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Abstract

Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with 

which to elucidate possible links between protein dynamics and the catalyzed reaction. Such 

physical properties of its human counterpart have not been rigorously studied so far, but recent 

computer-based simulations suggest that these two DHFRs differ significantly in how closely 

coupled the protein dynamics and the catalyzed C-H→C hydride transfer step are. To test this 

prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were 

combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs) that are 

sensitive to the physical nature of the chemical step, and protein mass-modulation that slows down 

fast dynamics (femto- to picosecond timescale) throughout the protein. The intrinsic H/T KIEs of 

human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range 

from 5–45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction’s 

transition state (or tunneling ready state – TRS). Mass modulation of these enzymes through 

isotopic labeling with 13C, 15N, and 2H at nonexchangeable hydrogens yield an 11% heavier 

enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This 

finding indicates that the mass-modulation of the human DHFR affects neither DAD distribution 

nor the DAD’s conformational sampling dynamics. Furthermore, reduction in the enzymatic 
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While this paper was under review a study of heavy ecDHFR was published, which questioned the validity of the Northrop method 
used to calculate intrinsic KIE for heavy ecDHFR at temperatures under 25 °C.54 The main error in ref 54 is that instead of using the 
reciprocal of the measured KIE used in the Northrop equation (Eq 1 here and S12 in ref 54), they derived normal KIEs, which lead to 
the commitments for hydrogen and deuterium (Eqs S2–S5 in ref 54), but not for tritium. Consequently, their derivations did not lead to 
the necessary isolation of the commitment for tritium (CfT) needed in the Northrop procedure with H/T and D/T measurements. 
Running into a dead-end, the authors had to invoke a new “first assumption” to indirectly assess C for T. However, when the Northrop 
equations is derived correctly, that assumption is not needed and the commitment factor for tritium can be derived directly.44 That 
false assumption is the basis for the criticism of the Northrop method in ref 54, although the authors fail to suggest why it is only a 
problem for heavy ecDHFR under 25 °C, but is correct above that temperature or for the light ecDHFR (whose intrinsic KIE 
calculated from the Northrop method they used to suggest their assessment of intrinsic KIEs is valid).
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turnover number and the dissociation rate constant for the product indicate that the isotopic 

substitution affects kinetic steps that are not the catalyzed C-H→C hydride transfer. The findings 

are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations 

and experiments, and the interpretation of isotopically-modulated heavy enzymes in general.
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enriched enzymes

A contemporary debate seems to exist over the possible roles of fast femto- to picosecond-

timescale protein motions in enzymatic reactions.1–4 Several computational and 

experimental studies have suggested that such motions may play a role in the hydride 

transfer reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR; for recent 

reviews see refs 5,6). DHFR catalyzes the stereospecific transfer of the pro-R hydride from 

reduced nicotinamide adenine diphosphate (NADPH) to the C6 position of the dihydropterin 

ring of 7,8-dihydrofolate (DHF) to generate 5,6,7,8-tetrahydrofolate (THF). The reaction 

catalyzed by DHFR is essential in maintaining the intercellular pool of THF, which is 

required for the anabolism of purine nucleotides and some amino acids, thus making the 

enzyme an important drug target. The DHFR catalyzed chemistry (a C-H→C hydride 

transfer) occurs at the picosecond-femtosecond time scale.7,8 This step is much faster than 

any measurable rate reported for this enzyme, which makes probing the nature of that step 

quite challenging. One of the experimental probes that can be used to examine that step is 

the temperature dependence of the intrinsic kinetic isotope effects (KIEs). This probe has 

been applied to the wild type (WT)9 and mutant10–15 forms of ecDHFR. Theoretical studies 

have suggested that the dominant factor in determining the temperature dependence of the 

