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miR-9-5p suppresses pro-fibrogenic transformation
of fibroblasts and prevents organ fibrosis by
targeting NOX4 and TGFBR2
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Abstract

Uncontrolled extracellular matrix (ECM) production by fibroblasts
in response to injury contributes to fibrotic diseases, including idio-
pathic pulmonary fibrosis (IPF). Reactive oxygen species (ROS)
generation is involved in the pathogenesis of IPF. Transforming
growth factor-b1 (TGF-b1) stimulates the production of NADPH
oxidase 4 (NOX4)-dependent ROS, promoting lung fibrosis (LF).
Dysregulation of microRNAs (miRNAs) has been shown to contri-
bute to LF. To identify miRNAs involved in redox regulation relevant
for IPF, we performed arrays in human lung fibroblasts exposed to
ROS. miR-9-5p was selected as the best candidate and we demon-
strate its inhibitory effect on TGF-b receptor type II (TGFBR2) and
NOX4 expression. Increased expression of miR-9-5p abrogates TGF-b1-
dependent myofibroblast phenotypic transformation. In the mouse
model of bleomycin-induced LF, miR-9-5p dramatically reduces
fibrogenesis and inhibition of miR-9-5p and prevents its anti-
fibrotic effect both in vitro and in vivo. In lung specimens from
patients with IPF, high levels of miR-9-5p are found. In omentum-
derived mesothelial cells (MCs) from patients subjected to peri-
toneal dialysis (PD), miR-9-5p also inhibits mesothelial to
myofibroblast transformation. We propose that TGF-b1 induces
miR-9-5p expression as a self-limiting homeostatic response.
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Introduction

The problem of organ fibrosis constitutes a major biomedical chal-

lenge. Fibrosis can be defined as an excessive accumulation of ECM

components leading to the irreversible replacement of cellular

compartments by ECM, ultimately leading to stiffness, scarring and

devitalized tissue [1]. While the past 25 years have witnessed a very

significant increment in our understanding of fibrogenesis from the

molecular standpoint, it is evident that very little progress has been

made toward the possibility of preventing, deferring, or curing

organ fibrosis. The fact that major organs such as the liver, heart,

kidney, or lung can be affected by fibrosis, in many cases with lethal

outcomes, adds an important and social burden to these clinical

conditions. Fibrosis of these organs underlies the development of

diseases with significant prevalence and scarce therapeutic margin

including liver cirrhosis, myocardial sclerosis, renal diabetic disease,

or IPF [2]. IPF is a chronic progressive and lethal fibrotic lung

disease of unknown etiology that is currently untreatable. The

majority of IPF patients die from respiratory failure within 2–5 years

of diagnosis [3,4]. The annual incidence of IPF appears to be rising,

the disease is more common in men and the prevalence rises signifi-

cantly with age [5,6].

IPF is one of the conditions where the established interaction

between TGF-b and disturbance of redox homeostasis is sustained

by a well-defined molecular mechanism [7]. TGF-b enhances the

expression of NOX4 in numerous cell types, leading to increased

oxidative stress, which in itself is capable of amplifying the powerful

fibrogenic program induced by TGF-b [8–10], thus leading to a

vicious cycle and self-perpetuating fibrotic response [11].

An important pathological scenario where the appearance of

fibrosis has a devastating effect is the peritoneum of patients

subjected to continuous PD. Peritoneal fibrosis (PF) leads to perito-

neal membrane failure and ultrafiltration dysfunction [12–14]. It has

been shown that peritoneal mesothelial cells (PMCs) play a crucial

role in the development and progression of PF through the

acquisition of a myofibroblast-like phenotype by mesothelial-to-

mesenchymal transition (MMT) [15,16].

miRNAs are short single-stranded RNAs that regulate post-

trancriptional mRNA expression by binding to complementary
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mRNA sequences, resulting in translational repression and gene

silencing [17,18]. These non-coding RNAs play critical roles in vari-

ous physiological processes such as tissue development and dif-

ferentiation, cellular proliferation and tissue repair [19,20]. Since

their discovery in humans [21], merely 15 years ago, a huge explo-

sion of knowledge has given rise to the hope that miRNAs may

represent therapeutic alternatives for many untreatable diseases

[22–25]. In this regard, the field of organ fibrosis has been the object

of intense investigation. miRNAs have been reported to form part of

the fibrogenic loop in different organs [26]. As one archetypical and

therapeutically challenging condition, IPF is a clinical entity where

increasing focus has been recently placed, leading to the description

of miR-21 as a mechanistic culprit in the activation of fibrogenesis

[27–29]. Several miRNAs have been reported to respond to pertur-

bations in the redox state [30] or to fibrogenic stimuli [26].

However, we are not aware of the existence of miRNAs combining

the double feature of being regulated by both oxidative stress and

pro-fibrotic cues involved in LF. In the present study, we sought to

identify potential members of this subset that could in addition

serve as new targets to be potentially exploited as therapeutic

avenues for IPF and other interstitial lung diseases.

Here, we report the identification of miR-9-5p, a miRNA previ-

ously unrelated to the phenomenon of fibrosis, targeting two key

mRNAs involved in fibrogenesis: TGFBR2 and NOX4. In addition,

we demonstrate that miR-9-5p operates in an anti-fibrogenic mode

in cellulo and in the bleomycin-induced animal model of LF by nega-

tively regulating the TGF-b signaling pathway. Moreover, we also

show that lungs from patients with IPF and PMCs derived from

patients subjected to PD both presented increased levels of miR-9-5p,

thus supporting its role in human organ fibrosis.

