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Abstract
The hetero-tetrameric voltage-gated potassium channel Kv7.2/Kv7.3, which is encoded by

KCNQ2 and KCNQ3, plays an important role in limiting network excitability in the neonatal

brain. Kv7.2/Kv7.3 dysfunction resulting from KCNQ2mutations predominantly causes

self-limited or benign epilepsy in neonates, but also causes early onset epileptic encepha-

lopathy. Retigabine (RTG), a Kv7.2/ Kv7.3-channel opener, seems to be a rational antiepi-

leptic drug for epilepsies caused by KCNQ2mutations. We therefore evaluated the effects

of RTG on seizures in two strains of knock-in mice harboring different Kcnq2mutations, in

comparison to the effects of phenobarbital (PB), which is the first-line antiepileptic drug for

seizures in neonates. The subjects were heterozygous knock-in mice (Kcnq2Y284C/+ and
Kcnq2A306T/+) bearing the Y284C or A306T Kcnq2mutation, respectively, and their wild-

type (WT) littermates, at 63–100 days of age. Seizures induced by intraperitoneal injection

of kainic acid (KA, 12mg/kg) were recorded using a video-electroencephalography (EEG)

monitoring system. Effects of RTG on KA-induced seizures of both strains of knock-in

mice were assessed using seizure scores from a modified Racine’s scale and compared

with those of PB. The number and total duration of spike bursts on EEG and behaviors

monitored by video recording were also used to evaluate the effects of RTG and PB. Both

Kcnq2Y284C/+ and Kcnq2A306T/+ mice showed significantly more KA-induced seizures than

WT mice. RTG significantly attenuated KA-induced seizure activities in both Kcnq2Y284C/+

and Kcnq2A306T/+ mice, and more markedly than PB. This is the first reported evidence of

RTG ameliorating KA-induced seizures in knock-in mice bearing mutations of Kcnq2, with
more marked effects than those observed with PB. RTG or other Kv7.2-channel openers

may be considered as first-line antiepileptic treatments for epilepsies resulting from

KCNQ2mutations.
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Introduction
Kv7.2/Kv7.3, a hetero-tetrameric voltage-gated potassium channel, consists of two types of sub-
units, which are encoded by KCNQ2 and KCNQ3. Kv7.2/Kv7.3 is predominantly expressed in
the hippocampus, neocortex, and the granular layer of the cerebellum [1–4] and generates the
neuronal M-current, which stabilizes the membrane potential and controls neuronal excitabil-
ity. Kv7.2/Kv7.3 thus plays an important role in limiting network excitability in the neonatal
brain, where GABAergic action is depolarizing and excitatory [5].

Mutations in KCNQ2 and KCNQ3 are known to cause predominantly benign familial or
non-familial neonatal epilepsy (BFNE or BNE) [2,6,7], both of which remit spontaneously in
late infancy and thus are self-limited. However, a recent line of evidence shows that some
KCNQ2mutations also cause early onset epileptic encephalopathies (EOEEs) or early infantile
epileptic encephalopathies (EIEE), such as Ohtahara syndrome [8–12], which are associated
with intractable seizures followed by profound psychomotor delay. In general, most individuals
with BFNE or BNE have a benign course; however, some patients may have varying degrees of
developmental delays and epilepsy recurring later in their life [11,12]. The development of
rational therapy for epilepsies caused by dysfunctions resulting from mutated Kv7.2/Kv7.3 is
thus urgently needed.

Retigabine (RTG), a Kv7.2/Kv7.3 opener, increases open channel probability and leads to
hyperpolarization of the membrane potential. Hence, RTG may stabilize the resting mem-
brane potential and suppress repetitive firing caused by KCNQ2mutations. Several in vitro
electrophysiological studies on reconstituted Kv7.2/Kv7.3 have suggested that seizures caused
by KCNQ2mutations might respond to RTG [13]. However, no study has evaluated the effects
of RTG on seizures in genetically engineered animals harboring Kcnq2mutations, or com-
pared these effects with the effects of phenobarbital (PB). At present, PB is the first-line and
most commonly used anti-epileptic drug (AED) for neonatal seizures, including BFNE or
EOEEs. Therefore, we here used knock-in mice bearing mutations in Kcnq2, the mouse ortho-
logue of KCNQ2, to compare the effects of RTG on drug-induced seizures in the animals with
those of PB.