KIEs is the distribution of the hydride donor and acceptor distance (DAD).16–20 These 

calculations supported a theme by which motions of the protein scaffold reorganize the 

active site to achieve a DAD conductive to hydride tunneling. In WT ecDHFR,9 this 

reorganization results in a short and narrow distribution of DADs, associated with very fast 

sampling of all DADs at the tunneling ready state (TRS).4 In such a case, no thermal 

activation is required to bring the system to a DAD short enough to enable transfer of the 

heavier isotope, resulting in temperature-independent intrinsic KIEs.4,9 Disruption of the 

optimized TRS in some ecDHFR mutants results in poor reorganization with broadly 

distributed DADs resulting in temperature-dependent KIEs.10–15

Recently, Schramm and coworkers have developed an experimental strategy utilizing mass-

modulated “heavy enzymes” in which all amino acids are labeled with 13C, 15N, and 

nonexchangeable 2H.21 They suggested that these heavy enzymes are “Born-Oppenheimer 

enzymes” because they expected that the mass modulation would not alter the protein’s 

electronic potential surface or its structure; it would only result in slower vibrations. If those 

motions in the native (light) enzyme were coupled to the bond activation, the coupling 

should be disturbed in the heavy enzyme, leading to altered chemical step relative to the 

native enzyme. This methodology was subsequently used to study several enzymes 

including ecDHFR.22–27 Steady state and single turnover measurements of native and heavy 
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ecDHFR show reduced rate constants for the heavy enzyme, but had no effect on the 

intrinsic KIEs at the physiological temperature range.23,27 In ecDHFR these two rate 

constants do not reflect the chemical step but steps that precede or succeed the chemistry.9,28 

Consequently, it became apparent that increasing the mass of the protein affects other 

protein functions not related to the chemical step (e.g., ligand binding and release).

Quantum mechanical/molecular mechanical (QM/MM) calculations suggested equal barrier 

heights and tunneling contributions towards the chemical step in both native and heavy 

ecDHFRs.23 Subsequent studies of the temperature dependence of the intrinsic KIEs of 

heavy ecDHFR showed that isotopic substitution of the protein does not affect the intrinsic 

KIEs for the hydride transfer at physiological temperatures (25–45 °C), but does lead to 

temperature dependent intrinsic KIEs at lower temperatures.27 In addition, the altered mass 

of the heavy ecDHFR affected the ground state conformational ensemble that determines 

protein-ligand interactions, as was evident in the larger Kd values for substrate binding of the 

heavy enzyme measured by stopped-flow fluorescence spectroscopy.27

Comparison of bacterial and human DHFRs drew the attention of the community, as 

phylogenetic analysis of DHFR sequences in organisms ranging from bacteria to human 

identified two key insertion sites along the evolutionary path of DHFR that were predicted 

to influence the motions of the protein. These sites are highlighted in yellow in the human 

enzyme (hsDHFR), Figure 1.10,29 The first is a four-amino acid-insert (62-PEKN-65) that 

appeared 499 million years ago and is conserved in higher organisms.29 A second 

evolutionarily significant divergence occurred 361 million years ago in the M20 loop of the 

enzyme and consists of a polyproline sequence (24-PWPP-27).29 The roles of these two 

insertions have been studied extensively by both computations and experiments,10,25,29–31 

and it has been concluded that only the second insertion alters the chemical step of the 

reaction; however, this disturbance is alleviated by the first evolutionary insertion.

The main goal of the current work is to test computational studies that predicted significant 

differences between ecDHFR and hsDHFR in terms of in the functional dynamics.7,8 Those 

QM/MM studies used transition path sampling (TPS), and suggested that fast dynamics 

(protein promoting vibrations, PPV, in the language of those researchers) are coupled to the 

CH→C hydride transfer in the human enzyme (hsDHFR), but not to the same transfer in the 

E. coli enzyme (ecDHFR). The TPS calculation for hsDHFR suggested that compressive 

motion between the active site residues I17 and P24, results in a decrease in the DAD for 

hydride transfer, and that this motion occurs on the same time scale as barrier crossing does 

(354–361 femtoseconds). Similar calculations for ecDHFR predicted that the active site is 

too loosely packed to support a PPV between the analogous residues I14 and P21.7,8 Those 

studies suggested that comparative examination of native and heavy ecDHFR and hsDHFR 

would serve as a critical test of these predictions. Consequently, the current study was 

designed to test the proposed role of fast dynamics in hsDHFR and the implication that 

heavy hsDHFR would alter these dynamics, rendering its coupling to the reorganization of 

the activated state (TRS). Steady-state kinetic parameters, product association and 

dissociation rate constants, and intrinsic KIEs were measured for hsDHFR and its 

isotopically-enriched heavy form (heavy hsDHFR). The findings suggest that the heavy 

hsDHFR affects steps other than the chemical step of hydride transfer, and the altered femto- 
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to picosecond dynamics of hsDHFR do not in fact alter the chemical step under study. The 

findings and their comparison to studies of the ecDHFR are discussed below.

