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Abstract

Fungi secrete enzymes and proteins as reducing agents which can be used for the synthesis of metal nanoparticles
from metal salts. Large-scale production of nanoparticles from diverse fungal strains has great potential since they can
be grown even in vitro. In recent years, various approaches have been made to maximize the yield of nanoparticles of
varying shape, size, and stability. They have been characterized by thermogravimetric analysis, X-ray diffractometry,
SEM/TEM, zeta potential measurements, UV-vis, and Fourier transform infrared (FTIR) spectroscopy. In this review, we focus
on the biogenic synthesis of metal nanoparticles by fungi to explore the chemistry of their formation extracellularly and
intracellularly. Emphasis has been given to the potential of metal nanoparticles as an antimicrobial agent to inhibit the
growth of pathogenic fungi, and on other potential applications.
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Review
Introduction
Of all the processes developed so far, the fabrication of
metal nanoparticles by the biogenic methods employ-
ing plant extract are more popular, innocuous, inex-
pensive, and environmentally friendly as they do not
leave hazardous residues to pollute the atmosphere
[1–6]. Chemical methods for the synthesis of nanopar-
ticles are common, but their use is limited. The bio-
genic synthesis is, therefore, the best choice where
inherently benign organic molecules do not pose a
threat to human health and atmosphere. Microbes
have a promising role in the fabrication of nanoparti-
cles due to their natural mechanism for detoxification
of metal ions through reduction that can be achieved
extra- or intracellularly by bioaccumulation, precipita-
tion, biomineralization, and biosorption [4, 7–12].
Use of microgranisms in the green synthesis of metal

nanoparticles with special reference to the precious
metals using fungi has been done [10, 13–17]. Since
fungi contain enzymes and proteins as reducing agents,

they can be invariably used for the synthesis of metal
nanoparticles from their salts. Since some fungi are
pathogenic, one has to be cautious while working with
them during experiment. Fungus biomass normally
grows faster than those of bacteria [18] under the same
conditions. Although synthesis of metal nanoparticles by
bacteria is prevalent, their synthesis by fungi is more
advantageous [19] because their mycelia offer a large
surface area for interaction. Also, the fungi secrete
fairly large amount of protein than bacteria; therefore,
the conversion of metal salts to metal nanoparticles is
very fast.
Engineered metal nanoparticles of varying size and

shape from the diverse fungal species and yeast are
listed in Table 1. Extracellular synthesis of nanoparti-
cles involves the trapping of the metal ions on the
surface of the cells and reducing them in the pres-
ence of enzymes, while intracellular synthesis occurs
into the fungal cell in the presence of enzymes. Fungi
secrete extracellular proteins which have been used to
remove metal ions as nanoparticles. In a broad sense,
the metal nanoparticles can be extensively used in
different areas of agriculture and technology [2, 5, 6,
20, 21]. Many metal nanoparticles are antibacterial
and find extensive uses in medicine [6, 22–24]. The
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Table 1 Engineered metal nanoparticles of varying size and shape fabricated from fungal and yeast species

Fungi and Yeast Nanoparticles Size (nm) Shape Location References

Alternaria alternate Au 12 ± 5 Spherical, triangular, hexagonal Extracellular [25]

Aspergillus clavatus Au 24.4 ± 11 Triangular, spherical and hexagonal Extracellular [26]

A. flavus Ag 8.92 Spherical Cell wall [27]

A. fumigatus ZnO 1.2–6.8 Spherical and hexagonal Extracellular [28]

Ag – – Extracellular [29]

A. niger Au 12.8 ± 5.6 Spherical, elliptical – [30]

Au 10–20 Polydispersed Extracellular [31]

A. oryzae TFR9 FeCl3 10–24.6 Spherical – [32]

A. oryzae var. viridis Au 10–60 Various shapes (cell-free filtrate), mostly
spherical (biomass)

Mycelial surface [33]

A. sydowii Au 8.7–15.6 Spherical Extracellular [34]

A. terreus Ag 1–20 Spherical Extracellular [35]

A. tubingensis Ca3P2O8 28.2 Spherical Extracellular [36]

Aureobasidium pullulans Au 29 ± 6 Spherical Intracellular [37]

Candida albicans Au 5 Monodispersed spherical Cell-free extract [38]

Au 20–40 Spherical – [39]

60–80 Non spherical

C. glabrata CdS 20 Å, 29 Å Hexamer Intra- and extracellular [40]

CdS – – Intracellular [41]

Cladosporium
cladosporioides

Ag 10–100 Spherical – [42]

Colletotrichum sp. Au 8–40 Spherical Mycelial surface [43]

Coriolus versicolor Au 20–100, 100–300 Spherical and ellipsoidal Intra- and extracellular [44]

Ag 25–75, 444–491 Spherical Intra- and extracellular [45]

Cylindrocladium
floridanum

Au 19.05 Spherical Extracellular [46]

