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Background
In contrast to the static situation, the time when edges are active and especially the 
chronological order of contacts play an important role in temporal networks. Both are 
essential elements for the representation of these dynamical systems (Holme and Sara-
mäki 2012). In previous studies dealing with network analysis, the temporal informa-
tion has been partly neglected by an aggregation of contacts over specific observation 
windows, which have been analysed separately (examples of animal trade networks are 
Bajardi et al. 2011; Büttner et al. 2015; Dubé et al. 2011; Nöremark et al. 2011; Rautureau 
et  al. 2011; Vernon and Keeling 2009). Even in cases where the temporal information 
was available, this aggregation was performed due to the fact that the methodological 
framework for the analysis of temporal networks is still in its infancy (Nicosia et al. 2013; 
Masuda and Holme 2013). However, recently, new methods for the analysis of temporal 
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networks have been developed or methods of the static network analysis have been 
adapted to temporal systems. Examples are the newly proposed parameters causal fidel-
ity by Lentz et al. (2013) or the temporal correlation coefficient, which was derived from 
the local clustering coefficient of static networks (Nicosia et al. 2013; Tang et al. 2010). 
In the case of the temporal correlation coefficient, the novelty of the temporal network 
analysis and the fact that its methodologies are still under development becomes obvi-
ous. Here, Pigott and Herrera (2014) presented a possible correction for the calculation 
of the temporal correlation coefficient proposed by Nicosia et al. (2013). The temporal 
correlation coefficient (hereinafter abbreviated C) is a measure of the overall average 
probability for an edge to persist across two consecutive time steps (Nicosia et al. 2013; 
Tang et al. 2010). For the calculation of the temporal correlation coefficient, the average 
topological overlaps of the graph which measures the amount of changes in the edge 
configuration between two consecutive time steps are determined. The values for the 
average topological overlap range between zero and one, whereby zero and one indicate 
that the edge configuration of the two consecutive graphs is completely different or has 
not changed at all, respectively. Current methods depend on the number of nodes in 
the network (Nicosia et al. 2013), hereinafter referred to as Method 1, or on the maxi-
mal number of connected nodes in the consecutive time steps, hereinafter referred to 
as Method 2. Method 1 fails to deliver the value of one for identical consecutive graphs if 
there are nodes with no edges (Pigott and Herrera 2014), and Method 2 delivers values 
greater than one if the maximal number of nodes with at least one edge is greater than 
the maximal size of the greatest connected component in the two consecutive graphs. 
The newly proposed adaption, hereinafter referred to as Method 3, uses the maximal 
number of active nodes, i.e. the number of nodes with at least one edge, for the calcula-
tion of the topological overlap. This article provides small, comprehensible examples of 
graphs, where the results of the temporal correlation coefficient differ between the three 
methods. Additionally, using all three methods, the average topological overlaps were 
calculated for a real-world network describing animal movements. Influences of the net-
work structure on the differences between methods were statistically analysed.

Methods
In the first part of the materials and methods section, the individual calculation steps of 
the temporal correlation coefficient are introduced, followed by a summary of the previ-
ous proposals and the adaption presented in this article with the help of vivid example 
networks. In the fifth part of the materials and methods section, the convergence behav-
iour of the three methods is compared, followed by a real-world example of a trade net-
work of a pork supply chain.

Temporal correlation coefficient

The temporal correlation coefficient C is a measure of the overall average probabil-
ity for an edge to persist across two consecutive time steps (Nicosia et  al. 2013; Tang 
et al. 2010). The calculation of C consists of three individual calculation steps. First of 
all, for all nodes i = 1, . . . ,N , where N is the total number of nodes in the network a, 
and all time steps tm, with m = 1, . . . ,M − 1, where M is the total number of considered 
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snapshots, the topological overlap Ci(tm, tm+1) in the neighbourhood of node i between 
two consecutive time steps tm and tm+1 is calculated as