Results

Hydrogen peroxide modulates miRNA expression in human
lung fibroblasts

In order to determine the effect of oxidative stress on miRNA

expression, human fetal lung fibroblasts (HFL-1) were treated with

100 lM hydrogen peroxide (H2O2) for 8 h. RNA was isolated and

the miRNA expression profile was analyzed by Taqman arrays. Heat

map revealed clearly distinct expression patterns in some miRNAs

when comparing H2O2-treated with untreated control samples

(Fig 1A). A higher magnification view of the zone showing the more

differentially expressed miRNAs is depicted on the right. The

volcano plot analysis spotted a group of seven differentially expressed

miRNAs, five up- and two down-regulated miRNAs, in treated

samples compared to untreated ones (Fig 1B and Table EV1). The

quantitatively important change observed in miR-9-5p and the

absence of information on this miRNA in the context of organ

fibrosis encouraged us to focus on miR-9-5p as a potential candidate

susceptible of regulating redox-mediated fibrogenesis. Quantitative

reverse transcription–polymerase chain reaction (qRT–PCR) was

performed to confirm the change of miR-9-5p expression following

treatment with H2O2 that had been identified by miRNA expression

profiling (Fig 1C, white bars). Pre-incubation of HFL-1 cells with

PEG-catalase, a specific H2O2 scavenger, significantly abrogated

H2O2-mediated increase in both ROS production (Fig EV1A) and

miR-9-5p expression (Fig 1C, black bars), indicating that miR-9-5p

is up-regulated in oxidative stress conditions. TGF-b1, one of the

master regulators of fibrogenesis [31–33], also induced miR-9-5p

expression in HFL-1 cells more than 10-fold after 24-h treatment

(Fig 1D), supporting a potential role for miR-9-5p in TGF-b signaling-

related events. To evaluate the temporary course of miR-9-5p

induction by TGF-b1, the primary transcripts of miR-9 (pri-miR-9)

were analyzed by qRT–PCR after TGF-b1 stimulation. TGF-b1
induced the expression of both pri-miR-9-1 and pri-miR-9-3

(Fig EV1B), suggesting a possible regulation at the level of miRNA

transcription. TGF-b1 increased ROS production in different cell

types, including human lung fibroblasts (Fig EV1C). These TGF-b1-
induced ROS were found to be required for TGF-b1-induced
myofibroblast differentiation, ECM production, contractility and

more importantly in the establishment and progression of human LF

[8,10]. In order to analyze if the induction of miR-9-5p expression by

TGF-b1 was dependent on the TGF-b1-produced ROS, lung fibro-

blasts were pre-incubated with PEG-catalase before TGF-b1 treat-

ment. Catalase significantly decreased both ROS levels and miR-9-5p

expression induced by TGF-b1 (Figs 1E and EV1D), suggesting that

the TGF-b1-induced miR-9-5p expression was at least partially medi-

ated by ROS. In silico analysis of specific target genes for miR-9-5p

using three independent prediction tools (Targetscan, miRWalk and

miRanda) determined 940 common target genes (Appendix Fig S1A)

that are listed in Table EV2. Analysis using the DAVID database

revealed a number of pathways highly enriched in miR-9-5p target

genes. One of them was the “TGF-b signaling pathway” (P =

4.1 × 10�2) (Appendix Fig S1B), which is the major pathological

signaling pathway related to LF [2,34]. By intersecting the miR-9-5p

predicted targets with the genes involved in the TGF-b signaling

pathway (Table EV3), 16 genes were identified (Fig 1F and

Table EV4). Noticeably, two of them, NOX4 and TGFBR2, had

already been implicated in the pathogenesis of LF [8,10,35]. Hence,

we focused our analysis on these two genes.

TGFBR2 and NOX4 expression are regulated by miR-9-5p

The TargetScan prediction software identified 2 and 3 putative bind-

ing sites (BSs) for miR-9-5p in the 30 untranslated regions (30 UTRs)
of the TGFBR2 and NOX4 mRNA, respectively (Appendix Fig S2A

and B). This prediction was functionally validated by over-expressing

miR-9-5p in pulmonary fibroblasts (Appendix Fig S3), which

resulted in a decrease of TGFBR2 mRNA and protein levels (Fig 2A

and B) and also reduced the mRNA and protein expression of NOX4

after induction by TGF-b1 (Fig 2E and F). To determine whether

miR-9-5p directly regulates TGFBR2 and NOX4 expression by bind-

ing to their 30 UTR, putative WT and mutated 30 UTR were cloned

into the luciferase reporter vector pSiCheck-2 [36] (Fig 2C and G).

Transfection with pre-miR-5p significantly decreased the luciferase

activity of the reporter vector containing both WT 30 UTRs while this

reduction was abrogated in the presence of miRNA inhibitor-9

(Fig 2D and H). The decrease in the luciferase activity was comple-

tely abolished after point mutations (PM) in both miR-9-5p BSs in

the 30 UTR of TGFBR2 (Fig 2D). The reduction was observed neither

in the presence of PM1 + PM2 nor in the presence of

PM1 + PM2 + PM3 NOX4 30 UTR constructs (Fig 2H). These obser-

vations indicated that BS2 and both BS1 and BS2 were critical for

the regulation of TGFBR2 and NOX4 30 UTRs, respectively. These
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Figure 1. miRNA expression data in human lung fibroblasts following stimulation with H2O2 or TGF-b1.

A Heat map showing relative miRNA expression between untreated (control) and H2O2-treated HFL-1 cells. The scale bar at the bottom left ranges from green to red
(low to high expression) and numbers represent DCt values. A blow-up of differentially expressed miRNAs is depicted on the right side. Data are representative of
results from two experiments performed independently.

B Volcano plot analysis of H2O2-modulated miRNAs. Log10 relative quantification (RQ) and negative (�) log10 adjusted (adj.) P-values are plotted on the x- and y-axis,
respectively. Each miRNA is represented by a colored dot, gray are down-regulated, purple are up-regulated and black are non-regulated (adj. P-value ≥ 0.05)
miRNAs.

C–E qRT–PCR analysis of miR-9-5p expression in HFL-1 cells pre-incubated for 2 h either with polyethyleneglycol (PEG) or with 100 units/ml PEG-catalase and treated
with 100 lM H2O2 for the indicated times (n = 3) (C), in cells treated with 5 ng/ml TGF-b1 for the indicated times (n = 3–8) (D) and in HFL-1 cells pre-incubated as
described in (C) and treated with 5 ng/ml TGF-b1 for 24 h (n = 4) (E). Bar graphs show mean � SEM; two-tailed Mann–Whitney U-test (C, E) and Kruskal-Wallis
non-parametric ANOVA (D); *P < 0.05, **P ˂ 0.01 compared to control cells, #P < 0.05 compared to the same time point of control cells and @P < 0.05 compared
to PEG-catalase-treated cells at time 0.