Materials and Methods

Animal subjects
Two strains of heterozygous knock-in mice, Kcnq2Y284C/+ and Kcnq2A306T/+, which harbor het-
erozygous Y284C or A306T Kcnq2mutations, respectively, were produced using the “kick-in”
system as described elsewhere [14]. Kcnq2Y284C/+ and Kcnq2A306T/+ mice used in this study
were congenic strains produced by more than 10 repeated backcross to C57BL/6J strain mice.
Heterozygous mutations of Y284C and A306T have previously been identified in KCNQ2 in
individuals with BFNE [15]. Both Y284C and A306T mutations are known to cause the BFNE
phenotype, but phenotypic difference in patients has not been reported. Y284C is located in
the loop that forms the ion pore of the channel, whereas A306T is located in transmembrane
segment 6 (Fig 1A). Y284C and A306T are located at the outer mouth and the inner lining
of the channel pore, respectively (Fig 1B). In this study, we used both Kcnq2Y284C/+ and
Kcnq2A306T/+ mice to strengthen the results to evaluate potential differences, if any, between
the two mutants.

The “kick-in” system that we previously developed is a modified knock-in procedure mak-
ing use of Cre/mutant lox technology [14]. The system allows rapid production of multiple
strains of knock-in mice bearing different mutations in a given portion of target genes.
Kcnq2Y284C/+ and Kcnq2A306T/+ mice have been found to exhibit occasional spontaneous
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seizures. In contrast to these sparse spontaneous seizures, seizures can be more readily induced
by proconvulsants, such as pentylenetetrazol, in both Kcnq2Y284C/+ and Kcnq2A306T/+ mice
compared to their wild-type (WT) littermates [14].

Mice were housed at 23 ± 2°C with 12 h light−12 h dark cycle (light on 7:00 to 19:00) and
were given free access to commercial chow and tap water. Mice used for all experiments were
63–100 days of age (WT mice, n = 13; Kcnq2Y284C/+ mice, n = 40; Kcnq2A306T/+ mice, n = 33).
To conduct all experiments blindly, genotyping to distinguish knock-in mice from their WT
littermates was performed after each experiment, according to methods described elsewhere
[14].

Fig 1. A. Molecular structure of the KCNQ2 subunit. The KCNQ2 subunit has six transmembrane domains (S1–S6), of which the 4th transmembrane
domain (S6) functions as a voltage sensor, whereas a loop between the 5th and 6th transmembrane domains (S5 and S6, respectively) forms an ion pore
along with three other counterpart subunits. In general, the KCNQ2 and KCNQ3 subunits form a heterotetrametric potassium channel, i.e., Kv7.2/Kv7.3. The
Kv7.2/Kv7.3 channel generates M-currents that control the subthreshold excitability of the membrane. p.Tyr284 and p.Ala306, where the mutations examined
in this study (Y284C and A306T) are located, occur at the outer mouth and the inner lining (S6) of the channel pore, respectively. B. Three dimensional
images of the Kv7.2/Kv7.3 channels bearing Y284C and A306T. The images indicate the outer mouth of the channel seen from an extracellular position.
Left: The heterotetrametric Kv7.2/Kv7.3 channel consists of two KCNQ3 subunits (Black), one normal KCNQ2 subunit (White), and the mutant KCNQ2
subunit (Red) bearing the Y284Cmutation. The cysteine residue introduced by the Y284Cmutation, which is indicated with balls, is located at the outer
mouth of the channel. Right: The heterotetrametric Kv7.2/Kv7.3 channel consists of two KCNQ3 subunits, one normal KCNQ2 subunit, and one mutant
KCNQ2 subunit bearing the A306T mutation. The tyrosine residue introduced by the A306T mutation, which is indicated with balls, is located at the inner
lining of the channel pore. C. Spike burst. Top: A spike burst recorded during a kainic acid challenge test on an electroencephalogram (EEG) is indicated
with a double sided arrow Bottom: A simultaneous electromyogram (EMG) recording. A spike burst is a cluster of high-amplitude and high frequency spikes,
each of which lasts a few seconds to several minutes.

doi:10.1371/journal.pone.0150095.g001
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Ethics and animal rights protection
The experimental protocols were approved by the Committee for Animal Care and Use of
Fukuoka University (Approval number: 294) and all experiments were conducted in compli-
ance with the animal experimentation guidelines “Basic policies on animal experimentation"
issued by the Ministry of Education, Sports, Science, and Technology (MEXT) and the Ministry
of Health, Labor, and Welfare (MHLW) in Japan. All surgery was performed under sodium
pentobarbital anesthesia, and efforts were made to minimize stress to the animals. Because all
drug-induced seizures were monitored using a video-electroencephalography (EEG) monitor-
ing system, we were able to observe in real time to determine whether mice were overstressed
during seizures. During the course of the study, one Kcnq2A306T/+ mouse died after recurrent
generalized tonic-clonic seizures and wild jumping approximately 30 minutes after kainic acid
(KA) injection. The cause of death is unknown, but may have involved asphyxia or asystole.
After the experiments, the mice were euthanized using sodium pentobarbital to minimize
suffering.

Structural modeling and docking of the Kv7.2/Kv7.3 channel
The stereoscopic protein structure model of the human Kv7.2/Kv7.3 channel transmembrane
domain was remodeled from a PDB file provided by Prof. Bernard Attali (Department of Phys-
iology & Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Israel) [16], which is
a modified chimeric version containing the rat KV2.1 paddle (PDB entry 2R9R). Tetrameric
reconstruction and energy minimization were calculated usingMolecular Operating Environ-
ment (MOE), 2013.08 (Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910,
Montreal, QC, Canada, H3A2R7, 2014).