where aij illustrates an entry in the unweighted adjacency matrix of the graph. Thus, 
summing over aij gives the interaction between i and every other node for two consec-
utive time steps tm and tm+1. The average topological overlap of the graph Cm for two 
consecutive time steps tm and tm+1 can then be determined. In this calculation step, the 
proposed correction of Pigott and Herrera (2014) and the possible adaption in the pre-
sent article differ from the originally recommended method of Nicosia et al. (2013). The 
differences are described below and use the terms ‘maximal number of connected nodes’ 
and ‘maximal number of active nodes’. Hereby, the maximal number of connected nodes 
for the time m is defined as the maximum of the sizes of the largest connected com-
ponents of the graph at tm and tm+1. It is denoted by max[N (tm),N (tm+1)]. A node i is 
called “active” at time m, if there exists a node j ≠ i and an edge between i and j in the 
graph at tm. The maximal number of active nodes of the graph at tm and tm+1 is denoted 
by max[A(tm),A(tm+1)]. For a better understanding of the given definitions, Fig. 1 illus-
trates the differences between number of nodes, maximal number of connected nodes 
and maximal number of active nodes.

In the last calculation step, the summation over all possible results for the topological 
overlap gives the temporal correlation coefficient of the network C.

(1)
Ci(tm, tm+1) =

∑

j aij(tm)aij(tm+1)
√
[
∑

j aij(tm)
][
∑

j aij(tm+1)

] ,

(2)C =
1

M − 1

M−1∑

m=1

Cm.

Fig. 1  Exemplary presentation of term definitions. Illustration of the terms number of nodes, maximal num-
ber of connected nodes and maximal number of active nodes
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The values of all three calculation steps range between zero and one, with one indicat-
ing that there is a complete match of the edge configuration and zero if none the same 
edges is shared.

Method 1: original calculation by Nicosia et al. (2013)

1st step: calculation of Ci(tm, tm+1)

Compare Eq. (1) in 2.1.

2nd step: calculation of Cm
Due to better comparison between the different methods, the order of the original sum-
mation of Nicosia et al. (2013) is reversed.

where N is the number of nodes in the graph.

3rd step: calculation of C

The summation over all possible Cm gives the temporal correlation coefficient C, com-
pare Eq. (2) in 2.1.

According to Nicosia et al. (2013), Cm = 1 if and only if the two graphs of the two con-
secutive time steps tm and tm+1 have exactly the same configuration of edges. Cm = 0 if 
the two graphs do not share any edges. This claim is only true if all N nodes considered 
in the calculation have at least one edge (Pigott and Herrera 2014), i.e. are active. How-
ever, this is not applicable for networks containing unconnected nodes, since for these 
graphs the correlation between two snapshots is underestimated.

Method 2: proposed correction by Pigott and Herrera (2014)

Pigott and Herrera (2014) proposed the following correction in the second step of the 
calculation of the temporal correlation coefficient [see Eq. (3)]. Instead of dividing by the 
total number of nodes in the graph, the denominator is replaced by the maximal number 
of connected nodes of two consecutive time steps:

However, if the maximal number of active nodes is higher than the maximal number 
of connected nodes, the proposed correction leads to an overestimation of the average 
topological overlap (Cm > 1).

Method 3: adaption of the calculation of the temporal correlation coefficient

If one of the two consecutive snapshots contains more than one connected component 
with two or more nodes, this implies max[N (tm),N (tm+1)] < max[A(tm),A(tm+1)] . 
To ensure that in this case Cm shows the expected behaviour for Method 3, 

(3)Cm =
1

N

N∑

i=1

Ci(tm, tm+1),

(4)Cm =
1

max[N (tm),N (tm+1)]

N∑

i=1

Ci(tm, tm+1)
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max[N (tm),N (tm+1)] is replaced by max[A(tm),A(tm+1)]. Note that this method still 
results in 0

0
 for the correlation between two networks with zero edges.

Convergence behaviour of the temporal correlation coefficient in the three example 

networks

In order to reveal the convergence behaviour of the three presented methods, the last 
snapshot, i.e. the graph at tM of the example networks, was repeatedly attached to the 
existing time series until the length of the series equalled 100. For all m = 1, . . . ,M − 1 
an average topological overlap Cm ≤  1 is expected. Due to the fact that the following 
graphs are identical to the snapshots at tM, all the following values for the average topo-
logical overlap equal 1. Therefore, this identical extension of the time series should show 
a convergence of the temporal correlation coefficient to one.