Au 5–35 Spherical Outer surface of the cell wall [47]

Epicoccum nigrum Au 5–50 – Intra- and extracellular [48]

Fusarium oxysporum Pt 70–180 Rectangular, triangular, spherical and
aggregates

– [49]

CdS – – Extracellular [50]

Ag – – Extracellular [51]

Ag 20–50 Spherical Extracellular [14]

Au 2–50 - [52, 53]

Au 8–40 Spherical, triangular Extracellular [54]

PbCO3,
CdCO3

120–200 Spherical Extracellular [55]

SrCO3 10–50 Needlelike Extracellular Extracellular [56]

CdSe 9–15 Spherical Extracellular [57]

CdS 5–20 Spherical Extracellular [58]

TiO2 6–13 Spherical Extracellular [59]

BaTiO3 4–5 Spherical Extracellular [60]

ZrO2 3–11 Spherical [61]

F. semitectum Au 10–80 Spherical Extracellular [62]

Hansenula anomala Au 14 – – [63]

Helminthosporum solani Au 2–70 Spheres, rods, triangles, pentagons,
pyramids, stars

Extracellular [64]
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antibacterial efficiency is enhanced manifold when a
nanoparticle of one metal is coupled with another
such as those of copper and silver. Although in re-
cent times several organisms have been investigated
for the fabrication of nanoparticles, its mechanism is
still not well understood. This review, therefore, fo-
cuses on the biogenic synthesis of metal nanoparticles
by fungi and attempts to explore the chemistry of
their formation extracellularly and intracellularly.

Synthesis, Mechanism, and Characterization of Metal
Nanoparticles
Biogenic synthesis of metal nanoparticles involves bio-
reduction of metal salts to elemental metal which
may be stabilized by organic molecules present in the
microbes such as fungi and bacteria. The other way
of producing metal nanoparticles is biosorption where
metal ions in the aqueous medium are bonded to the
surface of the cell wall of the organisms. For large-

Table 1 Engineered metal nanoparticles of varying size and shape fabricated from fungal and yeast species (Continued)

Hormoconis resinae Au 3–20 Spherical Extracellular [65]

Macrophomina
phaseolina

Ag 5–40 Spherical Cell-free filtrate [144]

Neurospora crassa Au 32 (3–100) Spherical Intracellular [66]

Pediococcus pentosaceus Ag – – Extracellular [67]

Au – – Intracellular [68]

Penicillium
brevicompactum

Au 10–60 Spherical, triangular and hexagonal Extracellular [69]

P. fellutanum Ag 5–25 Spherical Extracellular [70]

P. nagiovense AJ12 Ag 25 ± 2.8 Spherical Cell-free filtrate [15]

P. rugulosum Au 20–80 Spherical, triangular, exagonal – [71]

20–40 Spherical

Penicillium sp. 1–208 Au 30–50 Spherical Cell filtrate [72]

Phanerochaete
chrysosporium

Au 10–100 Spherical Extracellular [73]

Phoma glomerata Ag 60–80 Spherical – [74]

Pichia jadinii Au <100 Spherical Cytoplasm [7]

Pleurotus sajor caju Ag 30.5 Spherical Extracellular [75]

Rhizopus oryzae Au 16–25 Spherical Cell-free filtrate [76]

Saccharomyces cerevisiae Au 15–2030 Spherical Cell wall Cytoplasm [77]

Schizosaccharomyces
pombe

CdS 18 Å, 29 Å – Intra- and extracellular [40]

S. pombe CdS 1–1.5 Hexagonal Intracellular [78]

S. pombe CdS Intracellular [79]

Sclerotium rolfsii Au 25.2 ± 6.8 Spherical [80]

Trichoderma asperellum Ag 13–18 Nanocrystalline Extracellular [81]

T. koningii Au 30–40 Small spheres to polygons – [82]

Au 10–14 Spheres Cell-free filtrate [83]

T. reesei Ag 5–50 – Extracellular [84]

T. viride Ag 5–40 Spherical Extracellular [85]

Verticillium sp. Au – – Intracellular [86]

Verticillium sp. Au 20 ± 8 Spherical Cell wall and cytoplasmic
membrane

[87]

V. volvacea Au 20–150 Triangular, spherical, hexagonal – [88]

Yarrowia lipolytica NCIM
3589

Au 15 Hexagonal, triangular Associated with cell wall [89]

Y. lipolytica NCIM 3589 Au Various shape depending on Au3+

concentration
Intracellular [90]
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scale production of nanoparticles, fungi and yeasts are
preferred over other organisms (Figs. 1 and 2). When
fungus is exposed to metal salts such as AgNO3 or
AuCl4

−, it produces enzymes and metabolites to pro-
tect itself from unwanted foreign matters, and in
doing so, the metal ions are reduced to metal nano-
particles [91]. The fungi also produce napthoquinones
and anthraquinones [92–95] which act as reducing
agents. Thus, a specific enzyme can act on a specific
metal. For instance, nitrate reductase is essential for
ferric ion reduction to iron nanoparticles. It was re-
ported that for metal ion reduction, not only the en-
zyme was necessary but also an electron shuttle [14].
It is well understood that nanomaterials may be benefi-
cial or harmful to living systems [1–6]. For example,
Cd, Hg, Pb, and Tl nanoparticles are toxic and produce
adverse effect in mammals and plants. The toxicity also
depends on their shape, size, and the nature of the spe-
cific metal ion.

