectors, so they must satisfy the constraints

if = ljf = 1 and ifTjf = 0. [3.9]

Also, the rotation matrixR is unique ifthe system ofreference
for the solution is aligned, say, with that of the first camera
position, so that

ih = (1, 0, O)T and ji = (0, 1, O)T. [3.10]

The registered measurement matrix W must be at most of
rank 3 without noise. When noise corrupts 'the images,
however, W will not be exactly of rank 3. However, the rank
theorem can be extended to the case of noisy measurements
in a well-defined manner. The next section introduces the
notion of approximate rank, using the concept of singular
value decomposition (15).

3.2. Approximate Rank. Assumingtt that 2F - P, the
matrix W can be decomposed (15) into a 2F x P matrix 01,
a diagonal P x P'matrix X, and a P x P matrix 02,

0=°17,02' [3.11]

such that 0101 = 02T°2 = 020°T = J, where g is the P x P
identity matrix. E: is a diagonal matrix whose diagonal entries
are the singular values ao,. . . ap sorted in nondecreasing
order. This is the singular value decomposition of the matrix
W.

Ifwe pay attention only to the first three columns of01, the
first 3 x 3 submatrix of Y., and the first three rows of 02- If
we partition the matrices 01, :, and 02 as follows

of the rank theorem, W* has at most three nonzero singular
values. Since the singular values in 7: are sorted in nonincreas-
ing order, E' must contain all the singular values of W* that
exceed the noise level. As a consequence, the term 0'7X"O'2
must be due entirely to noise, and the best possible rank-3
approximation to the ideal registered measurement matrix
W'* is the product = O102'O. We can now restate our rank
theorem for the case of noisy measurements.
RANK THEOREM FOR Noisy MEASUREMENTS. All the shape

and rotation information inW is contained in its three greatest
singular values, together with the corresponding left and right
eigenvectors.
Now if we define A = Oj[X']1/2 and D - [E']1/20, we can

write

* = AS. [3.13]

The two matrices A and S are of the same size as the desired
rotation and shape matrices R and S: A is 2F x 3, and S is 3
x P. However, the decomposition (Eq. 3.13) is not unique.
In fact, if Q is any invertible 3 x 3 matrix, the matrices AQ
and Q-1 are also a valid decomposition of W, since

(AQ)(Q-' S) = A(QQ-1) S = A S = W

Thus, A and S are in general different fromR and S. A striking
fact, however, is that except'for noise the matrix A is a linear
transformation of the true rotation matrix R, and the matrix $
is a linear transformation of the true shape matrix S. Indeed,
in the absence of noise, R and A both span the column space
of the registered measurement matrix W = W* = W. Since
that column space is three-dimensional because of the rank
theorem, R and A are different bases for the same space, and
there must be a linear transformation between them.
Whether the noise level is low enough that it can be ignored

at this juncture depends also on the camera motion and on
shape. Notice, however, that the singular value decomposi-
tion yields sufficient information to make this decision: the
requirement is that the ratio between the third and the fourth
largest singular values of W be sufficiently large.

3.3. The Metric Constraints. We have found that the
matrix A is a linear transformation of the true rotation
matrix R. Likewise, S is a linear transformation of the true
shape matrix S. More specifically, there exists a 3 x 3
matrix Q such that

R=AQ s=QQ-s. [3.14]

To find Q we observe that the rows of the true rota-
tion matrix R are unit vectors and the first F are ortho-
gonal to corresponding F in the second half of R. These
metric constraints yield the over-constrained, quadratic
system

^iTQQTif = 1 JJQQ J = 1 ifQQTjf = 0 [3.15]
°1 = [O1'1] }2F

3 P-3

.3 P-3

°=[ofl }p302=1-3

p

we have 01W°2 = 01"02' + O2"0X'
Let Wr be the ideal registered measurement matrix-that is,

the matrix we would obtain in the absence of noise. Because

ttThis assumption is not crucial: if 2F < P, everything can be
repeated for the transpose of W.

in the entries of Q. This is a simple data-fitting problem which,
though nonlinear, can be' solved efficiently and reliably. Its
solution is determined up to a rotation of the whole reference
system, since the orientation ofthe world reference system was
arbitrary. This arbitrariness can be removed by enforcing the
constraints (Eq. 3.10)-that is, selecting the x-y axes of the
world reference system to be parallel with those of the first
frame.