MATERIALS AND METHODS

Materials

All chemicals were reagent grade and used as purchased from Sigma-Aldrich (St. Louis, 

MO) unless otherwise indicated. [Carbonyl-14C]-nicotinamide was purchased from 

Moravek, while [1-3H]-glucose was purchased from Perkin-Elmer. Glucose dehydrogenase 

from Bacillus megaterium was purchased from Affymetrix/USB. [Carbonyl-14C]-NADPH, 

4R-[carbonyl-14C, 4-2H]-NADPH, 4R-3H-NADPH and DHF were synthesized and stored as 

per previously published protocols.32–38

Preparation of Native and Heavy hsDHFRs

The plasmid pET22a harboring the gene encoding for hsDHFR was a generous gift from 

Peter E. Wright of the Scripps Institute (La Jolla, CA). The enzyme was expressed and 

purified as described for ecDHFR39 with the following modifications. The culture medium 

contained 2 mM folate and a final concentration of 0.5 mM folate was added to the buffer 

used to lyse the cells based on a previous report showing that this improves the stability of 

hsDHFR.40 The isotopically-enriched heavy hsDHFR was expressed in M9 minimal 

medium in 2H2O supplemented with [U-13C6,1,2,3,4,5,6,6-2H7]-glucose and [15N]NH4Cl 

and purified as described above in buffered solutions prepared in 1H2O. Mass modulation 

was confirmed by MALDI-TOF mass spectrometry in 20 mM ammonium acetate. The 

enzymes were flash frozen in liquid N2 after purification and stored at −80 °C until use.

Steady-State Kinetics

The steady state kinetic parameters of the enzymes were determined in 50 mM MTEN 

buffer (50 mM MES, 25 mM Tris, 25 mM ethanolamine, and 100 mM sodium chloride) at 

pH 7.65 and 25 °C as described previously.41 Briefly, initial rates were determined with 

enzyme concentrations between 50 pM and 140 pM (from at least two independent enzyme 

preparations) by following the decrease in absorbance of NADPH at 340 nm. The kinetic 

parameters were determined by varying the concentration of DHF (0.1–50 μM) or NADPH 

(0.3–50 μM) at 100 μM of the other substrate. The initial rate vs. the substrate concentration 

was fitted to the Michaelis-Menten equation to determine the kinetic parameters. The results 

are reported as the average of two independent experiments carried out on different 

preparations of the enzyme to ensure that the differences observed are not artifacts resulting 

from prep-to-prep variations.

Products’ Association and Dissociation Rate Constants

Product association and dissociation rate constants were determined as described in refs 28 

and 42. In short, the quenching of protein fluorescence that occurs upon formation of the 

ternary complex of hsDHFR with both products was monitored. The enzyme was pre-

incubated with a saturating concentration of one ligand and mixed with varying 

concentrations of the second ligand in an Applied Photophysics SX20 stopped-flow 

spectrophotometer. To prevent oxidation of THF by atmospheric oxygen all solutions were 
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made anaerobic through incubation with glucose/glucose oxidase as described in ref 43. The 

enzyme samples were made anaerobic in a tonometer through 25 cycles of vacuuming and 

flushing with ultra-pure argon before mounting onto the stopped flow and ligand solutions 

were made anaerobic by flushing the samples with argon for at least 20 minutes. 

Experiments were carried out using 0.2 μM enzyme pre-incubated with 1.15 mM NADPH or 

25 μM THF product (i.e., 500 × Kd
42), and initiated by mixing 1–32 μM of the other product 

(all concentrations are final, i.e., after mixing). Samples were excited at 280 nm and the 

protein fluorescence at 330 nm was measured. The fluorescence quenching was fitted to a 

single exponential function and the slope of these rates as a function of concentration 

yielded the rate constant.42 All measurements were carried out in triplicate, in 50 mM 

MTEN buffer pH 7.65 and 25 °C.