Real‑world example: pig trade network of a producer community in Northern Germany

Data basis

Pig movement data from a producer community in Northern Germany were recorded 
in an observation period from 1st June 2006 to 31st May 2009. The date of the move-
ments, the supplier, the purchaser as well as the batch size and the type and age group of 
the delivered livestock were recorded. The holdings are represented by the nodes of the 
network and the edges illustrate the animal movements between them. In total, the data 
contained 4635 animal movements between 483 holdings.

Construction of networks with different time window lengths

In order to assess the influence of the chosen time window length on the results of the 
temporal correlation coefficient, time windows with increasing lengths were generated 
from 1 to 548 days. This implies that 1096 snapshots of the network were constructed for 
the time window length of 1 day, there were 548 snapshots for the time window length 
of 2 days, and finally there were only 2 snapshots in which the edge configuration can be 
compared for the time window length of 548 days. An incomplete time window remains 
to aggregate contacts for the last snapshot for time window lengths that are not proper 
divisors of 1096. Snapshots resulting from incomplete time windows were ignored in the 
analysis. For each time window length, the topological overlap of each two consecutive 
time steps were calculated using all three methods presented in “Method 1: original cal-
culation by Nicosia et al. (2013)”, “Method 2: proposed correction by Pigott and Herrera 
(2014)” and “Method 3: Adaption of the calculation of the temporal correlation coeffi-
cient” sections. These were afterwards summarized to the temporal correlation coeffi-
cient for each time window length.

(5)Cm =
1

max[A(tm),A(tm+1)]

N∑

i=1

Ci(tm, tm+1)

(6)C =
1

M − 1

M−1∑

m=1

(

1

max[A(tm),A(tm+1)]

N∑

i=1

Ci(tm, tm+1)

)
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Statistical analysis

For the complete outcome of average topological overlap Cm minimal and maximal val-
ues, mean value, variance, skewness, and kurtosis were calculated within the three meth-
ods presented. The same descriptive statistics were calculated for the Cm-differences 
between the methods. As Method 2 generally showed greater Cm values than Method 
1 and Method 3, and as Method 3 showed greater Cm values than Method 1, the differ-
ences Method 2 − Method 1, Method 2 − Method 3, and Method 3 − Method 1 were 
computed to ensure homogeneity in signs. In order to estimate the influence of different 
network properties on the differences between the three proposed methods, an analy-
sis of variance (ANOVA) was conducted with the six main effects illustrated in Table 1. 
Firstly, an analysis of variance using a linear model containing only the main effects 
thereby neglecting the interaction effects was performed for each comparison between 
the three methods. In the second step, an analysis of variance was carried out using a 
model with the main effects and one additional interaction effect. Due to the fact that all 
other effects describing the interaction between two main effects showed no significant 
effect or cause singularities, only the interaction between Mean number and Mean first 
remained in the model. As a goodness-of-fit statistic, the coefficient of determination 
was calculated for all models. Additionally, the effect sizes η2 = sum of squares due to effect

total sum of squares
 

were calculated for all significant effects. The statistical analyses were carried out using 
the Statistics Toolbox of MATLAB (2015).

Table 1  Main effects used for the analysis of variance

Effect Group boundaries Group size

TWL—length of the time window chosen to analyse the development  
of the graph over time

TWL = 1 1096

2 ≤ TWL ≤ 4 1184

5 ≤ TWL ≤ 12 1106

13 ≤ TWL 35 1110

36 ≤ TWL ≤ 105 1080

TWL ≥ 106 1166

Mean number—arithmetic mean of the number of connected compo-
nents (containing more than one node) between two consecutive 
time steps

Mean number ≤ 4 2177

5 ≤ Mean number ≤ 11 2324

Mean number ≥ 12 2248

Mean size—arithmetic mean of the average sizes of all connected com-
ponents containing more than one node between two consecutive 
time steps

Mean size ≤ 3 1830

3 < Mean size ≤ 4.5 1692

4.5 < Mean size ≤ 23 1569

Mean size > 23 1658

Mean edges—arithmetic mean between the number of edges  
between two consecutive time steps

Mean edges ≤ 20 2327

21 ≤ Mean edges ≤ 125 2134

Mean edges ≥ 126 2288

Mean first—arithmetic mean of the sizes of the largest connected  
components between two consecutive time steps