EEG with video monitoring
EEGs of mice were recorded with video monitoring as previously described [14]. In brief, mice
were anesthetized with sodium pentobarbital (50 mg/kg body weight, i.p.), and bipolar stainless
steel wire electrodes were implanted into the right forehead (2.0 mm anterior to the bregma,
1.5 mm lateral from the midline) and over the right hippocampus (2.0 mm posterior to the
bregma, 1.5 mm lateral from the midline). Two electromyogram (EMG) wires were placed in
the neck, between the muscle and skin. Digital EEG and video monitoring were performed in
the cage for 1 week after the operation (KISSEI COMTEC, Sleep sign version 2, vital recorder,
video option, Matsumoto, Japan).

A spike burst is a cluster of high-amplitude and high frequency spikes, each of which lasts a
few seconds to several minutes on EEG during KA challenge tests [17] (Fig 1C). The total num-
ber and duration of the spike bursts observed for 120 min after KA injection in Kcnq2Y284C/+

and Kcnq2A306T/+ mice and their WT littermates were compared.

Drug-induced seizures
To induce seizures, mice received 12 mg/kg body weight KA (Sigma, St Louis, MO, USA) intra-
peritoneally 30 min after they had acclimated, as previously reported [18]. KA stocks, dissolved
in water, were stored at -20°C; aliquots were diluted in normal saline solution immediately
before use. The final concentration of KA used for injection was 1.2 mg/ml.

The seizures and behaviors were recorded continuously for more than 120 min with EEGs
and video monitoring after drug injection. Seizures were scored based on behavior and EEG
findings using a modified Racine’s scale [19] (Table 1) (Fig 2). Spikes and sharp waves were
considered to represent seizure activity only when they were associated with abnormal
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behaviors that were confirmed on video monitoring and EMG. We evaluated seizures and the
effects of AEDs using this scoring system and also based on the number and total duration of
spike bursts on EEG for 120 min after KA injection.

Anti-epileptic drugs
RTG dihydrochloride (Toronto Research Chemicals, Toronto, Canada) and PB sodium salt
(WAKO, Osaka, Japan) were dissolved in physiological saline. All drugs were administered
intraperitoneally 30 min before KA injection. Two doses of each AED (5 mg/kg and 15 mg/kg)
were given for Kcnq2Y284C/+ and Kcnq2A306T/+ mice. Regardless of the dose, the injection vol-
ume was adjusted to 10 ml/kg bodyweight. We evaluated seizure scores and EEG findings as
described above.

Statistical data analyses
Statistical data analyses were performed using the SAS (Statistical Analysis System) Software
Package (Ver. 9.4, SAS Institute Inc., Cary, NC, USA) at Fukuoka University. The association
of heterozygous Kcnq2mutations with the seizure score, which is an ordinal measure, was
examined using an exact test for ordered differences [20]. Differences in the distribution of the
seizure score among WT, Kcnq2Y284C/+, and Kcnq2 A306T/+ mice or among mice administered
vehicle, PB, or RTG were examined using the Jonckheere−Terpstra test [20] and the logistic
regression analyses [21]. The number of spike bursts and the duration of spike bursts were
compared among different types of mice, or mice treated with different types of drugs using
Poisson regression [20]. Additional analyses were performed for overdispersion in Poisson
regression [22]. Negative binomial model with a linear variance function (p = 1) was used to
account for overdispersion when exists [22,23]. The t-statistics of dispersion parameter, labeled
as “_Alpha” in the COUNTREG procedure, was used to assess the significance of overdisper-
sion [22,23]. The significance level was considered to be less than 0.05, unless indicated
otherwise.

Results

Higher sensitivity to KA-induced seizure in Kcnq2mutant mice
Both Kcnq2Y284C/+ and Kcnq2A306T/+ mice showed significantly more KA-induced seizures,
with a higher seizure score, than WTmice (Fig 3A). In WT mice, no KA-induced seizure with
a score of> 3 was observed. In contrast, in Kcnq2Y284C/+ mice, all scores of KA-induced

Table 1. Modified Racine’s scale.

