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Abstract
There are two types of human pluripotent stem cells: 
Embryonic stem cells (ESCs) and induced pluripotent 
stem cells (iPSCs), both of which launched themselves on 

clinical trials after having taken measures to overcome 
problems: Blocking rejections by immunosuppressants 
regarding ESCs and minimizing the risk of tumorigenicity 
by depleting exogenous gene components regarding 
iPSCs. It is generally assumed that clinical applications 
of human pluripotent stem cells should be limited to 
those cases where there are no alternative measures 
for treatments because of the risk in transplanting those 
cells to living bodies. Regarding lifestyle diseases, we 
have already several therapeutic options, and thus, 
development of human pluripotent stem cell-based 
therapeutics tends to be avoided. Nevertheless, human 
pluripotent stem cells can contribute to the development 
of new therapeutics in this field. As we will show, there 
is a case where only a short-term presence of human 
pluripotent stem-derived cells can exert long-term 
therapeutic effects even after they are rejected. In those 
cases, immunologically rejections of ESC- or allogenic 
iPSC-derived cells may produce beneficial outcomes by 
nullifying the risk of tumorigenesis without deterioration 
of therapeutic effects. Another utility of human pluri-
potent stem cells is the provision of an innovative tool 
for drug discovery that are otherwise unavailable. For 
example, clinical specimens of human classical brown 
adipocytes (BAs), which has been attracting a great 
deal of attention as a new target of drug discovery for 
the treatment of metabolic disorders, are unobtainable 
from living individuals due to scarcity, fragility and ethical 
problems. However, BA can easily be produced from 
human pluripotent stem cells. In this review, we will 
contemplate potential contribution of human pluripotent 
stem cells to therapeutic development for lifestyle 
diseases.  
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cells (ESCs)/induced pluripotent stem cells (iPSCs) is 
currently limited to remediless diseases due to risk of 
tumorigenesis. However, application of these cells to 
therapeutic purposes and drug discovery for lifestyle 
diseases is promising. Because a short-term presence 
of human ESC/iPSC-derived vascular endothelial cells 
reportedly exerts long-term therapeutic effects on injured 
stenotic arteries, immunologically rejections can nullify 
risk of tumorigenesis without deteriorating therapeutic 
effects. Another utility is to produce high-scarcity-valued 
cells such as brown adipocytes, which are unobtainable 
from living bodies and commercially available sources, as 
a new tool for drug discovery for lifestyle diseases.  
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INTRODUCTION
Embryonic stem cells (ESCs) and induced pluripotent 
stem cells (iPSCs) are the only pluripotent stem cells that 
are applicable to therapeutic purposes (Table 1). The 
first clinical trial of human ESCs (hESCs) was launched in 
2010 by Geron Corporation in the Unites States[1-4], aiming 
for the safety evaluation of transplanting hESC-derived 
oligodendrocyte progenitor cells for the treatment of 
spinal cord injury. Although the program was shut down 
due to fund shortage in 2011, no severe side effects 
were reported from all four cases. Another clinical trial 
was started in 2010 by Ocata Therapeutics in the Unites 
States (named Advanced Cell Technology, Incorporated 
until 2014), aiming for the evaluation of safety and 
efficacy of hESC-derived retinal pigment cells for the 
treatment of macular degeneration[5]. Up till now, positive 
results were reported from two open-label phase 1/2 
studies although we have to wait for the final evaluation. 
Regarding human iPSCs (hiPSCs), a clinical trial was 
started in 2014 by RIKEN and Foundation for Biomedical 
Research and Innovation in Japan, aiming for the safety 
evaluation of hESC-derived retinal pigment cells for 
the treatment of macular degeneration. No severe side 
effects have been reported so far. 