F Venn diagram showing the intersection of miR-9-5p targets and TGF-b-related genes.
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data are consistent with a direct regulation of TGFBR2 and NOX4 by

miR-9-5p.

miR-9-5p regulates TGF-b pro-fibrogenic signaling in human
lung fibroblasts

Pulmonary fibroblasts are the key effectors in the development of

LF [2,37]. TGF-b induces the transformation of fibroblasts into

myofibroblasts [38,39]. Myofibroblasts are one of the major sources

of ECM proteins, especially collagen type I alpha 1 (Col1a1) and

fibronectin (FN), and are commonly characterized by the presence

of a-smooth muscle actin (a-SMA) [37]. Uncontrolled activation,

proliferation, differentiation and survival of ECM-producing

myofibroblasts can perpetuate the pulmonary fibrotic response

[7,39]. To determine if miR-9-5p was involved in the pro-fibrogenic

transformation of pulmonary fibroblasts by TGF-b1, HFL-1 cells

were transfected with pre-miR-9-5p and treated with TGF-b1 for

different times. Increasing miR-9-5p levels significantly decreased the

TGF-b1-induced transcription of a-SMA, Col1a1 and FN (Fig 3A).

Similarly, over-expression of miR-9-5p strongly reduced a-SMA and

FN protein abundance (Fig 3B–E). Conversely, the knock-down of

miR-9-5p induced an increase in the TGF-b1-dependent transcription
of Col1a1 and FN (Fig EV2A) and in the a-SMA and FN protein

levels (Fig EV2B–E). To verify if TGFBR2 and NOX4 were the

relevant targets in this context, HFL-1 cells were transfected with

plasmids expressing TGFBR2 and NOX4 in order to “rescue” the

inhibitory effect potentially exerted by miR-9-5p on the correspond-

ing endogenous transcripts. The reduction in the expression of

a-SMA, Col1a1 and FN observed in the presence of miR-9-5p was

significantly attenuated after over-expression of TGFBR2 or NOX4

(Fig 3F). The percentage of inhibitory effect related to miR-9-5p

tended to be lower after transfection with plasmids containing

cDNAs for both proteins compared to their individual over-

expression (Fig 3F), suggesting that both genes are crucial in the

miR-9-5p-mediated anti-fibrotic effects. Whereas increased levels of

miR-9-5p had no effect on cell proliferation, cell viability, or apopto-

sis (Appendix Fig S4A–C), they reduced the migration (Fig 4A) and

invasion of ECM (Fig 4B) in response to TGF-b1, essential features
of the fibrotic phenotype [34,40]. These data suggested that

miR-9-5p can delay the TGF-b1-dependent transformation of lung

fibroblasts into myofibroblasts by regulating the TGF-b signaling

pathway. Consistently, increasing miR-9-5p levels attenuated

Smad3/4 activation (Fig 4C), Smad2 phosphorylation (Fig 4D) and

Smad2/3 nuclear translocation (Fig 4E) in response to TGF-b1

stimulation. The decrease in the phosphorylation of Smad2

observed in the presence of miR-9-5p was significantly abrogated

after over-expression of TGFBR2 (Fig 4F), suggesting that the inhibi-

tory effect of miR-9-5p on the TGF-b signaling pathway was, at least

in part, mediated by TGFBR2.

miR-9-5p is dysregulated in a mouse model of lung fibrosis and in
IPF patients

To determine the expression level of miR-9-5p in lungs of bleo-

mycin-treated mice, bleomycin was administrated orotracheally and

its effect analyzed after different time periods. Analysis by qRT–PCR

showed that miR-9-5p was significantly up-regulated after 7 days of

bleomycin administration, reaching the highest levels on day 14 and

returning to basal levels after 21 days of treatment (Fig 5A). A

similar temporal expression pattern was observed in the ECM

proteins, FN and Col1a1 (Fig 5B). In situ hybridization (ISH)

showed a dramatic increase of miR-9-5p in the fibrotic areas after

bleomycin-induced LF with no detectable signal in untreated control

mice (Fig 5C, lower panels). In contrast, there was only a minimal

background staining using scrambled probes, supporting the

specificity of miR-9-5p staining (Fig 5C, upper panels). Of notice,

lungs from patients with IPF also showed an increased expression of

miR-9-5p (Fig 5D). The extent of fibrosis in mouse and human lung

samples was confirmed by hematoxylin and eosin (H&E) and

Masson’s trichrome stainings (Figs EV3 and EV4). Taken together,

these data suggest that miR-9-5p may be involved in the pathogene-

sis of LF by regulating the transformation of fibroblasts into

myofibroblasts.

miR-9-5p prevents experimental lung fibrosis

To determine the potential role of miR-9-5p in the development of

experimental lung fibrosis, lentiviral vectors expressing a scramble

negative control construct (lenti-SC) or miR-9-5p (lenti-miR-9) were

orotracheally instilled in mice 4 days before bleomycin administra-

tion. The efficient delivery of lentivirus to the lung was monitored

by detecting the expression of the fluorescence marker GFP by

microscopy (Fig EV5A). Orotracheal lenti-miR-9 instillation

increased the expression levels of miR-9-5p up to 12-fold compared

to control mice (Fig EV5B). Lenti-miR-9 administration reduced the

mRNA elevated expression of a-SMA and ECM proteins, such as

Col1a1 and FN, elicited by bleomycin administration (Fig 6A). The

lenti-SC had no effects on bleomycin-induced LF (Fig EV5C).

Figure 2. miR-9-5p regulates TGFBR2 and NOX4 expression in human lung fibroblasts.