Score Behavioral stage EEG findings

0 No change in behavior Baseline

1 Sudden behavioral arrest, motionless staring (with orofacial
automatism)

High amplitude activity/slow
waves

2 Head nodding Spikes, sharp waves

3 Forelimb clonus with lordotic posture Spikes or poly spikes, sharp
waves

4 Forelimb clonus, with rearing and falling Spike bursts/spike and wave
discharges

5 Generalized tonic-clonic activity with loss of postural tone, often
resulting in death, wild jumping

Spike bursts/spike and wave
discharges

doi:10.1371/journal.pone.0150095.t001
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seizures were� 4. Similarly, KA-induced seizures in Kcnq2A306T/+ mice had higher scores than
those observed in WT mice (Fig 3A). The differences in the distribution of the seizure score
between the mutant and WTmice and between the two strains of mutant mice were statisti-
cally significant (p = 0.0002, Kcnq2Y284C/+ vs. WT; p = 0.0024, Kcnq2A306T/+ vs. WT;
p = 0.0982, Kcnq2Y284C/+ vs. Kcnq2A306T/+), as assessed by the logistic regression analysis.
These results indicate that Kcnq2Y284C/+ and Kcnq2A306T/+ mice have significantly higher sensi-
tivity to KA-induced seizures than WTmice, and Kcnq2Y284C/+ mice have higher sensitivity to
KA-induced seizures than Kcnq2A306T/+ mice.

In accordance with this higher seizure sensitivity to KA, Kcnq2Y284C/+ mice exhibited fre-
quent and prolonged spike bursts during KA challenges (Fig 3B and 3C). Kcnq2Y284C/+ mice
had significantly more and longer spike bursts than WTmice (p = 0.0001, Fig 3B and

Fig 2. Representative electroencephalograms at each score of Modified Racine’s scale. Electroencephalogram (EEG) and electromyogram (EMG)
were obtained as described in Method. Each panel shows a representative EEG recording at Score 0 to 5 of a Modified Racine’s scale [19]. Spikes and sharp
waves were considered part of seizure activities only when they were associated with abnormal behaviors which were confirmed on video monitoring and
electromyogram. A spike burst is defined as a cluster of high-amplitude and high frequency spikes, each of which lasts a few seconds to several minutes on
EEG during kainic acid challenge tests [17].

doi:10.1371/journal.pone.0150095.g002
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p = 0.0001, Fig 3C), as assessed by using Negative binomial model. Similarly, Kcnq2A306T/+

mice showed a tendency to have more and longer spike bursts than WTmice, although the dif-
ference was not statistically significant (p = 0.3357 and p = 0.2398). Furthermore, Kcnq2Y284C/+

mice had significantly more and longer spike bursts than Kcnq2A306T/+ mice (p = 0.0102, Fig
3B and p = 0.0131, Fig 3C), as assessed by using Negative binomial model. Thus, compared to

Fig 3. Relationship between heterozygous Kcnq2mutations and seizures. A. The distribution of seizure scores in WTmice (n = 13) (upper panel, in
white color), Kcnq2Y284C/+ mice (n = 6) (middle panel, in gray color), and Kcnq2 A306T /+ mice (n = 7) (lower panel, in light gray color). Differences in the
distribution of seizure scores among and between groups were examined by the logistic regression analysis, as described in the Methods.B andC. Box-and-
whisker plots showing the mean (●), median (middle bar in the rectangle), and 10th (bottom bar), 25th (bottom of rectangle), 75th (top of rectangle), and 90th

(top bar) percentiles of the number (B) and duration (C) of spike bursts in WT (n = 13) (in white color), Kcnq2Y284C/+ (n = 6) (in gray color), and Kcnq2 A306T /+

(n = 7) mice (in light gray color). The number and duration of spike bursts were compared among and between groups by using Negative binomial model, as
described in the Methods. Raw data for bar and box plots are included in S1 File.

doi:10.1371/journal.pone.0150095.g003
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WT and Kcnq2A306T/+ mice, Kcnq2Y284C/+ mice exhibited more frequent and prolonged spike
bursts during KA challenges.

RTG was superior to PB in ameliorating KA-induced seizures in
Kcnq2Y284C/+ mice
Administration of PB or RTG (5 mg/kg and 15 mg/kg) prior to KA challenges reduced the inci-
dence of KA-induced seizures in the Kcnq2Y284C/+ mice (Fig 4A). The trend across seizure
scores indicated significantly better effects for pretreatment with PB (at doses of 5 and 15
mg/kg) or RTG (at doses of 5 and 15 mg/kg) than with vehicle (p = 0.0135, PB vs. vehicle;
p< 0.0001, RTG vs. vehicle, Fig 4A), as assessed by the Jonckheere−Terpstra test. The preven-
tative effect of RTG was greater than that of PB (p = 0.0766), after adjusting for dose by the
logistic regression analysis.

Next, we assessed the dose-dependency of the effects of PB and RTG on seizure scores (Fig
4A). The preventative effect of 15 mg/kg PB on KA-induced seizures was statistically signifi-
cant (p = 0.0041, 15 mg/kg PB vs. vehicle), although the effect of 5 mg/kg of PB was not statisti-
cally significant (p = 0.1404, 5 mg/kg PB vs. vehicle), as assessed by the Jonckheere−Terpstra
test. There was no significant difference between the effects of 5 mg/kg and 15 mg/kg PB in
Kcnq2Y284C/+ mice (p = 0.2884, 15 mg/kg vs. 5 mg/kg PB, Fig 4A).