Although it was expected that the invention of hiPSCs 
had completely resolved the issue of immunological 
hurdles, it has turned out that the situation is not so 
simple. Up till now, two concerns have been raised. One 
is regarding the differentiation propensity of hiPSCs. It is 
known that there are marked differences in differentiation 
propensity among human pluripotent stem cell lines[6], 
and thus, it is necessary to establish scores of hiPSC 
lines to obtain an appropriate line for the preparation of 
differentiated cells of the intended lineage. In some cases, 
however, an appropriate line may not be obtained and, as 
a result, transplantation materials would be unavailable 

from patients. In addition, genetic mutations may 
possibly occur during the process of hiPSC establishment. 
In such cases, usage of mutated hiPSC lines should be 
avoided. Thus, there may be cases where transplantation 
materials are unavailable from patients themselves. 
This actually occurred in the second patient during the 
clinical trial in Japan: The authorities announced that 
they resigned the utilization of autologous hiPSCs but 
decided to use allogenic hiPSCs instead in this case. It 
seems, however, allogenic hiPSCs are less advantageous 
than hESCs from the viewpoint of safety although they 
have merits from the perspective of ethics and labor. 
The second concern is regarding an issue of possible 
acquisition of immunogenicity of autologous iPSCs due 
to spontaneous mutations in the mitochondrial DNA, 
which is five to ten times more prone to be mutated 
than the chromosomal DNA. In addition, alterations of 
mitochondrial DNA reportedly occur upon an induction 
of pluripotency in hiPSCs[7]. Because cells that contain 
allogenic mitochondria are rejected by innate immune 
system[8], autologous hiPSC-derived cells with mutated 
mitochondrial DNA may possibly be immunologically 
rejected, dissipating the effects of transplantation. These 
two concerns should be deeply reflected for the success 
of hiPSC-based cell therapies in near future.  

Currently, the application of human pluripotent stem-
derived cells is limited to such diseases that have no 
other therapeutic options because there is a certain level 
of risk including tumorigenesis in the transplantation of 
human pluripotent stem cells. Nevertheless, the appli-
cation range will be extended if the safety is secured. 
Regarding lifestyle diseases such as obesity-associated 
metabolic disorders and ischemic diseases, we already 
have various therapeutic options including medications 
and surgeries. In addition, a large number of candidate 
drugs are currently in the process of research and deve-
lopment. Thus, development of human pluripotent stem 
cell-base therapies for lifestyle diseases has not been 
eagerly sought thus far. Nevertheless, there is ample 
potential for hESCs/hiPSCs to effectively be utilized 
towards therapeutic development in this field. In this 
review, we suggest two cases as examples. One is a 
transplantation therapy for the treatment of ischemic 
diseases: hESC/hiPSC-derived vascular endothelial cells 
(VECs) having anti-stenotic capacities, which we termed 
as type-Ⅱ VECs[9-11], can exert their full effects within 
a short time (< 1 wk) to produce long-term beneficial 
outcomes even after they are rejected[11]. In those cases, 
risk of tumorigenesis may be nullified because hESC- or 
allogenic hiPSC-derived cells are promptly rejected by 
immune systems. The second one is utilization of human 
pluripotent stem cells as a novel tool to provide cells that 
have high scarcity value but are unavailable from living 
individuals. Actually, anti-stenotic VECs is an example of 
such high-scarcity-valued cells[9]. As another example, 
we will describe human ESC/iPSC-derived classical brown 
adipocyte (BA), which has been much awaited as a new 
target of drug discovery for the treatment of obesity-
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associated metabolic disorders.  

PROVISION OF A NOVEL TYPE OF 
VASCULAR ENDOTHELIAL CELLS 
WITH ANTI-STENOCIC PROPERTY: 
TOWARDS DEVELOPMENT OF A NEW 
TRANSPLANTATION THERAPY FOR 
ISCHEMIC DISEASES
According to the report by World Health Organization, 
the top two leading causes of death in the world in 2012 
are ischemic heart disease and stroke, both which are 
considered as lifestyle diseases. Ischemia is caused 
by narrowing of arteries (i.e., arteriostenosis), whose 
pathological basis is hyperproliferation of vascular smooth 
muscle cells (VSMCs). Stent revascularization is one of 
the most effective therapies, where a meshed tube made 
of shape-memory alloy is inserted into the affected artery 
(i.e., the coronary artery for ischemic heart disease and 
the carotid artery for stroke) to mechanically expand the 
stenotic region. Nevertheless, a comparative study in 
India in 2010 reported that 23.1% of patients with drug-
eluting stents and 48.8% of patients with bare metal 
stents developed restenosis[12]. Therefore, development 
of new therapeutics is required for the control of ischemic 
diseases. 