A qRT–PCR analysis of TGFBR2 expression in HFL-1 cells transfected with 40 nM pre-miR-NC (control) or pre-miR-9-5p for 48 h (n = 5).
B Western blot analysis (left) and quantification (n = 6) (right) of TGFBR2 protein levels in HFL-1 cells transfected as indicated in (A).
C Sequence of miR-9-5p and their base pairing (bars) with the BSs in the 30 UTR of human TGFBR2 mRNA. PMs are symbolized by red letters.
D Luciferase activity in HFL-1 cells co-transfected with psiCHECK2 containing WT or mutated 30 UTR sequences of human TGFBR2 and 40 nM of pre-miRs or miRNA

inhibitors (n = 3).
E qRT–PCR analysis of NOX4 expression in HFL-1 cells transfected as described in (A) and treated with 5 ng/ml TGF-b1 for the indicated times (n = 4).
F Western blot analysis (above) and quantification (below) of NOX4 expression in HFL-1 cells treated as described in (E) (n = 4).
G Localization of the three miR-9-5p predicted BSs in the 30 UTR of human NOX4 gene represented as described in (C).
H Luciferase activity as described in (D) with the WT or mutated 30 UTR sequences of human NOX4 gene (n = 3).

Data information: Data are shown as mean � SEM; two-tailed Mann–Whitney U-test; and *P < 0.05, **P < 0.01 compared to control cells, #P < 0.05 compared to its
corresponding negative control condition and ##P < 0.01 compared to WT 30 UTR sequence and pre-miR-9-5p co-transfected cells. a.u., arbitrary units; RLU, relative light
units.
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Pulmonary fibrosis, as assessed at days 0 and 14 after bleomycin

administration, was determined in mice treated with lenti-SC or

lenti-miR-9. H&E staining showed a dramatic attenuation of

bleomycin-induced LF in mice pre-treated with lenti-miR-9 (Fig 6B,

upper panels). Masson’s trichrome staining confirmed this finding

(Fig 6B, middle panels). Similarly, pre-treatment with lenti-miR-9

Figure 2.
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prevented the accumulation of myofibroblasts in bleomycin-treated

lungs, as demonstrated by immunohistochemistry staining with

a-SMA antibody (Fig 6B, lower panels). A semi-quantitative evalua-

tion demonstrated that lungs of lenti-miR-9 pre-treated mice

displayed lower levels of collagen content (depicted by Masson’s

trichrome staining) (Fig 6C) and less myofibroblasts (positive

a-SMA cells) (Fig 6D) compared to lungs of lenti-SC pre-treated

mice. In keeping, the total fibrotic area, evaluated by quantifying

Masson′s trichrome staining, was significantly lower in lungs of

mice receiving the lenti-miR-9 compared to controls (Fig 6E). These

results indicate that miR-9-5p not only decreases experimental

pulmonary fibrosis but also that it plays a significant preventive role

in the induction of myofibroblast differentiation. Increasing miR-9-5p

levels by lentiviral infection reduced TGFBR2 and bleomycin-

induced NOX4 mRNA expression (Fig 7A and B), in consistence

with in cellulo observations. Immunohistochemistry staining of

TGFBR2 in lungs of mice pre-treated with lenti-miR-9 exhibited

lower levels of TGFBR2 after bleomycin administration, confirming

the negative regulation of TGFBR2 by miR-9-5p also in vivo (Fig 7C,

upper panels). Because miR-9-5p regulated TGF-b1 signaling events

in human lung fibroblasts in cellulo, we wanted to prove if the same

regulation also occurred in vivo. As expected, there was an attenua-

tion in the phosphorylation of Smad2 induced by bleomycin in lungs

of mice pre-treated with lenti-miR-9 (Fig 7C, lower panels), thus

supporting that miR-9-5p interferes with a crucial process in TGF-b
signaling inherent to the fibrotic response [31,41].

Reduction of miR-9-5p expression enhances experimental
lung fibrosis

To further confirm the anti-fibrotic role of miR-9-5p, mirVana

miRNA inhibitor-9-5p was used to modulate miR-9-5p expression

in vivo. A decrease of more than 60% in the expression of miR-9-5p

was observed after orotracheal miRNA inhibitor-9-5p instillation

compared to control mice (Fig EV5D). miRNA inhibitor-9-5p admin-

istration significantly increased the bleomycin-induced mRNA

expression of Col1a1 and FN (Fig 8A). Pulmonary fibrosis was

determined in mice treated with miRNA inhibitor NC or miRNA

inhibitor-9-5p 4 and 2 days before bleomycin administration. H&E

staining showed an exacerbation of bleomycin-induced LF in mice

with reduced miR-9-5p expression (Fig 8B, upper panels). Masson’s

trichrome staining confirmed this finding (Fig 8B, middle panels).

Similarly, pre-treatment with miRNA inhibitor-9-5p enhanced

the accumulation of myofibroblasts (a-SMA positive cells) in

bleomycin-treated lungs (Fig 8B, lower panels). Lungs of miRNA

inhibitor-9-5p pre-treated mice displayed higher levels of collagen

content (Fig 8C) and less myofibroblasts (Fig 8D) compared to

lungs of miRNA inhibitor NC pre-treated mice. The amplification of

the fibrotic response when miR-9-5p expression was diminished

supports the preventive role of miR-9-5p in LF.

miR-9-5p is up-regulated in peritoneal dialysis patients and
prevents mesothelial to mesenchymal transition in peritoneal
mesothelial cells

PMCs that undergo an MMT are characterized by changes in cell

morphology, a disruption of tight junctions and a loss of cell

polarity acquiring stronger migratory and invasive capacities, which

allow these cells to invade the submesothelial stroma, where they

contribute to PF and angiogenesis and ultimately lead to peritoneal

membrane failure [15,42,43]. TGF-b1 is the main regulator of MMT

in PMCs [44]. Given the potential regulatory role of miR-9-5p in LF,

we sought to study if this action could be extended to PF. Human

MCs isolated from effluents in the dialysis fluid of patients under-

going continuous PD were classified in epithelioid (epith) and non-

epithelioid (non-epith) MCs according to their morphological

features (Appendix Fig S5A) and mRNA expression levels of

E-cadherin (CDH1), Col1a1 and FN (Appendix Fig S5B). Non-epith

MCs showed increased expression levels of miR-9-5p compared to

epith MCs (Fig 9A). Additionally, MCs isolated from effluents

exhibited increased expression of miR-9-5p compared with MCs

derived from omentum (Fig 9A). miR-9-5p was also up-regulated in

omentum-derived MCs after TGF-b1 treatment (Fig 9B). Furthermore,

over-expression of miR-9-5p in omentum-derived MCs abrogated

TGF-b1-induced expression of a-SMA, Col1a1 and FN (Fig 9C),

similar to lung fibroblasts. Consistently, up-regulation of miR-9-5p

decreased a-SMA protein levels in omentum-derived MCs (Fig 9D)

and reduced their invasive capacity into the ECM in response to

TGF-b1 (Fig 9E), an essential feature of their contribution to PF.