Determination of Intrinsic KIEs

The intrinsic KIEs of native and heavy hsDHFR were measured using the competitive 

method as described previously for ecDHFR.9,15 Briefly, KIEs were measured using 

mixtures of NADPH labeled with either H or T at the 4R position and unlabeled DHF at the 

desired temperature in 50 mM MTEN buffer at pH 9.0. The reaction was initiated with the 

addition of either native or heavy hsDHFR. A remote carbon at the carbonyl position of the 

nicotinamide ring of the cofactor was labeled by 14C to serve as a tracer for the conversion 

of protiated or deuterated NADPH (for H/T and D/T measurements, respectively) to product 

(NADP+). Reactions were quenched at different time points by the addition of methotrexate 

and the depletion of tritium in the product was monitored as a function of fraction 

conversion in order to calculate the observed KIE on the second order rate constant kcat/KM. 

The observed H/T and D/T KIEs were used to calculate the intrinsic KIEs using a numerical 

solution to the modified Northrop equation (Eq 1):38

(1)

where T(V/K)Hobs and T(V/K)Dobs are the observed H/T and D/T KIEs (also known 

as T(kcat/KM)obs), respectively, and kH/kT is the intrinsic H/T KIE. The isotope effect on the 

activation parameters for the intrinsic KIEs was calculated by a non-linear fit of the data to 

the Arrhenius equation for intrinsic KIEs (Eq 2):

(2)

where kl and kh are the rate constants for light and heavy isotopes, respectively, Al/Ah is the 

isotope effect on the Arrhenius pre-exponential factor, ΔEa is the difference in energy of 

activation between the two isotopologues, R is the gas constant and T is the absolute 

temperature.

Calculation of the Kinetic Commitment Factor (Cf)

The observed KIE measured in competitive experiments is usually smaller than the intrinsic 

value; this is due to the kinetic commitment factors on V/K resulting from steps other than 
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the isotopically sensitive bond cleavage. As described in detail elsewhere44,45 Eq 3 relates 

the observed KIE to the intrinsic value on bond cleavage:

(3)

where Tkhyd is the intrinsic KIE on bond cleavage, EIE is the equilibrium isotope effect and 

Cf and Cr are the forward and reverse commitment factors, respectively. For ecDHFR and 

hsDHFR Cr is negligible because it is practically irreversible under the experimental 

conditions used here, in which the rate constant for the forward reaction is more than three 

orders of magnitude greater than the rate constant for the reverse reaction.42 Additionally, 

the concentration of product THF was kept close to zero by conducting the reaction 

aerobically (THF is extremely air sensitive). Therefore in this case Eq 3 can be simplified to 

Eq 4:

(4)

Eq 4 can therefore be rearranged to calculate Cf from the observed and intrinsic KIEs 

obtained from Eq 1.

RESULTS AND DISCUSSION

QM/MM TPS calculations suggested that the protein dynamics (protein promoting 

vibrations, PPVs) are coupled to the C-H→C hydride transfer step in human DHFR 

(hsDHFR) but not in the bacterial counterpart (ecDHFR).7,8 Consequently, those 

calculations suggested that heavy DHFR would affect the chemical step in hsDHFR but not 

in ecDHFR. In accordance with the Born-Oppenheimer enzyme assumption mentioned 

above, those calculations also assumed that only the chemical step would be affected (due to 

disruption of the coupling of the PPV to the reaction coordinate), and that the ensemble of 

protein conformations (i.e., the protein’s structure), its affinity to ligands, and other 

parameters would not be affected. That last assumption is very general, and broadly used in 

both experiments and calculations involving heavy enzymes.22,23,25,46 To begin testing 

these predictions and assumptions we compared the nature of the chemical step and that of 

other kinetic steps in native and heavy hsDHFR.

First, native and heavy hsDHFR were produced and their molecular weights were 

determined to be 21.3 and 23.7 kDa, respectively, by mass spectrometry (Figure S2). This 

corresponds to an ~11% mass increase in the heavy enzyme, which agrees well with the 

theoretical mass increase of ~13% for complete labeling with 13C, 15N, and 2H considering 

that the enzyme was purified in H2O to exchange ionizible protons. Then various kinetic 

steps of both enzymes were compared to each other and to native and heavy ecDHFRs.