Silver Nanoparticles
Major work has been done with silver nanoparticles pro-
duced by fungi extracellularly or intracellularly [29, 51].
The particle size is metal and fungi specific. The silver
nanoparticles produced from the interaction of Aspergillus

fumigates may not have the same dimension as those pro-
duced by Fusarium oxysporum even if the other conditions
like concentration, pH, and temperature are identical [29].
The incubation time may also vary from 15 to 60 min [29,
51]. Synthesis of silver nanoparticles from Trichoderma ree-
sei takes 72 h, but it is useful for large-scale production of
nanoparticles. Their size ranges between 5 and 50 nm [84].
It has also been reported by Vahabi et al. [84] that manipu-
lation of the method can produce enzymes up to 100 g/L
which is unprecedented and requires confirmation. Silver
nanoparticles of 20–50 nm, obtained from F. oxysporum,
aggregate in spherical shape (Fig. 3) [14]. In this study, the
extracellular reduction of metal ions was done by a nitrate-
dependent reductase enzyme and a shuttle quinone. Sanghi
et al. [45] studied the extra- and intracellular formation of
silver nanoparticles by Coriolus versicolor, commonly
known as white rot fungus. Extracellular production of sil-
ver nanoparticles from fungi A. fumigates [29] and Phoma
sp. [96] has also been reported. In addition, the fungus, Tri-
choderma viride, was used to synthesize polydispersed sil-
ver nanoparticles of 5 to 40 nm at about 27 °C which
showed an absorption band at 420 nm in UV-visible
spectrum [85]. Antibacterial properties were tested against
four bacterial strains namely, Salmonella typhi (gram-nega-
tive rods), Escherichia coli (gram-negative rods),

Fig. 1 Synthesis of nanoparticles from fungi and yeast
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Staphylococcus aureus (gram-positive cocci), and Micrococ-
cus luteus (gram-positive cocci). It was observed that the
antibacterial activities of ampicilin, kanamycin,
erythromycin, and chloramphenicol were significantly
enhanced in the presence of silver nanoparticles.
Geotricum sp. was found to successfully produce sil-
ver nanoparticles with particle sizes ranging from 30
to 50 nm [97]. The fungus Verticillium (from Taxus
plant) has also been used to synthesize silver nano-
particles with average size of 25 ± 12 nm at room
temperature [87]. It is noteworthy that silver ions
were not toxic to the fungal cells, and they continued

to multiply even after biosynthesis of the silver nano-
particles. Rice husk is a cheap agro-based waste mater-
ial, which harbors a substantial amount of silica in the
form of amorphous hydrated silica grains. Therefore, it
would be an ideal material to biotransform amorphous
to crystalline silica nanoparticles. Yang et al. [98] have
suggested that in such cases, the nanoparticles form
complexes. It must be made clear at this stage that only
metal ions are bonded to the organic groups by virtue
of the positive charge on them and the lone pair of
electrons on the organic functional groups. In no case
may a neutral metal atom be bonded to any electron-

Aspergillus clavatus Aspergillus fumigatus Candida albicans

Coriolus versicolor Fusarium oxysporum Hansenula anomala

Trichoderma reesei Saccharomyces cerevisiae Verticillium sp.

Fig. 2 Frequently used fungi and yeasts for metal nanoparticle synthesis

Fig. 3 SEM image of the Fusarium oxysporum 07 SD strain at a ×11,000 and b ×40,000 magnification [14]
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donating molecule. There is always a great deal of con-
fusion about metal ions and metal nanoparticles. A
metal ion is a positively charged particle of much
smaller size than an electrically neutral metal atom.
When the metal ion is bonded to the surface of the fun-
gal cell, it undergoes reduction to form metal nanopar-
ticles with subsequent oxidation of organic molecules
whether enzyme, protein, or peptide. It is quite obvious
that oxidation and reduction are simultaneous
processes.
Kowshik et al. [99] demonstrated the extracellular for-

mation of 2- to 5-nm-long silver nanoparticles by a
silver-tolerant yeast strain MKY3. Subramanian et al.
[100] reported the effectiveness of marine yeasts (Pichia
capsulata) derived from the mangrove sediments to
synthesize silver nanoparticles (1.5 mM AgNO3, 0.3 %
NaCl, pH 6.0, incubated at 5 °C for 24 h) that exhibited
an absorption peak at 430 nm.
Extracellular biosynthesis and characterization of