Mean first ≤ 7 2235

8 ≤ Mean first ≤ 60 2228

Mean first ≥ 61 2286

Mean active-first—arithmetic mean of the differences between active 
nodes and the size of the largest network component between two 
consecutive time steps

Mean active-first ≤ 8 2262

9 ≤ Mean active-first ≤ 35 2223

Mean active-first ≥ 36 2264
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Results
Comparison between the different methods based on vivid example networks

In the following, some general network examples are illustrated to reveal the differ-
ences between the three methods described above. For the example networks presented 
in Pigott and Herrera (2014), no differences between Method 2 and Method 3 could be 
obtained. Therefore, new example networks are presented in this article to identify the 
issues with the previous proposed formulas.

Time series without isolated nodes and identical unconnected components of equal size

Figure 2 illustrates the first example which shows a time series without isolated nodes 
and identical unconnected components of equal size. In Table 2, the single calculation 
steps for the temporal correlation coefficient C are presented depending on the different 
methods. For this first example, Method 1 and Method 3 had the same results, whereas 
for Method 2 in the two snapshots tm+1 and tm+2 values above one could be obtained 
which exceeds the predefined upper limit for the topological overlap Cm as well as for 
the temporal correlation coefficient C.

Time series with identical unconnected components of equal size and isolated node

The second example can be seen in Fig.  3, which contains time series with identical 
unconnected components of equal size and one isolated node. The single calculation 
steps for the temporal correlation coefficient are illustrated in Table 3. Compared to the 
first example, Method 2 showed again values above one in the second and third calcula-
tion step. In contrast, Method 1 revealed for the two identical snapshots tm+1 and tm+2 a 
value lower than one which is a clear underestimation of the real topological overlap Cm. 
Only Method 3 showed the expected behaviour of the second and the third calculation 
step.

Time series with identical unconnected components of different sizes and isolated nodes

Figure 4 illustrates the third example which contains time series with identical uncon-
nected components of different sizes including isolated nodes. Table 4 presents the sin-
gle calculation steps for the temporal correlation coefficient C for this example. Similar 
to the second example in Fig. 3, Method 2 leads to an overestimation, Method 1 leads to 
an underestimation and Method 3 showed the expected behaviour of the temporal cor-
relation coefficient regarding the two identical snapshots tm+1 and tm+2.

Fig. 2  Example network 1. Connected graph becomes unconnected graph with two network components 
of identical size, no isolated nodes
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Fig. 3  Example network 2. Unconnected graph, one network component with more than one node, one 
isolated node. After the first time step, the largest network component splits into two network components 
of identical size and one isolated node

Table 3  Calculation of the temporal correlation coefficient C for time series with identical 
unconnected components of equal size and isolated node

Snapshots 1st calculation step 2nd calculation step 3rd calculation step

tm , tm+1 Ci=1(tm , tm+1) =
1√
3

Method 1: 
Cm = 1

N

∑
N

i=1 Ci(tm , tm+1) ≈ 0.32

Method 2: 

Method 3: 

Method 1: 
C = 1

M−1

∑
M−1
m

Cm ≈ 0.56

Method 2: 

C = 1
M−1

∑
M−1
m

Cm ≈ 1.20

Method 3: 
C = 1

M−1

∑
M−1
m

Cm ≈ 0.70

Ci=2(tm , tm+1) = 1

Ci=3(tm , tm+1) = 0

Ci=4(tm , tm+1) = 0

Ci=5(tm , tm+1) = 0

tm+1, tm+2 Ci=1(tm+1, tm+2) = 1 Method 1: 
Cm+1 =

1
N

∑
N

i=1 Ci(tm+1, tm+2) = 0.80

Method 2: 

Method 3: 

Ci=2(tm+1, tm+2) = 1

Ci=3(tm+1, tm+2) = 1

Ci=4(tm+1, tm+2) = 1

Ci=5(tm+1, tm+2) = 0

Cm =
1

max[N(tm),N(tm+1)]
∑

N

i=1 Ci(tm , tm+1) ≈ 0.39

Cm =
1

max[A(tm),A(tm+1)]
∑

N

i=1 Ci(tm , tm+1) ≈ 0.39

Cm+1 =
1

max[N(tm+1),N(tm+2)]
∑

N

i=1 Ci(tm+1, tm+2) = 2

Cm+1 =
1

max[A(tm+1),A(tm+2)]
∑

N

i=1 Ci(tm+1, tm+2) = 1

Fig. 4  Example network 3. Unconnected graph, one network component with more than one node, one 
isolated node. After the first time step, two network components are formed with different sizes, two isolated 
nodes
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Convergence behaviour of the temporal correlation coefficient in the three example 

networks

In comparison between the three described methods, Fig.  5 shows the convergence 
behaviour of the temporal correlation coefficient for the example networks of Figs. 2, 3 
and 4 depending on the increasing number of added identical snapshots.