Regarding the etiology of arteriostenosis, involve-
ments of VSMCs and macrophages are well understood. 
By contrast, roles for VECs remained controversial for 
long time. Recently, we have clarified that there are two 
types of human VECs: Pro-stenotic VECs (type-Ⅰ) and 
anti-stenotic VECs (type-Ⅱ)[9-11]. We also showed that 
the vast majority of human VECs that are obtainable from 
commercially available sources such as biopsy samples 
and bone marrow- or umbilical cord blood-derived endo-
thelial progenitor cells (EPCs) belong to type-Ⅰ VECs, 
which promote VSMC proliferation and exacerbate 
the development of stenosis in injured arteries[9,11]. By 
contrast, type-Ⅱ VECs, which suppress VSMC pro-
liferation and prevent arteriostenosis[9,11], are rarely 
obtained from commercially available sources. Because 
type-Ⅱ VECs are convert into type-Ⅰ VECs by oxidative 
stress and aging[9], it seems that type-Ⅰ VECs are in 
a generative state. Intriguingly, hESCs/hiPSCs easily 

produce type-Ⅱ VECs, although they convert to type-Ⅰ 
VECs after repetitive subcultures. Thus, hESCs/hiPSCs 
provide an excellent tool to produce high scarcity-valued 
cells that are otherwise unavailable. 

There is still another merit in utilizing hESC/hiPSC-
derived type-Ⅱ VECs as a transplantation material: 
They can generate beneficial outcomes by their anti-
stenotic effects although they are immunologically re-
jected shortly after the transplantation (< 1 wk)[11]. A 
transient existence of hESC/hiPSC-derived type-Ⅱ VECs 
on the luminal surface of the injured artery effectively 
blocks injury-associated VSMC hyperproliferation. After 
immunological rejection of hESC/hiPSC-derived type-
Ⅱ VECs, host VECs take over the role of hESC/hiPSC-
derived type-Ⅱ VECs[11]. If hESC/hiPSC-derived type-
Ⅰ VECs cover the injured luminal surface, development 
of arteriostenosis is highly accelerated and, in most 
cases, injured arteries undergo total stenosis[11]. Thus, 
the critical point that determines the fate of injured 
arteries is which type of VECs, type-Ⅰ or type-Ⅱ, covers 
the luminal surface immediately after the arterial injury. 
Because hESCs/hiPSCs can steadily provide type-Ⅱ anti-
stenotic VECs, which are extremely unobtainable from 
commercially available sources or clinical samples of 
patients, hESC/hiPSC-derived type-Ⅱ VECs will make a 
large contribution of therapeutic development of ischemic 
diseases (Figure 1). It should be remembered that any 
surgical operations which mechanically dilate stenotic 
arteries would more or less injure endothelial layers, 
causing the injury-mediated stenosis. In this sense, 
endothelial cell-transplanting therapies may become an 
indispensable mean for the control of ischemic diseases. 

PROVISION OF HUMAN CLASSICAL 
BAS, WHICH ARE HIGH-SCARCITY-
VALUED CELLS AND HAVE LONG BEEN 
AWAITED AS A NEW TARGET OF 
DRUG DISCOVERY FOR METABOLIC 
DISORDERS
Brown adipose tissue (BAT) is a unique adipose tissue 
that has high calorigenic capacities, thus contributing 
thermogenesis under cold environments. It is distributed 
in specific areas including interscapular spaces (mice 

Human pluripotent stem cells Sources Ethical hurdle Safety

ESCs Embryos High Relatively high1

Allogenic iPSCs (with immunosuppression) Cell banks Low Not yet evaluated
Allogenic iPSCs (without immunosuppression) Low High 
Autologous iPSCs Patient samples Low Under evaluation