Increasing miR-9-5p levels reduced TGFBR2 and TGF-b1-induced
NOX4 mRNA expression (Fig 9F and G), in consistence with our

previous observations.

Discussion

In this study, miR-9-5p has been identified as a novel miRNA

included in two distinct, but closely related, sets of microRNAs that

Figure 3. miR-9-5p inhibits TGF-b1-induced transformation of human lung fibroblasts into myofibroblasts.

A qRT–PCR analysis of a-SMA (n = 4), Col1a (n = 3) and FN (n = 3) expression levels in HFL-1 cells transfected with 40 nM pre-miR-NC (control) or pre-miR-9-5p
and treated with 5 ng/ml TGF-b1 for the indicated times.

B, C Protein levels (above) of a-SMA (n = 4) (B) and FN (n = 3) (C) in HFL-1 cells described in (A). Quantification of protein expression is shown below. a.u., arbitrary
units.

D, E Fluorescence microscopy images of HFL-1 cells stained with specific antibodies against a-SMA (D, middle panels) and FN (E, middle panels) after transfection as
described in (A) and TGF-b1 treatment for 48 h (n = 3). Nuclei were stained with DAPI (blue). Scale bars: 100 lm.

F Bar graph represents percentage (%) of inhibitory effect of miR-9-5p on a-SMA, Col1a1 and FN expression after over-expression of TGFBR2, NOX4 or both. HFL-1
cells were transfected with 3 lg pCMV5-TGFBR2, 3 lg pCMV6-NOX4 or 3 lg of each plasmid and 40 nM pre-miR-9-5p and treated with 5 ng/ml TGF-b1 for 24 h
(n = 4). Control cells were transfected with 3 lg pCMV5 and 3 lg pCMV6.

Data information: All bar graphs show mean � SEM; two-tailed Mann–Whitney U-test; *P < 0.05, **P < 0.01 compared to control cells and #P < 0.05, ##P < 0.01
compared to its corresponding negative control time point.
Source data are available online for this figure.
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have been recently defined, the redoximiRs, redox sensitive micro-

RNAs [30], and the fibromiRs, miRNAs that show an aberrant

expression during the development of fibrosis [26]. Our results

support a model in which increased ROS, a common pathological

feature of human fibrosis [45] on one side, and TGF-b1 actions,

including TGF-b1 ROS production, on the other induce an increase

in the levels of miR-9-5p (Fig 10). Over-expression of miR-9-5p in

lung fibroblasts prevented myofibroblast differentiation, activation,

migration and invasion while blocking the TGF-b1-dependent effects
through the inhibition of the Smad-dependent pathway. Smad3/4

Figure 3.
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activation, Smad2 phosphorylation and Smad2/3 nuclear transloca-

tion are conspicuously delayed in lung fibroblasts with increased

levels of miR-9-5p. Exogenously enhanced expression of TGFBR2

attenuated the inhibitory effect of miR-9-5p on TGF-b1-induced

Smad2 phosphorylation, indicating that TGFBR2 was important for

miR-9-5p inhibition of the TGF-b-mediated fibrogenesis signaling

pathway. Synthesis and deposition of ECM were also prevented by

over-expressing miR-9-5p. This protective role for LF was confirmed

Figure 4. miR-9-5p inhibits the TGF-b1-induced fibrogenic pathway in human lung fibroblasts.

A Fluorescence images (left) and quantification (n = 3) (right) of migration in HFL-1 cells transfected with either 40 nM pre-miR-NC (control) or pre-miR-9-5p in
response to TGF-b1 for the indicated times. Nuclei were stained with DAPI (blue). Scale bar: 100 lm.

B Fluorescence images (left) and quantification (n = 3) (right) of collagen matrix invasion in HFL-1 cells transfected with either 40 nM pre-miR-NC or pre-miR-9-5p in
response to TGF-b1 for 48 h. Nuclei were stained with DAPI (blue). Scale bar: 100 lm.

C Luciferase activity of the reporter construct in HFL-1 cells co-transfected with 40 nM pre-miR-NC or pre-miR-9-5p and treated with 5 ng/ml TGF-b1 for 24 h (n = 3).
D Western blot analysis (left) and quantification (n = 4) (right) of pSmad2 protein levels in HFL-1 cells transfected as described in (A) and treated with 5 ng/ml TGF-b1

for the indicated times. a.u., arbitrary units.
E Fluorescence microscopy images of HFL-1 cells stained with specific antibodies against Smad2/3 (green) after indicated treatments (n = 3). Nuclei were stained with

DAPI (blue) and F-actin was stained with phalloidin (red). Scale bar: 100 lm.
F Bar graph represents percentage (%) of inhibitory effect of miR-9-5p on Smad2 phosphorylation after over-expression of TGFBR2 in HFL-1 cells transfected with 3 lg

pCMV5-TGFBR2 (TGFBR2) and 40 nM pre-miR-9-5p and treated with 5 ng/ml TGF-b1 for 15 min (densitometric analysis from four separate experiments). Control cells
were transfected with 3 lg pCMV5.

Data information: Data are shown as mean � SEM; two-tailed Mann–Whitney U-test; *P < 0.05 compared to control cells and #P < 0.05 compared to its corresponding
negative control time point.
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in mice with enhanced expression of miR-9-5p. By contrast, loss-of-

function approaches where miR-9-5p was inhibited resulted in an

enhanced fibrogenic phenotype, both in cells and whole animal

studies. Finally, the increased abundance of miR-9-5p in IPF

specimens and in cells from PD patients is highly suggestive of a

possible implication of this miRNA in the setting of human fibrosis.