For the example network of Fig. 2, Method 1 showed the same results as the newly pro-
posed Method 3, since the maximal number of active nodes equalled the maximal num-
ber of all nodes in the network. Therefore, only differences for the example networks of 
Figs. 3 and 4 between Method 1 and Method 3 could be revealed. Here, the temporal cor-
relation coefficient converged towards the fraction of active nodes in the added identical 
snapshots (Pigott and Herrera 2014), which is 0.8 or 0.71, respectively, with regard to the 
example networks of Figs. 3 and 4.

For all three example networks, Method 2 showed values larger than one for M ≥ 3. 
Method 3 shows in all three example networks a convergence towards 1, which corre-
sponds to the expected behaviour of the temporal correlation coefficient.

Estimates of the distortions between methods

Averaged estimate errors for the topological overlap

For k = 1, . . . , 3 the abbreviations Ck
m and Ck denote the average topological overlap 

Cm for tm and tm+1 and the temporal correlation coefficient C obtained from Method 
k, respectively. Let m ∈ {1, . . . ,M − 1}. Then, the ratios in average topological overlaps 
for the time steps tm and tm+1 between Method 1 and Method 2, respectively, Method 3 
calculate to:

Averaged over all time steps we get

(7)
C1
m

C2
m

=
max[N (tm),N (tm+1)]

N
and

C1
m

C3
m

=
max[A(tm),A(tm+1)]

N
.

(8)
1

M − 1

M−1∑

m=1

(
max[N (tm),N (tm+1)]

N

)

=
meanm≤M−1 (max[N (tm),N (tm+1)])

N
.

Fig. 5  Convergence behaviour of the temporal correlation coefficient. Illustrated for the three methods 
described depending on the increasing number of identical time steps added to the series of the example 
networks of Figs. 2a, 3b, and 4c
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Lower and upper boundaries for estimate errors in temporal correlation coefficients

A little more effort needs to be made to estimate the distortions between the tempo-
ral correlation coefficients. An upper boundary for the quotient C

1

C2 was calculated as 
follows:

Additionally, a lower boundary could be determined:

For the sake of readability, the global minimum of all topological overlap values is 
abbreviated to minC = mini≤N;m≤M−1(Ci(tm, tm+1)). Using this denotation the following 
inequalities hold:

Similarly we obtained

and

Real‑world network: trade network of a pork supply chain

Descriptive statistics

Figure  6 shows the topological overlap values for each observation illustrated for the 
three different methods. In the arrangement of observations along the x-axis, the values 

C1

C2
=

1
N

∑M−1
m=1

∑N
i=1 Ci(tm, tm+1)

∑M−1
m=1

1

max[N (tm),N(tm+1)]
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≤

1
N
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m=1 N
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︷ ︸︸ ︷
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1
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(M − 1) 1
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determined from comparisons between snapshots with time window length 1 are dis-
played left. Topological overlap values calculated from comparing snapshots based on 
increasing time window length follow to the right. The values obtained from Method 1 
were smallest and also showed a smaller variation compared to Method 2 and Method 3. 
These findings are confirmed by the descriptive statistics presented in Table 5.

For time window lengths above 1  day (corresponding to observations number 1097 
and higher), the values for the topological overlap obtained from Method 2 and Method 3 
showed increasing behaviour up to a time window length of 53 days, which corresponds 
to observation number 4900 (Fig.  6). For larger time window lengths, the topological 
overlap values decreased again. In contrast, the values obtained from Method 1 increased 
until approximately observation 6200. For both Method 1 and Method 3, rising variation 
could be observed until observation 4900 in Fig. 6. In contrast to this, the variation of 
Method 2 was reduced from that moment. Additionally, the results obtained from Method 
1 and Method 3 remained in [0, 1] defined for the topological overlap, whereas the results 
calculated with Method 2 exceeded the predefined upper limit of this parameter.