Table 1  Clinical application of human pluripotent stem cells

Advantages and disadvantages of each kind of human pluripotent stem cells are described. 1Up till now, 
no severe side effects have been reported. ESCs: Embryonic stem cells; iPSCs: Induced pluripotent stem 
cells.
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and newborn humans) and deep neck regions (mice and 
humans). BA is derived from myf5-positive myoblast[13] 
although the developmental process prior to the myo-
blast stage remains elusive. It is also known that BA-
like cells called beige cells emerge in white adipose 
tissue under cold-acclimated conditions. To distinguish 
BA from beige cells, it is also called as classical BA. 
In addition to heat production, BAT plays crucial roles 
in metabolic regulation as demonstrated by murine 
studies: It contributes to prevention of obesity[14,15] and 
improvements of glucose[16-18] and lipid[16,19] metabolisms. 

The existence of classical BAT in humans was first 
reported in 2009[20-23]. After a minor dispute in 2012[24,25], 
the presence of classical BAT in adult humans was 
reconfirmed in 2013[26]. Clinical studies have supported 
that the findings obtained from murine studies are also 
the case with humans[27-30]. Thus, human classical BA 
is attracting great attention as a new therapeutic target 
for obesity-associated lifestyle diseases. However, it is 
hardly possible to obtain high-quality human BA samples 
because of economical, technical and ethical problems. 
First, visualization of BA-distributing sites requires an 
expensive medical apparatus called positron emission 
and computer tomography (PET/CT). Secondly, PET/CT 
examinations impose gamma ray irradiations on young 
individuals (approximately early twenties), whose BATs 
are visualized by PET/CT at a high probability. Thirdly, 
biopsy-mediated removal of BAT, whose amount is 

assumed to be less than 150 g/body[31], may possibly 
increase the risk of obesity-associated lifestyle diseases. 
Fourthly, BAT is known as a very fragile tissue to handle. 
Indeed, BioGPS database[32] shows that murine BAT 
expresses RNase1 and various chymotrypsin family pep-
tidase genes at high levels. Therefore, it is extremely 
difficult to obtain high-quality BA samples even from 
mice, which have abundant BATs. Lastly, techniques for 
long-term cultures, expansions and frozen storage of BA 
do not currently exist. 

All those problems have been overcome by the 
establishment of a method for a directed differentiation 
of hESCs/hiPSCs into classical BA[33,34]. hESC/hiPSC-
derived BAs possess high capacities to improve glucose/
lipid metabolisms in vivo as proven by transplantation 
experiments[33]. Moreover, this technique correctly 
reproduces in vivo developmental process of BAT because 
hESCs/hiPSCs were differentiated into classical BAs 
via myoblast stage[33]. This innovative method has 
opened an avenue to the implementation of BA-based 
drug discovery (Figure 1). Moreover, it provides a 
groundbreaking system for basic studies to strip BAT of 
its aura of mystery. Although the developmental process 
of BA prior to the myoblast stage is currently unknown, 
it will be elucidated by using the method for the diffe-
rentiation of hESC/hiPSC into classical BA (Figure 2). 
The elucidation of an early BA process will even provide 
new molecular targets for the drug discovery of obesity-

Co
nv

en
tio

na
l i

de
as

N
ew

 c
on

ce
pt

s 
fo

r 
th

er
ap

eu
tic

 a
pp

lic
at

io
n

Autologous hiPSCs

Transplantation materials

Disease models

Without immunosuppression
(permanent existence)

Transplantation materials

Cell banks

Embryos

Allogenic hiPSCs

hESCs

Provision of cells with high scarcity value that are 
unobtainable from living bodies

Transplantation materials

Without immunosuppression
(transient existence)

Drug discovery

e.g. , classical brown adipocytes,
(drug discovery for metabolic disorders)

e.g. , Anti-stenotic type-2 vascular endothelial cells
(transplantation therapy for ischemic diseases)

With immunosuppression
(permanent existence)  

Figure 1  Application of human embryonic stem cells and allogenic human induced pluripotent stem cells to therapeutic development for the treatment of 
lifestyle diseases. HESCs: Human embryonic stem cells; hiPSCs: Human induced pluripotent stem cells.
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associated lifestyle diseases. 
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