3.4. Outline of the Complete Algorithm. Based on the
development in the previous sections, we now have a com-
plete algorithm for the factorization of the registered mea-
surement matrix W derived from a stream of images into
shape S and rotation R as defined in Eqs. 3.4-3.6:

Colloquium Paper: Tomasi and Kanade
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(i) Compute the singular-value decomposition W = 01102.
(ii) Define = Ol(1')1/2 and (1')1/20, where the primes
refer to the block partitioning defined in Eqs. 3.12. (iii)
Compute the matrix Q in Eqs. 3.14 by imposing the metric
constraints (Eqs. 3.15). (iv) Compute the rotation matrix
R and the shape matrix S as R = AQ and S = Q-1S. (v)
If desired, align the first camera reference system with the
world reference system by forming the products RRo and RQS,
where the orthonormal matrix RO = [i1 ji kl] rotates the first
camera reference system into the identity matrix.

Section 4. Experiment

We test the factorization method with two real streams of
images: one taken in a controlled laboratory environment
with ground-truth motion data and the other in an outdoor
environment with a hand-held camcorder.

4.1. "Hotel" Image Stream in a Laboratory. Some frames
in this stream are shown in Fig. 2 Upper. The images depict
a small plastic model of a building. The camera is a Sony
charged coupled device camera with a 200-mm lens and is
moved by means of a high-precision positioning platform.
Camera pitch, yaw, and roll around the model are all varied
as shown by the dotted curves in Fig. 2 Lower. The trans-
lation of the camera is such as to keep the building within the
field of view of the camera.

Proc. Natl. Acad. Sci. USA 90 (1993)

0.0

qI

:

-1 -0 "2

-0.3

50 100 150

c

1-

60

3
ZJ cr

ca2
v

-C)

(-)

150

50 100 150

0 :Z

C) to
c Qoo
V -5.00

0 50.

.5.()

(1.00

aI>

-5.(0

-10.00

100 1-50

50 100

Frame number

150

FIG. 2. (Upper) Two frames in the sequence. The whole se-

quence is 150 frames. (Lower) True (... ) and computed (-) camera

yaw, roll, and pitch.

0.04

0.02

0.00

-0.02

-0.04

0.3

0.2

0.1

0.0

-0. 1

-0.2

50 100 150

,_

_,

50 iO 150

Frame number

FIG. 3. (Upper) The 430 features selected by the automatic
detection method. (Lower) Blowup of the errors in Fig. 2 Lower.

For feature tracking, we extended the Lucas-Kanade
method$t to allow also for the automatic selection of image
features. The Lucas-Kanade method of tracking obtains the
displacement vector of the window around a feature as the
solution of a linear 2 x 2 equation system. As good image
features, we select those points for which the above equation
systems are stable. The details are given in refs. 16 and 17.
The entire set of 430 features thus selected is displayed in

Fig. 3 Upper, overlaid on the first frame of the stream. Of
these features, 42 were abandoned during tracking because
their appearance changed too much. The trajectories of the
remaining 388 features are used as the measurement matrix
for the computation of shape and motion.

**Lucas, B. D. & Kanade, T., Proceedings of the 7th International
Joint Conference on Artificial Intelligence, 1981.
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The motion recovery is precise. The plots in Fig. 2 Lower
compare the rotation components computed by the factoriza-
tion method (solid curves) with the values measured mechan-
ically from the mobile platform (dotted curves). The differences
are magnified in Fig. 3 Lower. The errors are everywhere less
than 0.40 and on average 0.20. The computed motion also
follows closely rotations with curved profiles, such as the roll
profile between frames 1 and 20 (second plot in Fig. 2 Lower)
and faithfully preserves all discontinuities in the rotational
velocities: the factorization method does not smooth the results.
Between frames 60 and 80, yaw and pitch are nearly