Figure 7 shows the differences of the topological overlap values for pairs of methods. 
It becomes obvious that the smallest differences could be obtained for the comparison 
of Method 3 with Method 1, whereas the differences between Method 2 and Method 1 or 
Method 3, respectively, showed the highest variation, which is due to the high variation 
in the results of the topological overlap of Method 2 (see Fig. 6). The detailed descriptive 

Fig. 6  Topological overlap values. Illustrated for the three different methods calculated for the pork supply 
chain of a producer community in Northern Germany

Table 5  Descriptive statistics of  the topological overlap values for  the three different 
methods

Method 1 Method 2 Method 3

N 6749 6749 6749

Min 0 0 0

Max 0.36 1.72 0.69

Mean 0.10 0.39 0.24

Variance 0.02 0.13 0.06

Skewness 0.76 0.36 0.40

Kurtosis 1.85 2.08 1.51
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statistics of the differences are illustrated in Table 6. It has to be noticed that the dif-
ferences between Method 2 and Method 1 as well as between Method 2 and Method 3 
ranged between 0 and 1.5 with their highest values around observation 4500 (time win-
dow length 36), whereas all differences between Method 3 and Method 1 were smaller 
than 1, and the largest differences could be found here approximately at observation 
5200 (time window length 71). 

Analysis of variance

As the additional interaction effect between Mean number and Mean first (see Table 1) 
has no influence on the models’ coefficients of determination, the results are restricted 
to the models including only linear effects.

Differences of the topological overlap between Method 2 and Method 1  The results of 
the analysis of variance using a linear model showed that all six main effects had a significant 
influence on the differences between the topological overlap values of Method 2 and Method 
1 (p < 0.05). The model explained 82.4 % of the total variance (coefficient of determination). 
For the single main effects, most of the variance was explained by the time window length 
(effect size = 0.053), followed by the mean of the differences between active nodes and the 
size of the largest network component between two consecutive time steps (Mean active-
first, see Table 1; effect size = 0.017) and the mean of the sizes of the largest network compo-
nents between two consecutive time steps (Mean first, see Table 1; effect size = 0.016).

Fig. 7  Differences of the topological overlap values for the three different methods

Table 6  Descriptive statistics of  the differences between  the topological overlap values 
of the three methods

Method 2 − Method 1 Method 3 − Method 1 Method 2 − Method 3

N 6749 6749 6749

Min 0 0 0

Max 1.66 0.42 1.42

Mean 0.29 0.14 0.16

Variance 0.10 0.02 0.06

Skewness 0.97 0.36 1.65

Kurtosis 3.22 1.60 4.89
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Differences of the topological overlap between Method 3 and Method 1  The results of 
the analysis of variance using a linear model showed that all six main effects had a significant 
influence on the difference between the topological overlap values of Method 3 and Method 1 
(p < 0.05). The model explained 91.7 % of the total variance. For the single main effects, most 
of the variance was explained by the time window length (effect size = 0.039), followed by the 
arithmetic mean of the average sizes of all connected components containing more than one 
node (Mean size, see Table 1; effect size = 0.004) and Mean active-first (effect size = 0.004).

Differences of the topological overlap between Method 2 and Method 3  The results of 
the analysis of variance using a linear model showed that all six main effects had a significant 
influence on the difference between the topological overlap values of Method 2 and Method 3 
(p < 0.001). The model explained 77.9 % of the total variance. For the single main effects, most 
of the variance was explained by the time window length (effect size = 0.044), followed by Mean 
size (see Table 1; effect size = 0.038) and Mean active-first (see Table 1; effect size = 0.020).

Discussion
The intention of this article was to eliminate uncertainties for the calculation of the topo-
logical overlap and the temporal correlation coefficient proposed by Nicosia et al. (2013) 
and its extension proposed by Pigott and Herrera (2014) and to give clear definitions of the 
network parameters used for their calculations. Therefore, we proposed comprehensive 
example networks which included more possible network configurations (e.g. the network 
contained more than one network component with more than one node) than the example 
networks included in Pigott and Herrera (2014). Additionally, we introduced the results of 
the topological overlap of a real-world network of animal movements, which revealed the 
problems of the previous formulas. The influences of the network structure on the out-
come of the different methods were analysed with the help of this trade network.