In contrast to PB, RTG demonstrated significant preventative effects for KA-induced sei-
zures at both doses (p = 0.0012, 5 mg/kg RTG vs. vehicle; p = 0.0002, 15 mg/kg RTG vs. vehi-
cle), as assessed by the Jonckheere−Terpstra test. There was no significant difference in the
preventative effects between the two doses of RTG (p = 0.8829, 15 mg/kg vs. 5 mg/kg RTG, Fig
4A). Thus, pretreatment with RTG achieved a significant preventative effect for KA-induced
seizures even at a low dose (5 mg/kg) in Kcnq2Y284C/+ mice.

The difference between the effects of PB and RTG in these mice became evident when they
were compared in terms of spike bursts (Fig 4B and 4C). Thus, RTG was superior to PB in ame-
liorating KA-induced seizures, although both PB and RTG were effective in reducing the num-
ber and total duration of spike bursts during KA challenges in Kcnq2Y284C/+ mice.

Both PB and RTG reduced the number of spike bursts (Fig 4B). PB at a dose of 5 mg/kg pro-
duced a significant reduction of the number of spike bursts (p = 0.0256, 5 mg/kg PB vs. vehicle,
Fig 4B), whereas 15 mg/kg PB did not have a statistically significant effect (p = 0.2171, 15 mg/
kg PB vs. vehicle), as assessed by using Negative binomial model. There was no significant
difference between these two doses of PB in terms of the number of spike bursts. RTG, in con-
trast, reduced the number of spike bursts significantly at both 5 mg/kg and 15 mg/kg doses
(p = 0.0049, 5 mg/kg RTG vs. vehicle; p = 0.0012, 15 mg/kg RTG vs. vehicle, Fig 4B), as assessed
by using Negative binomial model. This effect of RTG was not significantly dose-dependent
(p = 0.5358, 15 mg/kg vs. 5 mg/kg RTG). The effects of RTG on the number of spike bursts
were significantly better than those of PB in Kcnq2Y284C/+ after adjusting for dose (p = 0.0026).

In accordance with the effects on the number of spike bursts, PB and RTG were effective in
shortening the total duration of spike bursts, and the effects of RTG were more marked than
that of PB (Fig 4C). PB, at a dose of 5 mg/kg, reduced the total duration of spike bursts
(p = 0.0851, 5 mg/kg PB vs. vehicle, Fig 4C), as assessed by using Negative binomial model. In
contrast, RTG shortened the total duration of spike bursts significantly at both 5 mg/kg and 15
mg/kg doses (p = 0.0011, 5 mg/kg RTG vs. vehicle; and p = 0.0003, 15 mg/kg RTG vs. vehicle,
Fig 4C), as assessed by using Negative binomial model. This effect of RTG was not significantly
dose-dependent (p = 0.5815, 15 mg/kg vs. 5 mg/kg RTG). The effects of RTG on shortening the
total duration of spike bursts were significantly better than those of PB after adjusting for dose
(p< 0.0001).
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Fig 4. Effects of phenobarbital (PB) and retigabine (RTG) at low and high doses on seizures in Kcnq2Y284C/+ mice. A. Distribution of seizure scores in
Kcnq2Y284C/+ mice administered vehicle (n = 6) (upper panel, in gray color), PB at doses of 5 mg/kg (n = 7) and 15 mg/kg (n = 7) (middle panel, in light gray
and gray color, respectively), or RTG at doses of 5 mg/kg (n = 10) and 15 mg/kg (n = 10) (lower panel, in light gray and gray color, respectively). Between and
within drug differences in the distribution of seizure scores were examined by the Jonckheere−Terpstra test, as described in the Methods.B and C. Box-and-
whisker plots showing the mean (●), median (middle bar in the rectangle), and 10th (bottom bar), 25th (bottom of rectangle), 75th (top of rectangle), and 90th

(top bar) percentiles of the number (B) and duration (C) of spike bursts in Kcnq2Y284C/+ mice administered vehicle (n = 6), PB at doses of 5 mg/kg (n = 7) and
15 mg/kg (n = 7), or RTG at doses of 5 mg/kg (n = 10) and 15 mg/kg (n = 10). PB and RTG at doses of 5 mg/kg are shown in light gray color. Between and
within drug differences in terms of the number and duration of spike bursts were examined using Negative binomial model, as described in the Methods. Raw
data for bar and box plots are included in S1 File.

doi:10.1371/journal.pone.0150095.g004
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RTG was superior to PB in ameliorating KA-induced seizures in
Kcnq2A306T/+ mice
The effects of PB and RTG were also evaluated and compared in heterozygous Kcnq2A306T/+

mice (Fig 5). Administration of PB and RTG (5 mg/kg and 15 mg/kg) prior to KA challenges
reduced the incidence of KA-induced seizures in Kcnq2A306T/+mice (Fig 5A). The trend across
seizure scores indicated significantly better effects of pretreatment with RTG (at doses of 5 and
15 mg/kg) than with vehicle (p = 0.0015, RTG vs. vehicle, Fig 5A), although the preventive
effects of PB (at doses of 5 and 15 mg/kg) on KA-induced seizures was not statistically signifi-
cant (p = 0.1144, PB vs. vehicle), as assessed by the Jonckheere−Terpstra test. Furthermore,
RTG had better preventive effects on KA-induced seizures than PB in Kcnq2A306T/+ mice,
although the difference did not reach statistical significance (p = 0.1857), after adjusting for
dose by the logistic regression analysis.