constant, and the camera merely rotates about its optical
axis-i.e., the motion is actually degenerate during this
period, but still it has been correctly recovered. This dem-
onstrates that the factorization method can deal without
difficulty with streams that contain degenerate substreams,
because the information in the stream is used as a whole.
The shape results are evaluated qualitatively in Fig. 4 Upper,

which shows the computed shape viewed from above. The view
in Fig. 4 Upper is similar to that in Fig. 4 Lower, included for
visual comparison. The walls, the windows on the roof, and the
chimneys are recovered in their correct positions.
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To evaluate the shape performance quantitatively, we
measured some distances on the actual house model with a
ruler and compared them with the distances computed from
the point coordinates in the shape results. The measured
distances between the steps along the right side of the roof
(7.2 mm) were obtained by measuring five steps and dividing
the total distance (36 mm) by five. The differences between
computed and measured results are of the order of the
resolution of our ruler measurements (1 mm).

Part of the error in the results is due to the use of
orthography as the projection model. However, it tends to be
fairly small for many realistic situations. In fact, it has been
shown that errors due to the orthographic distortion are about
the same percentage as the ratio of the object size in depth to
the distance of the object from the camera (16).

4.2. Outdoor "House" Image Stream. The factorization
method has been tested with an image stream of a real
building, taken with a hand-held camera. Fig. 5 shows some
of the 180 frames of the building stream. The overall motion
covers a relatively small rotation angle, 15°. Outdoor im-
ages are harder to process than those produced in a controlled
environment of the laboratory, because lighting changes less
predictably and the motion of the camera is more difficult to
control. As a consequence, features are harder to track: the
images are unpredictably blurred by motion and corrupted by
vibrations ofthe video recorder's head, both during recording
and digitization. Furthermore, the camera's jumps and jerks
produce a wide range of image disparities.
The features found by the selection algorithm in the first

frame are shown in Fig. 6 Upper. There are many false
features. The reflections in the window partially visible in the
top left ofthe image move nonrigidly. More false features can
be found in the lower left corner of the picture, where the
vertical bars of the handrail intersect the horizontal edges of
the bricks of the wall behind. We masked away these two
parts of the image from the analysis.

In total, 376 features were found by the selection algorithm
and tracked. Fig. 6 Lower plots the tracks of60 ofthe features
for illustration. Notice the very jagged trajectories due to the
vibrating motion of the hand-held camera.

Fig. 7 shows a front (Upper) and a top (Lower) view of the
building as reconstructed by the factorization method. To
render these figures for display, we triangulated the com-
puted three-dimensional points into a set of small surface
patches and mapped the pixel values in the first frame onto
the resulting surface. The structure of the visible part of the
building's three walls has clearly been reconstructed. The left
wall appears to bend somewhat on the right where it inter-
sects the middle wall. This occurred because the feature
selector found features along the shadow of the roofjust on
the right ofthe intersection ofthe two walls, rather than at the
intersection itself. Thus, the appearance of a bending wall is
an artifact of the triangulation done for rendering.

This experiment with an image stream taken outdoors with
the jerky motion produced by a hand-held camera demon-

FIG. 4. (Upper) View of the computed shape from approximately
above the building. (Lower) Real picture from above the building. FIG. 5. Two of the 180 frames of the real house image stream.

Colloquium Paper: Tomasi and Kanade
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FIG. 6. (Upper) Features selected in the first frame of the real
house stream (Fig. 5). (Lower) Tracks of 60 randomly selected
features from the real house stream (Fig. 5).

strates that the factorization method does not require a

smooth motion assumption. The identification of false fea-
tures-that is, of features that do not move rigidly with
respect to the environment-remains an open problem that
must be solved for a fully autonomous system. An initial
effort has been seen.**

FIG. 7. (Upper) Front view ofthe three reconstructed walls, with
the original image intensities mapped onto the resulting surface.
(Lower) View from above of the three reconstructed walls, with
image intensities mapped onto the surface.