Expected behaviour of the topological overlap and the temporal correlation coefficient

Since the topological overlap represents the probability for edges to persist across two 
consecutive time steps and the temporal correlation coefficient is the average over all 
topological overlap values, both should range between 0 and 1. Thus, values above the 
upper limit of one cannot be interpreted. The present article shows that only the results 
obtained from Method 1 and Method 3 remained in [0,1], whereas the results calculated 
with Method 2 exceeded the predefined upper limit of this range. This becomes obvious 
for the small example networks as well as for the real-world trade network. Additionally, 
the fact that values greater than one were determined for Method 2 suggests that also the 
values in the expected range overestimated the real topological overlap and, therefore, 
led to invalid results. Similarly, Method 1 converged towards a value smaller than one 
in Fig. 5b, c, where the maximal number of connected nodes did not equal the maximal 
number of active nodes. Here, the possible topological overlap and the temporal cor-
relation coefficient were underestimated. A detailed discussion of the estimates of the 
distortions between the three methods is given in the following paragraph.
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Estimates of the distortions between methods

Given the presence of isolated (i.e. not active) nodes in one of the snapshots tm or tm+1, 
the originally proposed Method 1 systematically outputs a smaller topological overlap 
between those network snapshots than both recently proposed methods. This was e.g. 
illustrated in the Calculation of Cm associated with the example network of Fig. 4. The 
ratios in Eq. (7) are always smaller or equal to one and quantify the underestimation in 
the average topological overlap values for the time step from tm to tm+1 obtained from 
Method 1 in comparison to Method 2 and Method 3 for a fixed m = 1, . . . ,M − 1. Con-
sequently, the right side of Eq.  (8) states the averaged underestimation concerning the 
topological overlap caused by Method 1 compared to Method 2 over time. A similar esti-
mation can be found in Pigott and Herrera (2014). Respectively, the topological overlap 
is averagely underestimated using Method 1 compared to the newly proposed Method 3 
by the fraction meanm≤M−1 (max[A(tm),A(tm+1)])

N ≤ 1.
If the maximal number of connected nodes max[N (tm),N (tm+1)] is not equal to the 

maximal number of active nodes max[A(tm),A(tm+1)] for a fixed m = 1, . . . ,M − 1 , 
the distortion in Cm between Method 2 and Method 3 is represented by the fraction 
max[N (tm),N(tm+1)]
max[A(tm),A(tm+1)]

≥ 1. This is underpinned by calculations for the example network of 

Fig. 2. Here Cm+1 = 2 and Cm+1 = 1 when obtained from Method 2, respectively, Method 
3, whilst max [N(tm+1), N(tm+2)] = 4 and max [A(tm+1), A(tm+2)] = 2.

As the average topological overlap Cm has no explanatory power concerning the 
complete dynamic network, the distortions between methods in temporal correla-
tion coefficient C should be considered in addition. Due to the double sum in the for-
mula to calculate C, less transformation with equality sign is possible, but estimations 
are necessary. The inequalities (9)–(11) give upper and lower boundaries using charac-
teristics of the network, as maximal and minimal values of max [N(tm+1), N(tm+2)] and 
max  [A(tm+1),  A(tm+2)] over time. They might provide a valuable tool in assessing the 
distortion connected to the usage of the different methods.

Real‑world network: trade network of a pork supply chain

For the pig trade network, the results of the topological overlap values showed for 
Method 2 a completely different behaviour than for Method 1 and Method 3 (Fig. 6). For 
Method 2, the topological overlap values varied over a huge range until observation 4900. 
This can be explained by the variation in the differences between the maximal number of 
connected and the maximal number of active nodes. These differences became smaller 
with increasing time window length, since for larger time window length the network 
formed larger network components which included the majority of the nodes. Thus, 
the differences between the maximal number of connected and active nodes decreased, 
which resulted in a smaller variation.