Next, we assessed the dose-dependency of the effects of RTG on KA-induced seizure score
in Kcnq2A306T/+ mice (Fig 5A). Both 5 mg/kg RTG and 15 mg/kg RTG demonstrated signifi-
cant preventative effects on KA-induced seizures (p = 0.0029, 5 mg/kg RTG vs. vehicle;
p = 0.0165, 15 mg/kg RTG vs. vehicle), but the effect of RTG was not significantly dose-depen-
dent (p = 0.6084, 15 mg/kg vs. 5 mg/kg RTG, Fig 5A), as assessed by the Jonckheere−Terpstra
test. Thus, similar to Kcnq2Y284C/+ mice, pretreatment with RTG achieved a significant preven-
tative effect even at a low dose in Kcnq2A306T/+ mice.

The difference between PB and RTG became more evident when they were compared in
terms of their effects on both the number and total duration of spike bursts during KA chal-
lenges. Thus, RTG was superior to PB in ameliorating KA-induced seizures in terms of reduc-
ing the number and total duration of spike bursts during KA challenges (Fig 5B and 5C).

RTG demonstrated the ability to significantly reduce the number of spike bursts during
KA challenges at both 5 mg/kg and 15 mg/kg doses (p< 0.0001, 5 mg/kg RTG vs. vehicle;
p = 0.0224, 15 mg/kg RTG vs. vehicle; Fig 5B), whereas the effects of PB at 5 mg/kg and 15 mg/
kg doses on the number of spike bursts were not statistically significant (p = 0.7222, 5 mg/kg
PB vs. vehicle; p = 0.1174, 15 mg/kg PB vs. vehicle), as assessed by using Negative binomial
model. The effects of RTG in terms of the number of spike bursts were significantly better than
those of PB in Kcnq2A306T/+ mice after adjusting for dose (p = 0.0603).

In accordance with the effects on the number of spike bursts, PB and RTG were effective in
shortening the total duration of spike bursts, and the effect of RTG was more marked than that
of PB (Fig 5C). The effect of PB on shortening the total duration of spike bursts was significant
at a dose of 15 mg/kg but not at 5 mg/kg (p = 0.0413, 15 mg/kg PB vs. vehicle; p = 0.5787, 5
mg/kg PB vs. vehicle, Fig 5C), as assessed by using Negative binomial model. In contrast, RTG
demonstrated a significant effect at both 5 mg/kg and 15 mg/kg doses (p< 0.0001, 5 mg/kg
RTG vs. vehicle; p = 0.0117, 15 mg/kg RTG vs. vehicle, Fig 5C) on shortening the total duration
of spike bursts, as assessed by using Negative binomial model. The difference between RTG
and PB in terms of the total duration of spike bursts in Kcnq2A306T/+ mice was also statistically
significant after adjusting for doses (p = 0.0740).

Discussion
In the present study, both Kcnq2Y284C/+ and Kcnq2A306T/+ heterozygous mutant mice showed
significantly higher sensitivity to KA-induced seizures than WTmice. Accordingly, both
mutant mice exhibited more frequent and prolonged spike bursts during KA challenges. RTG,
a pan Kv7.2-Kv7.5-channel opener [24–28], suppressed these KA-induced seizure activities
more effectively than PB, which is currently the first-line AED for neonatal seizures, including
BFNE, resulting from KCNQ2mutations.
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Kcnq2Y284C/+ and Kcnq2A306T/+ mice are prone to KA induced seizures
We previously showed high sensitivity to proconvulsive treatment in Kcnq2Y284C/+ and
Kcnq2A306T/+ mice, using pentylenetetrazole (PTZ) [14]. Similar findings were reported in

Fig 5. The effects of phenobarbital (PB) and retigabine (RTG) at low and high doses on seizure in Kcnq2A306T/+ mice. A. Distribution of seizure scores
in Kcnq2A306T/+ mice administered vehicle (n = 7) (upper panel, in gray color), PB at doses of 5 mg/kg (n = 5) and 15 mg/kg (n = 7) (middle panel, in light gray
and gray color, respectively), or RTG at doses of 5 mg/kg (n = 6) and 15 mg/kg (n = 8) (lower panel, in light gray and gray color, respectively). Between and
within drug differences in the distribution of seizure scores were examined by the Jonckheere−Terpstra test, as described in the Methods.B and C. Box-and-
whisker plots showing the mean (●), median (middle bar in the rectangle), and 10th (bottom bar), 25th (bottom of rectangle), 75th (top of rectangle), and 90th