Section 5. Occlusions

In reality, as the camera moves, features can appear and
disappear from the image, because of occlusions. Also, a
feature-tracking method will not always succeed in tracking
features throughout the image system. These phenomena are
frequent enough to make a shape and motion computation
method unrealistic if it cannot deal with them.
Sequences with appearing and disappearing features result

in a measurement matrix Wthat is only partially filled in. The
factorization method introduced in Section 3 cannot be
applied directly. However, there is usually sufficient infor-
mation in the stream to determine all the camera positions
and all the three-dimensional feature point coordinates. If
that is the case, not only can we solve the shape and motion
recovery problem from the incomplete measurement matrix
W, but we can even hallucinate the unknown entires ofW by
projecting the computed three-dimensional feature coordi-
nates onto the computed camera positions.
Suppose that a feature point is not visible in a certain frame.

If the same feature is seen often enough in other frames, its
position in space should be recoverable. Moreover, if the
frame in question includes enough other features, the corre-
sponding camera position should be recoverable as well. Then
with point and camera positions thus recovered, we should
also be able to reconstruct the missing image measurement.
Formally, we have the following sufficient condition.

Condition for Reconstruction: In the absence of noise, an
unknown image measurement pair (Ufp, Vfp) in framefcan be
reconstructed ifpointp is visible in at least three more frames
fl, f2, f3 and if there are at least three more points P1, P2, P3
that are visible in all the four frames: the original f and the
additional fl, f2, f.
Based on this, we have developed an algorithm to recover

the three-dimensional shape of a scene that is partially
occluded in the input image sequence. The details are pre-
sented in Tomasi and Kanade (18). The following are exam-
ples of processing results with image streams that include
substantial occlusions. We first use an image stream taken in
a laboratory. Then, we demonstrate the robustness of the
factorization method with another stream taken with a hand-
held amateur camera.

5.1. "Ping-Pong Ball" Image Stream. A ping-pong ball with
black dots marked on its surface is rotated 450° in front of the
camera, so features appear and disappear. The rotation
between adjacent frames is 20, so the stream is 226 frames
long. Fig. 8 Upper shows the first frame of the stream, with
the automatically selected features overlaid.
Every 30 frames (600) of rotation, the feature tracker looks

for new features. In this way, features that disappear on one
side around the ball are replaced by new ones that appear on
the other side. Fig. 8 Lower shows the tracks of 60 features,
randomly chosen among the total 829 found by the selector.

If all measurements are collected into the noisy measure-
ment matrix W, the U and V parts of W have the same fill
pattern: if the x coordinate of a measurement is known, so is
the y coordinate. Fig. 9 Upper shows this fill matrix for our
experiment. This matrix has the same size as either U or V
(that is F x P). A column corresponds to a feature point, and
a row corresponds to a frame. Shaded regions denote known
entries. The fill matrix shown has 226 x 829 = 187,354
entries, of which 30,185 (about 16%) are known.
To start the motion and shape computation, the algorithm

finds a large full submatrix by applying simple heuristics
based on typical patterns of the fill matrix. The choice of the
starting matrix is not critical, as long as it leads to a reliable
initialization of the motion and shape matrices. The initial
solution is then grown by repeatedly solving overconstrained
versions of the linear system to add new rows and new
columns. The rows and columns to add are selected so as to

Proc. Natl. Acad. Sci. USA 90 (1993)
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FIG. 8. (Upper) First frame of the ping-pong stream, with over-
laid features. (Lower) Tracks of 60 randomly selected features from
the stream in Upper.

maximize the redundancy of the linear systems. Eventually,
all of the motion and shape values are determined. As a
result, the unknown 84% of the measurement matrix can be
hallucinated from the known 16%.