TGF-b itself can alter the expression of numerous miRNAs. It has

been reported that the signal transducers of the TGF-b signaling

cascade, SMADs, not only regulate gene expression at the level of

transcription but also control Drosha-mediated miRNA processing

[46,47]. Our results support the idea that TGF-b1 increased miR-9-5p

expression levels in lung fibroblasts by inducing pri-miR-9 transcrip-

tion. In humans, miR-9 can be generated by the processing of three

different miR-9 primary transcripts encoded by distinct genes

located in different chromosomes (1, 5 and 15). Inspection of the

genomic sequence of miR-9 genes by using the BLAST (Basic Local

Alignment Search Tool) algorithm [48] modified with ad hoc Python

scripts identified the presence of at least two Smad-binding elements

(SBEs) [33,49] in the putative promoter region of miR-9-1 and at

least another two for miR-9-3, indicating that both genes are poten-

tially regulated by TGF-b1. This observation turned miR-9 into a

novel TGF-b1-target gene. However, the regulation of miR-9-5p

processing by SMADs cannot be excluded and needs to be further

investigated. Our results also indicate that TGF-b1 increases miR-9-5p

expression levels by a ROS-dependent mechanism.

Our data support the existence of an auto-regulatory feedback

loop between TGF-b1 and miR-9-5p. We propose that TGF-b1
triggers simultaneous pro- and anti-fibrotic signals, and hence,

miR-9-5p would contribute to limit fibrogenesis by counteracting the

cascade of pro-fibrotic stimuli elicited by TGF-b1, including ROS, in

the context of an homeostatic response. It is reasonable to assume

that levels of miR-9-5p induced by TGF-b1 or bleomycin are low

compared to those reached after exogenous miR-9-5p administra-

tion. As a consequence, the balance toward fibrosis would prevail,

further leading to failure in the prevention of myofibroblast transfor-

mation and full establishment of a fibrotic phenotype. Participation

in feedback loops is a common pathogenic mechanism of fibromiRs

[26]. In most cases, changes in fibromiR expression inhibit negative

Figure 5. miR-9-5p is up-regulated in lungs from both bleomycin-treated mice and IPF patients.

A, B qRT–PCR analysis of miR-9-5p (A), FN and Col1a1 (B) expression in lungs of mice after orotracheal bleomycin administration (1.5 U/kg body weight in 40 ll saline)
for the indicated times (n = 6 mice per group). *P ˂ 0.05, **P ˂ 0.01 compared to day 0.

C Microphotographs of ISH showing miR-9-5p expression (purple, lower panels) in mouse lung samples at days 0 and 14 after bleomycin instillation (n = 3 mice per
group). ISH with scrambled probes are shown in the upper images. Scale bar: 50 lm.

D qRT–PCR analysis of miR-9-5p expression levels in three histologically normal lungs (controls) and in seven lungs from IPF patients. *P ˂ 0.05 compared to control
lungs.

Data information: Bar graphs show mean � SEM; two-tailed Mann–Whitney U-test.
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Figure 6. miR-9-5p prevents pulmonary fibrosis in mice.

A qRT–PCR analysis of a-SMA, Col1a1 and FN expression in lungs from mice administered 1 × 106 i.f.u. of lenti-SC (control) or lenti-miR-9 for 4 days followed by
orotracheal bleomycin administration (1.5 U/kg body weight in 40 ll saline) or saline for 14 days (n = 4 mice per group).

B Microphotographs of H&E (upper panels) and Masson’s trichrome staining (middle panels) and a-SMA expression (lower panels) from lung sections of mice treated
as described in (A) (n = 4 mice per group). Scale bars: 100 lm.

C, D Semiquantitative determination (grade 0 to 3) of the collagen content (C) and the quantity of myofibroblasts (D) in lung tissue samples from mice treated as
described in (A) (n = 5 mice per group). Each mouse is represented by a symbol, dots represent lenti-SC and squares represent lenti-miR-9-treated mice,
respectively.

E Total area of lung fibrosis (mm2) in lung sections from mice treated as described in (A) (n = 4 mice per group).

Data information: Data are shown as median � SEM; two-tailed Mann–Whitney U-test; *P ˂ 0.05 compared to mice given control lentivirus and saline-treated and
#P < 0.05 compared to mice given control lentivirus and bleomycin-treated.
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fibrogenic or induce pro-fibrogenic mechanisms and cause a positive

feed-forward loop that perpetuates the activation of a fibrogenic

pathway, thus sustaining the pro-fibrotic phenotype [29]. In the

context of LF, this fact is particularly well illustrated by miR-21,

which is up-regulated in the lungs of bleomycin-treated mice and IPF

patients and promotes TGF-b-induced fibrogenic activation of

pulmonary fibroblasts by targeting Smad7 [28]. By contrast, the

expression of several members of the miR-29 family has been shown

to be reduced in lungs of bleomycin-treated animals and IPF patients

and it has been involved in inhibiting ECM protein synthesis, thus

suggesting an anti-fibrotic function [50,51]. In keeping, let-7d has

been found to be decreased in IPF lungs and this reduction has been

related to the dramatic phenotypic changes occurring in the alveolar

epithelia of these patients [51]. Although less common, fibromiRs

can participate in negative feedback loops to promote fibrosis [52].

TGFBR2 is a transmembrane serine/threonine kinase receptor

necessary for TGF-b1 signal transduction [53] and has been impli-

cated in lung development and pulmonary disease [35]. TGF-b1
induces NOX4 mRNA and protein expression in lung fibroblasts and

NOX-4-dependent H2O2 generation is required for myofibroblast dif-

ferentiation, synthesis of ECM proteins and contractility mediated

by TGF-b1. NOX4 has been further invoked as an important player

in the development of LF [10,54]. TGFBR2 and NOX4 are proposed

to represent direct targets of miR-9-5p not only by in silico analysis

and further molecular validation but also by data demonstrating

reduced action of the miRNA in the presence of exogenously

enhanced expression of these proteins. Our results are consistent

with the notion that miR-9-5p causes degradation of TGFBR2 and

TGF-b1-induced NOX4 mRNAs and also interferes with TGFBR2 and

TGF-b1-induced NOX4 protein translation. The ability of miR-9-5p

to reduce the levels of both target genes in lung fibroblasts consti-

tutes one of the plausible mechanisms to explain the anti-fibrotic

action of miR-9-5p. However, it is possible that other targets of

miR-9-5p within the signaling pathways related to TGF-b and/or

ECM synthesis also contribute to this outcome. Indeed, we demon-

strated that over-expression of miR-9-5p results in the repression of

additional genes belonging to the TGF-b pathway. For example, the

Col1a1 gene has two poorly conserved BSs for miR-9-5p, as the

TargetScan database predicts, but whether or not it is a direct target

of this miRNA remains to be proven. Additionally, the effects in the

expression reduction of other predicted miR-9-5p targets will need

to be tested in future studies, especially those related to the TGF-b1
signaling pathway, like TGFBR1, Smad4 or integrins because of

their essential role in lung fibrosis development [2,7,55–57].