(top bar) percentiles of the number (B) and duration (C) of spike bursts in Kcnq2A306T/+ mice administered vehicle (n = 7), PB at doses of 5 mg/kg (n = 5) and
15 mg/kg (n = 6), or RTG at doses of 5 mg/kg (n = 6) and 15 mg/kg (n = 8). PB and RTG at doses of 5 mg/kg are shown in light gray color. Between and within
drug differences in terms of the number and duration of spike bursts were examined using Negative binomial model, as described in the Methods. Raw data
for bar and box plots are included in S1 File.

doi:10.1371/journal.pone.0150095.g005
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early studies with Szt1mice, a spontaneous mutant mouse strain that harbors a microdeletion
affecting the C-terminus of mouse Kcnq2 and also its adjacent two genes, Chnra4 and Arfgap-1
[29–33]. Heterozygous Kcnq2 knock-out mice have also demonstrated hypersensitivity to PTZ
[34]. Furthermore, a high sensitivity to proconvulsive treatments has been observed in BFNE-
mutation knock-in mice that were independently generated by another group. These mutations
included the A306T mutation in Kcnq2 and the G311V mutation in Kcnq3, which is an ortho-
log of a KCNQ3mutation found in human BFNE [35,36]. Similar to our Kcnq2Y284C/+ and
Kcnq2A306T/+ mice, these heterozygous mutant mice did not show spontaneous seizures,
although their homozygotes did. The Kcnq2A306T/+ and Kcnq3G311V/+ mice had significantly
higher sensitivity to electroconvulsive seizure and kindling acquisition [35,36]. Interestingly,
they demonstrated genotype-related differences in sensitivity. In agreement with this indica-
tion, our present study found that Kcnq2Y284C/+ mice were more prone to KA-induced seizures
than Kcnq2A306T/+ mice in terms of the frequency and duration of seizure bursts upon EEG,
suggesting that the BFNE mutations vary in sensitivity.

Thus, the hypersensitivity to proconvulsants observed in Kcnq2-deficient mice and the
resulting impairment of M-currents hamper the stabilization of the resting membrane poten-
tial and subthreshold levels of membrane excitability [37]. Therefore, these findings in mouse
models provide compelling evidence for the crucial role of M-currents in controlling neuronal
excitability [5], supporting findings from electrophysiological studies on reconstituted chan-
nels in vitro [38–44].

RTG significantly attenuates KA-induces seizures in Kcnq2Y284C/+ and
Kcnq2A306T/+ mice
In both Kcnq2Y284C/+ and Kcnq2A306T/+ mice, RTG, an opener of Kv7 channels, was more effec-
tive in preventing KA-induced seizures than PB, not only in terms of the incidence of seizures,
but also in terms of suppressing the spike bursts on EEG.

To our knowledge, this is the first application and comparison of RTG with other AEDs in
genetically engineered animal models bearing Kcnq2 BFNE mutations. The effects of another
potassium channel opener, flupirtine, which is an analogue of RTG, were previously evaluated
and compared with PB, albeit in experimental seizure models involving WT rodents. Flupirtine
has a better effect on experimental seizures than PB [45].

In addition, RTG has been used in Szt1mice, but was found less effective in reducing elec-
troconvulsions in Szt1mice than in their WT controls [30]. However, its effect was not com-
pared with those of other AEDs in this model [30]. Therefore, the present study, for the first
time, has provided evidence that RTG would provide better prevention of seizure activity in
the presence of genetically impaired Kv7.2.

Our findings also support in vitro electrophysiological findings that RTG ameliorates the
dysfunction of Kv7.2 caused by KCNQ2mutations, obtained either from reconstituted channels
in Xenopus laevis oocytes [44,46] or brain slice patch clamping in mice bearing a KCNQ2
microdeletion [37,47–49]. Interestingly, a report of a voltage clamping assay assessing the effect
of RTG on reconstituted Kv7.2 in Xenopus laevis oocytes revealed that the effect of RTG on
lowering action potential in WT Kv7.2 was significantly greater than that on Kv7.2 harboring
EOEE mutations [44]. BFNE-related KCNQ2mutations cause haploinsufficiency, while EOEE
mutations cause a dominant-negative effect. Hence, given that Kv7.2/Kv7.3 is a hetero-tetra-
mer, RTG may exert its function in both Kcnq2Y284C/+ and Kcnq2A306T/+ mice by ameliorating
the pore region, which consists of two KCNQ3 subunits and one normal KCNQ2 subunit
derived fromWT alleles (Fig 1B).
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RTG is more effective than PB against KA-induced seizures in
Kcnq2Y284C/+ and Kcnq2A306T/+ mice
PB is widely used as the first-line AED for neonatal seizures, including BFNE resulting from
KCNQ2mutations. PB exerts its pharmacological function mainly as a GABAA receptor ago-
nist, but also as an antagonist of the AMPA/kainate−glutamate receptor, inhibiting glutamate
release, which is controlled by the P/Q-type calcium channel [50,51]. The NMDA and AMPA
subtypes of glutamate receptors are highly expressed between the first and second postnatal
weeks in rats and in the neonatal period in humans [52,53]. It is therefore believed that PB is
useful for treating neonatal seizures because the additional reduction of glutamate receptors
may reduce the severity of neonatal seizures [51].