silver nanoparticles employing Aspergillus flavus, A.
fumigates, Neurospora crassa, and Phaenerochate
chrysosporium have been reported by many workers
[29, 66, 101–103]. Nanoparticles of Au-Ag have also
been reported [53, 54]. Gericke and Pinches [104]
have obtained gold nanoparticles of different shapes
and sizes from fungal cultures. It has been observed
that their size can be controlled by monitoring con-
centration, pH, and temperature of the solution. It
has also been noted that intracellular synthesis yields
nanoparticles of smaller size.
The exact mechanism of intracellular synthesis of gold

and silver nanoparticles is not known, but it is for sure
that in the presence of fungi, they are formed on the sur-
face of mycelia. It is proposed that the metal ions in the
solution are attracted towards fungal mycelia by virtue
of the positive charge on them and the slightly negative
charge on the cell wall due to carboxylic groups on the
enzyme or amino group of the protein, followed by re-
duction of the metal ions producing metal nanoparticles
[105].

The acidophilic fungus, Verticillium sp., isolated from
the taxus plant, was allowed to interact with AgNO3 so-
lution at 28 °C for 72 h. The transformation was moni-
tored visually and spectroscopically by a change in color
of the fungal biomass. Both gold and silver nanoparticle
formation were further confirmed by a comparison of
their spectra before and after their exposure to the fungi.
It is also significant to note that the fungi keep on grow-
ing even after the formation of silver nanoparticles, indi-
cating that they are not toxic to the Verticillium sp.
However, in most of the bacterial species, the growth is
arrested showing that Ag/Au nanoparticles are toxic to
them. The inhibition of bacterial cell growth in the
presence of Ag nanoparticles is assumed to be a de-
fensive mechanism to sequester the metal ions as a
consequence of which the Ag+ ions are reduced or
complexed with proteins in the bacterial cells. The
SEM image (Fig. 4a) of Verticillium spp. exposed to
AgNO3 solution for 72 h showed uniform distribution
of Ag nanoparticles over the entire surface of the fun-
gal cell [106]. EDAX also indicated an abundance of
Ag nanoparticles (Fig. 4b) besides other weak peaks
for C, S, P, Mg, and Na. The TEM analysis of the
above sample (Fig. 5a, b) displayed scattered dark
spots identified as Ag nanoparticles of 25 ± 12 nm.
Li et al. have reported the fabrication of Ag nanoparti-

cles of 1–20 nm from Aspergillus terreus in pretty good
yields [35]. It is expected that the fungi secrete NADH
as one of the components as reducing agents, which
along with other ingredients, reduce the metal ions to
metal nanoparticles. In order to confirm their hypoth-
esis, NADH alone was added to AgNO3 solution which
did not show any change in color. However, when

Fig. 4 a SEM image of the Verticillium fungal cells after immersion in 10−4 M aqueous AgNO3 solution for 72 h (scale bar = 1 mm). b EDAX spectrum
recorded from a film of fungal cells after formation of silver nanoparticles. Different X-ray emission peaks are labelled [106]
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NADH was added along with a fungal extract to AgNO3,
the reaction started after a few minutes. It shows that
NADH is a key factor in the synthesis of Ag nanoparti-
cles, but other molecules are also essential which
perhaps, catalyze the redox reaction. In many microor-
ganisms, NADH is present as a coenzyme such as reduc-
tase secreted by A. terreus. Since NADH acts as an
electron carrier and Ag+ ions as electron acceptor, re-
duction of Ag+ to Ag nanoparticle occurs [58, 106]. The
Ag nanoparticles were examined for their antimicrobial
activity. The results (Table 2) indicated that nanoparti-
cles are broad spectrum antimicrobial agents. In some
cases, they are effective even against fluconazole-
resistant fungi [107].

Gold Nanoparticles
Biosynthesis of gold nanoparticles from fungi has
been reviewed very recently [17]. They are resistant

to oxidation and dispersed [107] nicely. The color
corresponds to the particle size in general. For in-
stance, yellow, red, and mauve refer to large, small,
and fine nanoparticles, respectively, of varying size
and morphology [108]. It is claimed that gold nano-
particles can be stabilized by substances like ascorbic
acid and citrate [109]. Stabilization can also be
achieved by polyvinyl alcohol [110]. Enzymes are said
to be responsible for the biosynthesis of gold nano-
particles. The intra- or extracellular synthesis of
nanoparticles by fungi is done in a simpler manner.
The gold ions are trapped by the proteins and en-
zymes on the surface of the fungi and get reduced.
They further form aggregates of large dimensions
[111]. The gold nanoparticles synthesized from vari-
ous sources have different properties. They have been
checked for their cytotoxic effects against cancer [69].
Both the intracellular and extracellular reduction of
AuCl or AuCl3 follow the same pathway [112]. Since
AuCl requires one electron to give gold nanoparticles,
it follows one-step reduction whereas AuCl3 requires
three electrons and reduction occurs in three steps.
As an example, when AuCl3 is dissolved in water, the
following reactions occur at the mycelia of fungi
which contain proteins, etc. and the metal nanoparti-
cles are produced.