Figure 7. miR-9-5p regulates TGFBR2 and NOX4 expression and inhibits Smad2 phosphorylation in mouse lungs.

A qRT–PCR analysis of TGFBR2 expression in lungs from mice administered lenti-SC (control) or lenti-miR-9 (1 × 106 i.f.u.) (n = 4 mice per group).
B qRT–PCR analysis of NOX4 expression in lungs from mice given lenti-SC (control) or lenti-miR-9 (1 × 106 i.f.u. per mouse) for 4 days followed by orotracheal

bleomycin administration (1.5 U/kg body weight in 40 ll saline) or saline for 14 days (n = 4 mice per group).
C Microphotographs of TGFBR2 and pSmad2 expression in mouse lung samples described in (B) (n = 4 mice per group). Scale bars: 100 lm.

Data information: Bar graphs show mean � SEM; two-tailed Mann–Whitney U-test; *P ˂ 0.05 compared to saline-treated mice administered lenti-SC and #P ˂ 0.05
compared to bleomycin-treated mice administered lenti-SC.
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Figure 8. miR-9-5p inhibition exacerbates pulmonary fibrosis in mice.

A qRT–PCR analysis of Col1a1 and FN expression in lungs from mice administered miRNA inhibitor NC (control) or miRNA inhibitor-9-5p (7 mg/kg body weight in
40 ll saline) 4 and 2 days before orotracheal instillation of bleomycin (1.5 U/kg body weight in 40 ll saline) or saline for 10 days (n = 3–6 mice per group).

B Microphotographs of H&E (upper panels) and Masson’s trichrome staining (middle panels) and a-SMA expression (lower panels) from lung sections of mice treated
as described in (A) (n = 3–7 mice per group). Scale bars: 100 lm.

C, D Semiquantitative determination (grade 0 to 3) of the collagen content (C) and the quantity of myofibroblasts (D) in lung tissue samples from mice treated as
described in (A) (n = 5–7 mice per group). Each mouse is represented by a symbol, dots represent miRNA inhibitor NC and squares represent miRNA inhibitor-9-5p-
treated mice, respectively.

Data information: Data are shown as mean � SEM; two-tailed Mann–Whitney U-test; *P ˂ 0.05, **P ˂ 0.01 compared to mice given control miRNA inhibitor and saline-
treated, and #P < 0.05, ##P < 0.01 compared to mice given control miRNA inhibitor and bleomycin-treated.
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Concomitantly, other miR-9-5p-predicted target genes implicated in

additional signaling activated during LF, such as the WNT/b-catenin
pathway [58], or related to the inflammatory immune response

[2,7] should be explored. Finally, some studies have suggested an

alternative miRNA mechanism for silencing gene expression by

binding to promoter regions in human cells [59,60]. microPIR soft-

ware (microRNA-Promoter Interaction Resource, http://www4a.

biotec.or.th/micropir/) [61] predicted the existence of miR-9-5p BSs

in the promoters of TGF-b-related genes, Smads, TGFBRs, NOX4

and TGF-b, and also in key fibrotic markers, a-SMA, or Col1a1 (data

not shown). This suggests that miR-9-5p could also carry out its

anti-fibrotic role by affecting the expression of some of these genes,

although this hypothesis needs to be confirmed.

The involvement of dysregulated TGF-b signaling is a well-

established pathogenetic mechanism in IPF [7]. Our data strongly

suggest that miR-9-5p controls this process in an attempt to reduce

Figure 9.
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the excessive pro-fibrotic signals promoted by TGF-b. However,

although mice with miR-9-5p over-expression exhibited attenuation

of LF, detailed histological analysis suggested that it failed to

entirely abrogate the fibrotic phenotype. In spite of a miR-9-5p-

induced decrement in the expression of TGFBR2 and NOX4

and reduced levels of Smad2 phosphorylation, indicating down-

regulation of the TGF-b pathway, slightly increased matrix deposi-

tion and moderately enhanced a-SMA and ECM gene expression

were still observed in lungs from animals after bleomycin instilla-

tion. Potential explanations for this limited action include the exis-

tence of TGF-b-independent pro-fibrogenic stimuli perduring in

resident fibroblasts, alternative TGF-b signaling mediated by recep-

tors other than TGFBR2 and/or signaling through molecules

different from Smads. In addition, matrix generation by non-resident

fibroblasts was not ruled out.

In the lung, as in other organs, the origin of myofibroblasts is still

unclear and a matter of controversy [37]. Some authors have

proposed that they can emerge from mesoderm-derived pleural MCs

in a process known as MMT [62,63]. We have extended the action

of miR-9-5p precisely to this scenario and results obtained in PMCs

confirmed that miR-9-5p also plays a significant preventive role in

the TGF-b1-mediated transformation of MCs into fibrogenic

myofibroblasts. Increasing miR-9-5p levels significantly reduced

the invasive capacity of MCs, this representing one mechanism

preventing the accumulation of MC-derived myofibroblasts in

the submesothelial compact zone of the peritoneum, therefore

protecting it from the initiation of the fibrotic process. Noteworthy,

miR-9-5p over-expression also decreased TGFBR2 and TGF-b1-
induced NOX4 levels. This may represent a potential mechanism

contributing to the anti-fibrotic role of miR-9-5p in PMCs. The

increased expression of miR-9-5p observed in human non-epith

compared to epith MCs reinforces the protective role for miR-9-5p

in the development of PF. The capacity of miR-9-5p to inhibit the

pro-fibrogenic transformation induced by TGF-b1, not only in

pulmonary fibroblasts but also in PMCs and the increased miR-9-5p

expression in IPF patients and in omentum-derived MCs of PD

patients also confer miR-9-5p the potential of playing a more

general counter-regulatory role in human organ fibrosis, which

should be addressed in other pathological contexts.