In the neonatal brain, however, the environment and function of neurotransmitters are dif-
ferent from those in the mature brain. For example, GABAergic action is depolarizing and
excitatory in the neonatal brain because of the higher intracellular chloride concentration
caused by the predominant expression of NKCC1 over that of KCC2 [5,54–56]. The composi-
tion of the subunits of GABAA receptors also changes during brain development [57,58]. Thus,
the α4 subunits of GABA receptors, which render the receptor less sensitive to benzodiaze-
pines, are relatively overexpressed at developmental stages compared with GABAA receptors in
the adult brains that consist predominantly of the α1 subunit [57,59,60]. Some AEDs, such as
PB and benzodiazepines, function as agonists to GABAA receptors and may be less effective in
neonates than in adults because of the characteristics of the GABAA receptor in the neonatal
brain [61,62]. Consequently, intractable neonatal seizures, for which PB does not work well,
are clinically encountered.

In contrast, RTG exerts its antiepileptic effect by opening Kv7 channels, including Kv7.2 and
Kv7.3. RTG binds to a hydrophobic pocket in the ion pore between transmembrane segments
S5 and S6 (Fig 1A and 1B), opening the pore and increasing the membrane potassium conduc-
tance of neurons [63]. The increment of potassium currents reduces the generation of action
potentials. Therefore, RTG can both suppress the hyperexcitability of neurons via potassium
channels and function as an AED [63]. In addition, Kv7.2/Kv7.3 channels are predominantly
expressed in the axon initial segment of neurons, which is a region crucial for controlling neu-
ronal excitability [37,64,65]. Furthermore, Kv7.2 and Kv7.3 appear to be particularly important
for the neonatal brain, as they are highly expressed from late fetal life to early infancy [66,67].
Although RTG is known to cause positive allosteric modulation of GABAA receptors, this effect
is observed only at high concentrations, and no significant interaction with glutamate receptors
has been observed [24,68]. Therefore, RTG is considered a rational AED for use in neonatal sei-
zures, specifically for those resulting from Kv7.2 or Kv7.3 dysfunction.

Potassium channel openers in neonatal seizures
RTG has been approved by the FDA as an add-on therapy for partial-onset seizures [69]. How-
ever, clinical application of RTG has recently been limited because of rising concerns regarding
its adverse effects, such as blue skin discoloration and eye abnormalities resulting from pigment
changes in the retina [70,71]. Nevertheless, several lines of evidence, including our findings on
the efficacy of RTG for reducing seizures in Kcnq2mutant mice, warrant further investigation
of the therapeutic potential of RTG and related potassium-channel openers [37,64,65]. In addi-
tion, mutations of KCNQ2 are known to cause not only benign epilepsy, but also malignant
phenotypes, e.g., EOEE and Ohtahara syndrome, for which treatments based on an under-
standing of the underlying pathomechanisms are urgently required [8–11]. RTG has been
shown to be effective for seizures resulting from KCNQ2 mutations with a dominant-negative
effect [44,72,73], which is suspected to be an underlying mechanism of some cases of EOEE. In
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addition, a new potassium-channel opener with fewer side effects was recently developed and
has been shown to be effective for epilepsy [74].

Taken together, these previous findings and our present study suggest high potential of
RTG in treating epilepsy resulting from KCNQ2mutations. However, there are limitations in
applying the results of the present study directly to human BFNE or EOEE. Seizures in the
mice were induced by KA and not spontaneous, and the age of the mice used does not neces-
sarily correspond to neonates. Therefore, further study of potassium-channel openers should
provide insights into the treatment of neonatal seizures in the near future.

Conclusions
We have here provided the first evidence that RTG, a Kv7 potassium-channel opener, amelio-
rates KA-induced seizures in knock-in mice bearing mutations of Kcnq2, the orthologue of
KCNQ2 that encodes Kv7.2 channels in humans. Furthermore, the effect of RTG is superior to
that of PB, the accepted first-line AED for neonatal seizures. Given the efficacy of RTG in ani-
mal models of neonatal epilepsy caused by KCNQ2mutations, potassium channel openers
should be considered as a therapeutic option for BFNE/BNE and perhaps even for EOEE.
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