It is to be noted that in the event of intracellular gold
nanoparticle formation, the Au3+ ions being smaller than
Au+ ions penetrate or simply diffuse into the cell mem-
brane and get reduced there. It is, however, inconclusive
if diffusion of Au3+ ions into the fungal cell occurs
through accumulation or absorption. As the concentra-
tion of gold nanoparticles increases, the Au3+/Au+

Fig. 5 a, b TEM images of thin sections of stained Verticillium sp. cells after reaction with Ag+ ions for 72 h at different magnifications. Scale bars
in a and b correspond to 1 and 500 nm, respectively [106]

Table 2 Size of the inhibition zone for AgNPs synthesized by
Aspergillus terreus against the tested microorganisms [35]

Tested pathogenic organisms Mean size of inhibition
zone (mm)

Control Test

Candida albicans (ATCC 90028) 9 16 ± 1

C. krusei (ATCC 6258) 10 14 ± 2

C. parapsilosis (ATCC 22019) 9 13 ± 1

C. tropicalis (JLCC 30394) 10 14 ± 1

Aspergillus flavus (IFM 55648) 9 13 ± 2

A. fumigates (IFM 40808) 9 14 ± 2

Staphylococcus aureus (ATCC 25923) 9 16 ± 1

Pseudomonas aeruginosa (ATCC 27853) 9 12 ± 1

Escherichia coli (ATCC 25922) 10 13 ± 1

ATCC American Type Culture Collection, USA; IFM Institute for Food Microbiology
(at present the Medical Mycology Research Center, Chiba University), Japan; JLCC
Culture Collection of Jilin University, Mycology Research Center, China
Control: AgNO3; test: AgNPs
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concentration falls. Metal nanoparticles induce oxidative
stress in fungi and other microorganisms. Higher con-
centration of metal nanoparticles inhibits growth and
protein expression [113] in Rhizopus oryzae. It is also
likely that for a certain metal ion reduction, a specific
type of protein is involved. However, it may be under-
stood from hard and soft acid and base theory (HSAB)
that donor acceptor complexation of metal with organic
bases may occur.
Narayanan and Sakthivel [80] have demonstrated the

formation of gold nanoparticles in the presence of the
fungus Cylindrocladium floridanum. They noted that in
7 days, the fungi accumulated face-centered cubic (fcc)
(111)-oriented crystalline gold nanoparticles on the sur-
face of the mycelia. It was confirmed by the appearance
of a characteristic peak at 540 nm in the UV-vis region.
The nanoparticles are useful in degrading 4-nitrophenol
where the process follows a pseudo-first-order kinetic
model with the reaction rate constant of 2.67 × 10−2 m−1

with 5.07 × 10−6 mol dm−3 of gold of about 25 nm. As
the reaction proceeds, an increase in gold nanoparticle
concentration from 2.54 × 10−6 to 12.67 × 10−6 mol dm−3

occurs with a reduction in size from 53.2 to 18.9 nm.
Mukherjee et al. [87] have reported the formation of

gold nanoparticles from Verticillium sp. which was
found on the surface of mycelia. Gold nanoparticles have
also been produced from Verticillium fungi. When
HAuCl4 solution was added to fungal biomass, it started
turning purple within a few hours of exposure while the
aqueous solution of HAuCl4 remained colorless. It indi-
cated intracellular nanoparticle formation. The morph-
ology of Au nanoparticles does not appear to have a
relationship with fungal species; as in all cases, several
types of nanoparticles are formed [51, 87]. It was ob-
served that old fungal biomass is less effective in produ-
cing Au nanoparticles than the fresh ones. It is probably
due to a larger secretion of proteins and enzymes in the
fresh fungal biomass than the aged ones.
Kumar et al. [64] showed the applicability of yeast spe-

cies Hansenula anomala to reduce gold salt in the pres-
ence of amine-terminated polyamidoamine dendrimer as
stabilizer. Lim et al. [114] used Saccharomyces cerevisae
broth to synthesize gold and silver nanoparticles. Gold
nanoparticles of 2- to 100-nm size were prepared at pH
4–6 in 24 h which had an absorption maximum at
540 nm. Extracellular synthesis of silver NP of 10–20 nm
was done at pH 8–10 in 48 h. It displayed a characteristic
absorption peak at 415 nm. Gold and silver nanoparticles,
with face-centered cubic structures prepared from
Candida guilliermondii [115], exhibited distinct sur-
face plasmon peaks at 530 and 425 nm, respectively.
These nanoparticles were tested against five pathogenic
bacterial strains. The highest efficiency for both gold and
silver nanoparticles was observed against S. aureus, which