The chemical step was examined via measurements of the temperature dependence of the 
intrinsic KIEs

The heavy enzyme’s intrinsic KIEs were identical to those of the native hsDHFR within 

experimental error (Figure 2A and Table 1). This finding indicates that the femto- to 
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picoscond motions of hsDHFR that were altered by the mass modulation did not alter the 

DAD sampling frequency, which does not accord with the prediction of the TPS 

calculations. A possible explanation would be that originally, the notion that heavy enzymes 

would alter dynamics coupled to the reaction coordinate was influenced by a mass 

difference close to 100 % (e.g., H/D) and vibrational frequencies at the femtosecond time 

scale (e.g., C-H stretch of ~3000 cm−1 going to 2,100 for C–D). However, the mass 

modulation for hsDHFR was only ~11 %, and the DAD sampling, the frequency is only 

expected to be at the picosecond time scale (40 – 200 cm−1).47–49 It thus likely that the mass 

modulation of hsDHFR is too small to significantly alter such low frequency (i.e., less than a 

few wavenumber modulation) and thus does not affect the distribution of DADs at the TRS. 

Also, the TPS calculations in refs 7,8 include non-statistical dynamic motions, which may 

not manifest in the temperature dependence of the intrinsic KIE. The apparent contradiction 

between the experimental results and the calculations are therefore likely to be the result of 

the two methods examining a different phenomena.

It is also interesting to compare the KIEs of ecDHFR and hsDHFR. As is apparent in Figure 

2A, the intrinsic KIEs of the native hsDHFR are as temperature-independent as those of 

ecDHFR (Figure 2B). This finding is not trivial given the fact that the enzymes share only a 

26 % identity in their amino acid sequences (Figure S1 in the SI), and also given the 

predicted differences in the way they catalyze the isotopically sensitive C-H→C transfer.8 

However, the finding accords well with earlier experiments on humanized ecDHFR, which 

has the two critical insertions (yellow in Figure 1);10 these experiments concluded that 

temperature-independent KIEs (i.e., accurate TRS) have been preserved along the 

evolutionary line. The KIEs of hsDHFR are slightly lower than the bacterial enzyme’s, 

suggesting a slightly shorter average DAD.4,18,20 The intrinsic KIEs can be fitted to a 

phenomenological activated-tunneling model (referred to as a activated-tunneling, 

environmentally-coupled-tunneling, or Marcus-like model).20 A comparison of average 

DADs from this fit between ecDHFR20 and hsDHFR (this work) indicates a shorter DADavg 

for hsDHFR (0.010 ± 0.005 Å). While small, this difference is significant within the 

experimental errors, as is obvious from the differences in the magnitude of the KIEs 

between those enzymes in Figure 2.

Rate constants and product dissociation rates were measured using steady state and pre-
steady state kinetics

The steady-state kinetic parameters kcat, kcat/KM, and KM for native and heavy hsDHFR 

were determined at pH 7.65 and 25 °C, and are presented in Table 2. The kinetic parameters 

for the native enzyme were similar to those reported previously.41 The KM values for the 

heavy hsDHFR are similar to that of the native enzyme, but the turnover number (kcat) and 

the kcat/Km value for NADPH with the heavy hsDHFR are significantly slower for the heavy 

hsDHFR (Table 2). Early studies of hsDHFR found lower KIEs on kcat than on the burst 

rate, and faster product release than kcat, suggesting that conformational changes in the 

enzyme-product complex or product release might be partly rate-limiting for kcat.42,50 In 

order to test the effect of isotopically-labeled protein on product release, we directly 

measured the association and dissociation rate constants for the binding and release of both 
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THF and NADP+ for both native and heavy hsDHFR, and the findings are summarized in 

Table 2.

Apparently, neither the rate constants for the release of the product (koff) NADP+ nor kon for 

the product THF were affected by the isotopic labeling of the heavy enzyme (h-KIE close to 

unity). The THF release (koff), on the other hand, was slower, with h-KIE of 1.38 ± 0.13, 

which is similar to that measured for kcat (1.44 ± 0.02). Interestingly, the rate constant for 

NADP+ release from the enzyme-THF-NADP+ complex was not affected by the isotopic 

labeling of the enzyme (Table 2), nor was the release of the two substrates (NADPH and 

DHF), as is evident in the lack of heavy-enzyme KIE on commitment to catalysis on the 

second order rate constant V/K (Cf, Figure 2C).