Results in analysis of variance

With regard to the real-world example given by the described pig trade network, the dif-
ferences of Cm between methods (Method 2 − Method 1, Method 2 − Method 3, Method 
3 − Method 1) were analysed with linear models containing six categorical variables cho-
sen from the characteristics of the underlying network. The goal was to analyse the impact 
of the network structure on the differences in methods. As—except for the time window 
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length—two snapshots are needed to calculate Cm, the categorical variables are determined 
as the characteristics’ mean value between two consecutive snapshots. The models used 
successfully explained the variance in the target variables, as coefficients of determination 
ranged from 0.78 to 0.92. All six chosen effects were significant in all three cases, but the 
time window length was the strongest effect in all three considered differences and showed 
medium effect sizes from 0.038 to 0.055 (Cohen 1988). The remaining effects used the num-
ber and size of connected components or the total number of edges in the snapshots at tm 
and tm+1. When the time windows for the aggregation of pig trade activities became longer, 
more edges and fewer but larger connected components are to be expected in the snapshots, 
but significant interaction effects between time window length and the remaining categorical 
variables have to be excluded in advance. The effect Mean active-first categorises the differ-
ence “size of the largest connected component − number of active nodes” averaged between 
the two considered snapshots. It was to be expected that its effect size was medium concern-
ing Method 2 − Method 3 and only small for the other two target variables since these meth-
ods differ exactly in the terms max [N(tm+1), N(tm+2)] and max [A(tm+1), A(tm+2)].

General aspects

The description of temporal networks as well as the analysis of their structural charac-
teristics is still under development (Nicosia et al. 2013). Therefore, there is still a lack of 
appropriate methods which help to analyse how the structure of temporal networks influ-
ences the dynamics of processes occurring on it, such as disease transmission. Further-
more, the question which characteristics of the network impact the dynamics is still not 
fully answered. Konschake et al. (2013) investigated the structural dynamics of a pig trade 
network and found that time-independent node centrality has to be treated with caution, 
whereas the stationary sampling of the nodes is still applicable for the network under rep-
resentation. They also stated that similar results are expected for other pig trade networks 
since the processes in the pork supply chain are highly standardized and industrialized. A 
further issue, which was revealed in the present study, is the choice of an appropriate time 
window length. Also Clauset and Eagle (2012) stated, that the choice of the time window 
length effectively determines many of the statistical properties of the resulting network 
and that an incorrect choice may impose a strong bias on the resulting analysis and con-
clusion. Additionally, they could show that a time window length which displays the natu-
ral periodicity of the system should be chosen which depends on the interactions under 
investigation. For a pig trade network, Lentz et al. (2013) showed a periodical pattern of 
180  days which represents the biological properties of pig production from farrowing 
to abattoir. Also Valdano et al. (2015) stated that the extent of the time window length 
may affect the prediction of the epidemic threshold and the spreading potential within 
a temporal network. Furthermore, their study confirmed the findings from other inves-
tigations that the network’s typical timescale and the temporal variability of its structure 
should definitely be considered for the analysis of dynamic systems. Therefore, the static 
aggregation of temporal networks should be treated with caution due to the fact that this 
approach neglects the temporal variation in the system which is of special importance for 
the analysis of the speed and the extent of infectious diseases (Kempe et al. 2002; Holme 
and Saramäki 2012; Tantipathananandh et al. 2007). To sum up, regarding the yet known 
dependencies and issues dealing with temporal network analysis, a measure like the 
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temporal correlation coefficient which evaluates the consistency of the edge configura-
tion could help to understand the structural dynamics of temporal networks.

Conclusion
In this study, an adaption for a method to calculate the average topological overlap Cm 
between two consecutive snapshots of a dynamic network was proposed and compared 
to the original method and another recently proposed adaption. The methods differ in the 
kind of nodes used to average the changes in edge configuration. The numerical differ-
ences between the methods were demonstrated using several small and clearly arranged 
example networks, and analytical estimations were given as well. A pig trade network 
was introduced and statistically analysed as a real-world example. The newly proposed 
Method 3 uses the maximal number of active nodes in two consecutive snapshots. Solely 
for Method 3, the temporal correlation coefficient shows convergence behaviour towards 
one and, additionally, the values for the topological overlap equals one (Cm = 1) in cases 
where consecutive snapshots are identical with regard to all given examples. Both are 
expected behaviours for a measure of temporal correlation between graphs.
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