indicated the applicability of yeast-synthesized nanoparti-
cles for environmental remediation. Yarrowia lipolytica was
reported to be an effective reducing agent to produce gold
nanoparticles and nanoplates by varying concentrations of
chloroauric acid at pH 4.5 [90]. According to the findings, a
mixture of 109 cells ml−1 and 0.5 or 1.0 mM of the gold salt
developed a purple or golden red color indicating the
formation of gold nanoparticles. Nanoparticles of different
sizes were obtained by incubating 1010 cells ml−1 with 0.5,
1.0, or 2.0 mM chloroauric acid. It was confirmed that an
increase in salt concentration at a fixed number of cells
resulted in the increase of nanoparticles. On the other
hand, an increase in cell numbers at a constant gold salt
concentration resulted in a significant decrease in nanopar-
ticle size. From Fourier transform infrared spectroscopy
(FTIR) spectral data, the presence of carboxyl, hydroxyl,
and amide groups on the cell surfaces was confirmed.
Soni and Prakash [116] have reported the green syn-

thesis of gold nanoparticles from Aspergillus niger and
identified it by a change in color and its absorption at
530 nm. They have also suggested that broadening of
the band is due to the aggregation of gold nanoparticles.
Perhaps it refers to the low concentration of the nano-
particles because the peak centered at 530 nm will obvi-
ously become sharp as a result of the increased quantity
of nanoparticles. They have also reported that the Au
nanoparticles are toxic to Anopheles stephensi, Culex
quinquefasciatus, and Aedes aegypti mosquito larvae.
Silver nanoparticles synthesized from Pleurotus ostreatus
fungi were characterized by UV-vis, SEM, EDS, XRD,
and TEM. Silver nanoparticles in solution were identi-
fied by the appearance of a peak at 440 nm in the visible
region of the spectrum. XRD pattern showed their crys-
talline nature. The SEM and TEM images showed
depressed Ag nanoparticles of nearly 50 nm. Their anti-
microbial activity was tested against Gram-positive and
Gram-negative bacteria namely, E. coli, Klebsiella pneu-
monia, Pseudomonas aeruginosa, S. aureus, and Vibrio
cholera. It was observed that Ag nanoparticles are much
less effective against the above pathogens relative to the
antibiotics, but when antibiotics are fortified with Ag
nanoparticles, their activity is enhanced. It is quite likely
that a suitable mixture of antibiotic and Ag nanoparti-
cles may be more effective as a medicine for drug-
resistant pathogens.

Other Metal Nanoparticles
Castro-Longoria et al. [117] have produced platinum
nanoparticles and their aggregates using the fungus N.
crassa. Both intracellular single platinum nanoparticles
of 4- to 3-nm diameter and spherical agglomerates of
20- to 110-nm diameter were produced. A comparison
of platinum nanoparticles synthesized from biomass was
made with those prepared from N. crassa extract. It was
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noticed that the platinum nanoparticles produced from
the extract were only single crystal nano-agglomerates.
However, the quantity of nanoparticles synthesized
extracellularly differs significantly from those prepared
intracellularly. Magnetite, Fe3O4 magnetite nanoparticles
have been obtained from F. oxysporum and Verticillium
sp. [118]. Extracellular synthesis of fairly smaller selen-
ium nanoparticles of the order of 47 nm from A. terreus
was also done in 60 min [119]. It was found that Schizo-
saccharomyces pombe and Candida glabrata were cap-
able of intracellular production of CdS nanoparticles
from cadmium salt in solution [120]. CdS nanoparticle
synthesis using S. pombe has been considered to be
dependent on a stress protein response [99]. Phytochela-
tin gets activated on exposure of S. pombe to cadmium
and synthesizes phytochelatins. These phytochelatins
chelate the cytoplasmic cadmium to phytochelatin–Cd
complex. Thereafter, an ATP-binding cassette-type vacu-
olar protein transports phytochelatin–Cd complex across
the vacuolar membrane. Within the vacuole, sulfide gets
added to the complex to form a high-molecular-weight
phytochelatin CdS−2 complex/CdS nanocrystal.