Taken together, the results indicate that the isotopic substitution in heavy hsDHFR altered 

both the conformational changes of the enzyme-product complex prior to product release, 

and the protein-THF interactions affecting the release of that product. The decrease in the 

koff
THF and the two steady-state rate constants for the heavy enzyme could be due to 

changes in the geometry and electrostatics of the protein. Such effects may result from the 

substitution of nonexchangeable protons with deuterium, probably because C–D has a 

smaller dipole moment than C–H, altering the electronic potential surface of the protein.51,52 

At any rate, this finding is not in accordance with the concepts behind the term “Born-

Oppenheimer enzyme” coined in ref 21. The lack of any measurable effect of the protein 

mass-modulation on the nature of the C-H→C hydride transfer step (Figure 2A and Table 1) 

may suggest a more complex structure-dynamic-functional relationship than that proposed 

before. The current findings suggest that further investigation by both experimentalists and 

theoreticians is needed to obtain a model explaining both experimental and computational 

findings.

It also would have been interesting to examine whether the mass modulation of the hsDHFR 

affected its single-turnover rates. However, as has been the case in other such investigations 

of the native WT hsDHFR,53 our attempts to measure the pre-steady state rate of native and 

heavy hsDHFR were unsuccessful because the reaction was completed within the mixing 

time of the stopped-flow spectrophotometer (2 ms).

CONCLUSIONS

The use of heavy (isotopically-labeled) enzymes to examine protein motions that are 

coupled to its catalyzed chemistry is at the center of a contemporary debate. The current 

study, together with studies of heavy ecDHFR23,25,27 and other heavy enzymes21,22,24,26 

demonstrate that isotopic enrichment of a protein can affect the catalyzed reaction in a 

variety of ways, not merely by altering the chemical step. For purine nucleoside 

phosphorylase (PNP), for instance, mass modulation resulted in differences in the intrinsic 

KIEs of the light and heavy enzymes,21 which the authors interpreted as a decoupling of fast 

femtosecond bond vibrations being part of the reaction coordinate. For PNP the steady-state 

kinetic parameters were not affected by isotopic enrichment, which suggest that electrostatic 

potential surface of the protein motions has not been altered by the mass modulation of the 

protein, in accordance with the “Born-Oppenheimer enzyme” suggestion. Altered KIEs 
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and/or their temperature dependence were also reported for alanine racemase with either D- 

or L-alanine substrate,26 and for pentaerythritol tetranitrate reductase,24 although both 

reported observed rather than intrinsic KIEs.

Here we tested predictions from TPS calculations that suggested that protein dynamics on a 

fast time scale (which should be modulated in heavy enzymes) are coupled to the chemical 

step in human DHFR (hsDHFR) but not in the bacterial one (ecDHFR).7,8 Those studies 

suggested that the heavy enzyme could be used to test their predictions. However, the 

experimental findings reported above indicate that mass modulation of the hsDHFR has no 

detectable effect on the intrinsic KIEs or their temperature dependence. The lack of mass-

modulation effect on the intrinsic KIEs suggests that fast protein dynamics either are 

insensitive to the mass modulation of the protein. More specifically, the PPV that ref 8 

predicted would promote the C-H→C hydride transfer step might not be sensitive to isotopic 

substitution of the substrate; or might not be significantly affected by the protein’s mass 

modulation (11%). The last explanation is quite reasonable given that 11% mass difference 

for native DAD fluctuating at ca. 100 cm−1 47,48 may result in rather a small reduction in 

sampling frequency for the heavy enzyme (ca. 90 cm−1).

While the heavy hsDHFR did not affect the catalyzed C-H→C transfer step, interactions 

between the enzyme and THF and conformational rearrangements of the enzymatic complex 

appear to be altered, as is indicated by slower product release (koff
THF) and slower first and 

second order rate constants (kcat and kcat/KM) with h-KIEs of 1.3 – 1.5. It appears that mass 

modulation of enzymes have complex effects on function that depend on the specific protein 

architecture and dynamics. It also appears that a variety of chemical and physical properties 

can be altered by the isotopic labeling of the protein. In summary, the term “Born-