Fig. 9 Lower shows two views of the final shape results,
taken from the top and from the side. The missing features at
the bottom of the ball in the side view correspond to the part
of the ball that remained always invisible, because it rested
on the rotating platform.
To display the motion results, we look at the if and jf

vectors directly. We recall that these unit vectors point along

Proc. Natl. Acad. Sci. USA 90 (1993) 9801

the rows and columns of the image frames f in 1, ... , F.
Because the ping-pong ball rotates around a fixed axis, both
if and jf should sweep a cone in space, as shown in Fig. 10
Upper. The tips of if and jf should describe two circles in
space, centered along the axis of rotation. Fig. 10 Lower
shows two views of these vector tips, from the top and from
the side. Those trajectories indicate that the motion recovery
was done correctly. Notice the double arc in the top part of
Fig. 10 Lower corresponding to more than 3600 of rotation. If
the motion reconstruction were perfect, the two arcs would
be indistinguishable.

5.2. "Cup and Hand" Image Stream. We describe an
experiment with a natural scene including occlusion as a
dominant phenomenon. A hand holds a cup and rotates it by
about 900 in front of the camera mounted on a fixed stand.
Fig. 11 Top shows two of the 240 frames of the stream.
An additional need in this experiment is figure/ground

segmentation. Since the camera was fixed, however, this
problem is easily solved: features that do not move belong to
the background. Also, the stream includes some nonrigid
motion: as the hand turns, the configuration and relative
position of the fingers changes slightly. This effect, however,
was small and did not affect the results appreciably.
A total of 207 features were selected. Occlusions were

marked by hand in this experiment. The fill matrix of Fig. 11
Bottom illustrates the occlusion pattern. Fig. 11 Middle
shows the image trajectory of 60 randomly selected features.

Fig. 12 shows a front (Upper) and a top (Lower) view ofthe
cup and the visible fingers as reconstructed by the propaga-
tion method. The shape of the cup was recovered, as well as
the rough shape of the fingers. These renderings were ob-
tained, as for the house image stream in Section 4.1, by
triangulating the tracked feature points and mapping pixel
values onto the resulting surface.

if

FIG. 9. (Upper) Fill matrix for the ping-pong ball experiment.

Shaded entries are known. (Lower) Top and side views of the
reconstructed ping-pong ball.

if

FIG. 10. (Upper) Rotational component of the camera motion for
the ping-pong stream. Because rotation occurs around a fixed axis,
the two mutually orthogonal unit vectors ifand jf, pointing along rows
and columns of the image sensor, sweep two 4500 cones in space.
(Lower) Top and side views of the if and jf vectors identifying the
camera rotation.

if

I
f I

P
T ., TI
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FIG. 11. (Top) Two of the 240 frames of the cup image stream.

(Middle) Tracks of 60 randomly selected features from the cup
stream. (Bottom) The 240 x 207 fill matrix for the cup stream (Top).
Shaded entries are known.

Section 6. Conclusion

The rank theorem, which is the basis of the factorization
method, is both surprising and powerful. It is surprising
because it states that the correlation among measurements
made in an image stream has a simple expression no matter
what the camera motion is and no matter what the shape of
an object is, thus making motion or surface assumptions
(such as smooth, constant, linear, planar, and quadratic)
fundamentally superfluous. It is powerful because the rank
theorem leads to a factorization of the measurement matrix
into shape and motion in a well-behaved and stable manner.
The factorization method exploits the redundancy of the

measurement matrix to counter the noise sensitivity of struc-
ture from motion and allows very short interframe camera
motion to simplify feature tracking. The structural insight
into shape from motion afforded by the rank theorem led to
a systematic procedure to solve the occlusion problem within
the factorization method. The experiments in the lab dem-
onstrate the high accuracy of the method, and the outdoor
experiments show its robustness.
The rank theorem is strongly related to Ullman's 12-year-old

result that three pictures offour points determine structure and
motion under orthography. Thus, in a sense, the theoretical
foundation of our result has been around for a long time. The

FIG. 12. (Upper) Front view of the cup and fingers, with the
original image intensities mapped onto the resulting surface. (Lower)
View from above of the cup and fingers with image intensities
mapped onto the surface.

factorization method evolves the applicability of that founda-
tion from mathematical images to actual noisy image streams.
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