Metal Nanoparticles and Plant Pathogenic Fungi
Fungi are accountable for more than 70 % of all major
crop diseases [121]. The annual crop losses due to pre-
and post-harvest fungal diseases exceed 200 billion
euros, and in the USA alone, over $600 million are an-
nually spent on fungicides [122]. Impact of nanoparticles

on crop plants is a rising area of research that needs to
be meticulously explored. In recent years, engineered
nanoparticles have achieved particular attention as a po-
tential candidate for improving crop yield, resistance,
and disease management technologies [5, 6, 123]. How-
ever, these applications are still in their infancy. This is
simply due to the unprecedented and unforeseen health
hazards and environmental concerns [6]. It is under-
stood that the use of pesticides in agriculture is becom-
ing more hazardous day by day. In order to replace such
toxic materials by equally useful substances is an excel-
lent choice, especially easily available silver nanoparticles
which are antimicrobial for most of the fungal and bac-
terial diseases in man and plants [124, 125]. Jo et al.
[126] have reported antifungal activity of Ag+ ions and
Ag nanoparticles on pathogenic fungi. It is useful if a
better protocol for its application in plants is developed.
The Ag nanoparticles in aqueous medium catalyze
complete destructive oxidation of microorganism [127].
Kim et al. [128] have studied the growth inhibition effect
of three types of Ag nanoparticles against 18 different
plant pathogenic fungi in vitro (Table 3). A variety of
host plants including the cucumber family, tomato, po-
tato, and cabbage, which are very prone to infections,
have been treated. It has been noted that growth inhib-
ition is concentration-dependent and the most effective
concentration leading to complete destruction of fungi is
100 ppm. Possible mechanism of interaction between
fungi and nanoparticles is presented in Fig. 6.

Table 3 List of plant pathogenic fungi (modified from 128)

Fungal species (KACC accession no.) Common names Host plants

Alternaria alternata (A-1 40019) Alternaria leaf blight Strawberry, pepper, tomato

Alternaria brassicicola (A-2 40857) Black spot Cauliflower, radish, cabbage, kale

Alternaria solani (A-3 40570) Alternaria leaf spot Pepper, tomato, eggplant, potato

Botrytis cinerea (B-1 40574) Gray mold Eggplant, tomato, potato, pepper, strawberry

Cladosporium cucumerinum (C-1 40576) Scab Eggplant, cucumber, pumpkin, melon

Corynespora cassiicola (C-9 40964) Leaf spot Pepper, cucumber, bean, tomato, sesame

Cylindrocarpon destructans (C-10 41077) Root rot Strawberry, ginseng, peony

Didymella bryoniae (D-1 40938) Black rot Cucumber, pumpkin, watermelon, melon

Fusarium oxysporum f. sp. Cucumerinum (F-1 40525) Fusarium wilt Cucumber

F. oxysporum f. sp. Lycopersici (F-2 40032) Fusarium wilt Tomato

F. oxysporum (F-3 40052) Fusarium wilt Tomato

Fusarium solani (F-4 41643) Fusarium wilt Potato, ginseng

Fusarium sp. (F-5 40050) Fusarium rot Potato, sweet potato, pepper, strawberry, pear tree

Glomerella cingulata (G-1 40895) Anthracnose Pepper, strawberry, grapevine

Monosporascus cannonballus M-1 40940) Root rot Cucumber, pumpkin, watermelon, melon

Pythium aphanidermatum (P-8 40156) Damping-off Tomato, tobacco, radish

Pythium spinosum (P-9 41060) Root rot Sweet potato, pumpkin, cabbage

Stemphylium lycopersici (S-3 40967) Leaf spot Eggplant, tomato, pepper

KACC Korean Agricultural Culture Collection, Suwon, Korea
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Silver nanoparticles were used as an alternative to pes-
ticides to control the sclerotia-forming phytopathogenic
fungi [129]. The antifungal effect of doubly encapsulated
silver nanoparticle solution against rose powdery mildew
(leaf distortion, leaf curling, early defoliation, and
reduced flowering) caused by Sphaerotheca pannosa var
rosae was also studied [130]. A 10-ppm silver nanoparti-
cle solution of 1.5 nm was sprayed over a large area
infected by rose powdery mildew. After 2 days, more
than 95 % of them faded out and did not recur for a
week. The toxic effect of the silver nanoparticles of 5–
24 nm on Colletotrichum gloesporioides, which causes
anthracnose in a wide range of fruits, such as apple, avo-
cado, mango, and papaya has also been studied [131]. A
significant delay in growth of C. gloesporioides was ob-
served. Silver nanoparticles may, therefore, be used as an
alternative to fungicides for plant disease management.
Das et al. [132] have reported extracellular synthesis of
gold nanoparticles of 10 nm from R. oryzae which was
employed for the generation of nanogold-bioconjugate
structure. These nanostructures displayed excellent ad-
sorption capacity and were successfully employed to
purify water free from pathogens and pesticides.