Oppenheimer enzyme” was coined in ref 21 to suggest that heavy enzymes (i.e., isotopically 

labeled protein) have altered vibrations but the same electronic potential surface. The current 

study suggests that that term might not describe heavy hsDHFR and several other enzymes 

accurately, because it appears that the mass modulation also affects the protein 

conformational ensemble, protein-ligand interactions, and protein electrostatics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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DHFR dihydrofolate reductase reductase

KIEs kinetic isotope effects
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DAD donor and acceptor distance

TRS tunneling ready state

NADPH nicotinamide adenine diphosphate

DHF 7,8-dihydrofolate

THF 5,6,7,8-tetrahydrofolate

WT wild-type

ecDHFR Escherichia coli dihydrofolate reductase

hsDHFR human dihydrofolate reductase
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Figure 1. 
Superposition of hsDHFR (blue; PDB ID 4M6K) and ecDHFR (red; PDB ID 1RX2) bound 

to NADP+ and folate. The ligands are shown as sticks; hsDHFR residues 24-PWPP-27 and 

62-PEKN-65 are highlighted in yellow.
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Figure 2. 
Comparison of the Arrhenius plots of the KIEs and commitment factors (Cf) of native (blue) 

and heavy (red) DHFRs measured in competitive experiments at pH 9.0. Shown are the 

observed (open circles) and intrinsic (closed circles) H/T KIEs for hsDHFR (Panel A) and 

ecDHFR (Panel B). The lines represent the non-linear regression to the Arrhenius equation 

for KIEs (Eq 2). Arrhenius plot of Cf on kcat/KM for hsDHFR (Panel C) and ecDHFR 

(Panel D). Cf values were calculated as described in the Materials and Methods section. The 

lines are an interpolation of the data and do not represent an analytical fitting. Data for 

ecDHFR are taken from ref 27 with permission from the American Chemical Society.

Francis et al. Page 15

Biochemistry. Author manuscript; available in PMC 2017 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Francis et al. Page 16

Table 1

Comparative isotope effects for native and heavy hsDHFR at pH 9.0

DHFR AH/AT
ΔEa(T-H)
kcal/mol

DADavg
a

(Å)

native 6.6 ± 0.8 −0.1 ± 0.1 3.048 ± 0.002

heavy 6.6 ± 1.1 −0.1 ± 0.1 3.056 ± 0.007

a
From a fit of the data to the model described in ref 20.
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Table 2

Steady-state kinetic parameters and product binding kinetics of native (l-DHFR) and heavy (h-DHFR) 

hsDHFR at pH 7.65 and 25 °Ca,b

l-DHFR h-DHFR h-KIE

kcat
DHF, (s−1)     14.03 ± 0.02   9.77 ± 0.12 1.44 ± 0.02

Km
DHF, (μM)   0.29 ± 0.05   0.27 ± 0.09 1.07 ± 0.40

(kcat/Km)DHF × 107 (M−1s−1)   4.84 ± 0.83   3.62 ± 1.20 1.34 ± 0.50

kon
THF × 10−6(M−1s−1) 38.7 ± 1.8 38.5 ± 0.5 1.01 ± 0.05

koff
THF, (s−1) 110 ± 10 80 ± 5 1.38 ± 0.13

kcat
NADPH, (s−1)     14.10 ± 0.01   9.75 ± 0.11 1.45 ± 0.02

Km
NADPH, (μM)   0.36 ± 0.05   0.34 ± 0.07 1.06 ± 0.26

(kcat/Km)NADPH × 107 (M−1s−1)   3.92 ± 0.54   2.87 ± 0.59 1.37 ± 0.34

kon
NADP × 10−6 (M−1s−1)   1.19 ± 0.05   1.26 ± 0.05 0.94 ± 0.06

koff
NADP, (s−1) 140 ± 1   140 ± 1   1.00 ± 0.01

a
kcatDHF and KmDHF are the turnover number and Michaelis constant with DHF as substrate measured in the presence of 100 μM NADPH and 

varying concentrations of DHF

b
kcatNADPH and KmNADPH are the turnover number and Michaelis constant with NADPH as substrate, measured in the presence of 100 μM 

DHF and varying concentrations of NADPH.

c
h-KIE is the heavy enzyme KIE, calculated by taking the ratio between the kinetic parameter of l-DHFR and the same parameter of h-DHFR.
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