Application of Metal Nanoparticles
There are a myriad of applications of metal nanoparticles
such as cosmetics, catalysts, lubricants, fuel additives,
paints, agro-chemicals, food packaging, textile engineering,

electronics, optics, environmental sensing, nanomedicine,
drug and gene delivery agents, biodetection of pathogens,
tumor destruction via heating (hyperthermia), magnetic
resonance imaging, and phagokinetic studies [2–9, 23, 24,
133–136, 139]. Fungus-mediated synthesis of metal nano-
particles is getting much attention due to their extensive
application in various sectors (Table 4). Durán et al. [141]
have reported that silver nanoparticles (1.6 nm) obtained
extracellularly from F. oxysporum can be incorporated in
clothes which can prevent infection from S. aureus. Silver
nanoparticles (1–10 nm) attach to the bacterial cell surface
and significantly disrupt its respiration and permeability
[154]. Silver nanoparticles (5–25 nm) from A. fumigates
were produced to understand the biochemical and molecu-
lar mechanism of synthesis [29]. The ability of the fungi, F.
oxysporum, to hydrolyze metal complexes demonstrates the
formation of metal oxide semiconducting materials [59].
Namasivayam and Avimanyu [143] have reported that
when the silver nanoparticles of 45–100 nm obtained from
Lecanicillium lecanii were coated on the bleached cotton
fabrics using acrylic binder, they became resistant to S.
aureus and E. coli infection. A method was invented to
decorate the growing fungal hyphae of A. niger with a
high load of gold nanoparticles, which were initially
produced using aqueous tea extract as a sole reducing/
stabilizing agent [155]. Heat treatment of these hybrid
materials yielded porous gold microwires. It is antici-
pated that the nanowire-based paper may be used to

Fig. 6 Possible mechanism behind fungus and nanoparticles interaction
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clean up oil and organic pollutants in water and soil
sediments. Nanofibrous mats were prepared by Spasova
et al. [156], which contained chitosan and T. viride
spores. It was reported that T. viride kept at 28 °C
grows much faster and fights for space and nutrients
against Fusarium sp. and Alternaria sp. Moreover, T.
viride produces extracellular hydrolytic enzymes which
directly attack the pathogen and destroy their cell walls.
Advances in luminescent nanocrystals have led to fluor-
escent labelling by QDs with bio-recognition molecules
[157]. When F. oxysporum was incubated with a mix-
ture of CdCl2 and SeCl4, highly luminescent CdSe
quantum dots were produced at room temperature (26
± 1 °C) [153]. In addition, nitrate reductase from F. oxy-
sporum has been shown to catalyze the production of
stable silver nanoparticles in vitro. It suggests the way
for designing a rational enzymatic strategy for the syn-
thesis of nanomaterials of different composition, shape,
and size [158]. An optical sensor for the detection of
pesticides (Siven 85 % wettable powder) in water using
ZnCdSe QD films has also been developed [159].

Conclusions
It is an established fact that biogenic synthesis of metal
nanoparticles by fungi is a safe and economical process

because stable and small-sized nanoparticles are gener-
ally produced. Their role in drug delivery, magnetic res-
onance imaging, catalysis, environmental sensing, textile
engineering, food sectors and plant disease management
is well known. Several precious metals may be easily
recovered from large heap of wastes containing metal
salts. This process of producing nanoparticles by a redox
process may be employed to produce pure metals. The
fungi may therefore be used in metallurgical operations
to sequester metal from ores. It can save time and
money. Since some of the metal ions are toxic to many
microbes, they can be used as a prophylactic to inhibit
their growth. However, a comprehensive protocol may
be developed to control the morphology of metal nano-
particles for their application in all sectors of medicine,
agriculture, and technology.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
AH gathered the research data. AH and KSS analyzed these data findings and
wrote this review paper. Both authors read and approved the final manuscript.

Acknowledgements
Authors are thankful to publishers for permission to adopt figures and tables
in this review.

Table 4 Applications of metal nanoparticles synthesized by fungi and yeasts

Nanoparticle Fungi/yeasts Application References

Ag Alternaria alternata Enhancement in antifungal activity of fluconazole against Phoma glomerata [136]

Aspergillus clavatus Antimicrobial activity [137]

A. niger Antibacterial activity [138]

A. niger Wound healing activity [131]

Colletotrichum gloesporioides Antifungal activity [141]

Fusarium acuminatum Antibacterial activity [140]

F. oxysporum Textile fabrics [141]

F. solani Textile fabric [142]

Lecanicillium lecanii Textile fabrics [143]

Macrophomina phaseolina Antimicrobial properties against multidrug-resistant bacteria [144]

Penicillium oxalicum Catalytic activity [145]

Penicillium sp. Antibacterial activity against MDR E. coli and S. aureus [146]

Phytophthora infestans Antimicrobial activity [147]

Pleurotus ostreatus Antimicrobial activity [148]

Raffaelea sp. Antifungal activity [149]

Trichoderma crassum Antimicrobial activity [150]

T. viride Vegetable and fruit preservation [151]

Au Aspergillus japonicus AJP01 Catalytic activity [152]

A. niger Toxic to mosquito larvae [116]

Rhizopus oryzae Water hygiene management [132]

Cds Saccharomyces pombe Electric diode [78]

F. oxysporum Live cell imaging and diagnostics [153]
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