Importantly, recent studies have emerged demonstrating that

miRNAs are also externalized from cells and transported into body

fluids, thereby shuttling genetic information from a donor to a

recipient cell [64–66]. Although the secretory mechanism remains

essentially unknown, circulating miRNAs represent not only

potential non-invasive biomarkers for many diseases but also tools

to monitor their onset and progress as well their therapeutic response

[65,67]. miRNAs secreted by immune cells, stem cells, adipocytes

and blood cells have recently been identified [64]. It has been shown

that cancer cells release microvesicles that contain miR-9 [68]. The

secretion of miR-9-5p in a fibrotic context could pave the way to

establish it as a novel serum biomarker for the diagnosis and progno-

sis in organ fibrosis. Currently, we believe that our results purport

miR-9-5p as a potential therapeutic tool for human organ fibrosis.

Materials and Methods

Cell culture and treatments

The human fetal lung fibroblast cell line HFL-1 (CCL-153) was

obtained from American Type Culture Collection (ATCC, VA). Cells

were grown in F12K medium (ATCC) containing 10% (vol/vol) FBS

(HyClone Laboratories, Logan, UT) and 1% (vol/vol) penicillin/

streptomycin (Gibco, Rockville, MD) at 37°C in 5% CO2. For treat-

ments, cells were serum starved overnight and then incubated with

100 lM hydrogen peroxide (H2O2) (Sigma-Aldrich, St. Louis, MO),

5 ng/ml recombinant human transforming growth factor beta 1

(TGF-b1) (R&D Systems, Minneapolis, MN), 20,70-dichlorofluorescein

Figure 10. Regulation of fibrogenesis by miR-9-5p.
ROS and TGF-b1 induce miR-9-5p expression. Over-expression of miR-9-5p in
lung fibroblasts and omentum-derived MCs blocks TGFBR2 and NOX4
expression, thus preventing myofibroblast differentiation, ECM deposition and
organ fibrogenesis.

Figure 9. miR-9-5p is up-regulated in non-epith effluent-derived MCs from PD patients, attenuates TGF-b1-induced fibrogenesis and regulates TGFBR2 and
NOX4 expression in omentum-derived MCs.

A qRT–PCR analysis of miR-9-5p expression in omentum-derived MCs (n = 3) epith (n = 5) and non-epith (n = 4) effluent-derived MCs. *P ˂ 0.05 compared to
omentum-derived MCs and #P ˂ 0.05 compared to epith effluent-derived MCs.

B qRT–PCR analysis of miR-9-5p expression in omentum-derived MCs treated with 5 ng/ml TGF-b1 for 48 h (n = 3). *P ˂ 0.05 compared to untreated cells.
C qRT–PCR analysis of a-SMA, Col1a1 and FN in omentum-derived MCs transfected with 40 nM pre-miR-NC (control) or pre-miR-9-5p and treated with 5 ng/ml

TGF-b1 for 48 h (n = 3). *P < 0.05 compared to negative control-transfected cells and #P < 0.05 compared to the corresponding negative control time point.
D Western blot analysis (left) and quantification (right) of a-SMA protein levels in cells treated as described in (C) (n = 3). a.u., arbitrary units. *P < 0.05 compared to

negative control-transfected cells and #P < 0.05 compared to the corresponding negative control time point.
E Fluorescence images (left) and quantification (right) of collagen matrix invasion in omentum-derived MCs transfected with either 40 nM pre-miR-NC or pre-miR-9-5p in

response to TGF-b1 for 24 h (n = 3). Nuclei were stained with DAPI (blue). Scale bar: 100 lm.
F qRT–PCR analysis of TGFBR2 expression in omentum-derived MCs transfected with 40 nM of pre-miR-NC (control) or pre-miR-9-5p for 48 h (n = 3).
G qRT–PCR analysis of NOX4 expression in omentum-derived MCs treated as described in (C) (n = 3).

Data information: Bar graphs show mean � SEM; two-tailed Mann–Whitney U-test; *P < 0.05 compared to negative control-transfected cells and #P < 0.05 compared
to the corresponding negative control time point.
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diacetate (DCFH-DA, Invitrogen, Carlsbad, CA), polyethyleneglycol

(PEG) (Sigma-Aldrich), and 100 units/ml PEG-catalase (Sigma-

Aldrich) for the indicated times. Human mesothelial cells (MCs)

were isolated from omentum samples of patients undergoing unre-

lated abdominal surgery or from effluents of PD patients as previ-

ously described [69]. MCs were cultured in Earle’s M199 medium

(Sigma-Aldrich) supplemented with 20% FBS, 2% Hepes 1 M

(Sigma-Aldrich), 50 U/ml penicillin/50 lg/ml streptomycin and 2%

Biogro-2 (Biological Industries, Beit Haemek, Israel). The purity of

MCs cultures was determined by the expression of intercellular

adhesion molecule (ICAM)-1, calretinin and cytokeratins. MCs

cultures were negative for von-Willebrand factor and CD45, ruling

out any contamination by endothelial cells or macrophages [69,70].

To induce MMT in vitro, omentum-derived MCs were treated for

48 h with 5 ng/ml of TGF-b1 (R&D Systems). MCs isolated from PD

patients were classified into two groups: epithelioid (epith) (n = 5)

and non-epithelioid (non-epith) (n = 4) MCs [12,71,72].

Transfection of miRNA precursors and inhibitors

Cells at 60% confluence were transfected with 40 nM of either pre-

miRTM miRNA precursor of miR-9-5p (pre-miR-9-5p) (AM17100,

Ambion, Carlsbad, CA) or miR-9 inhibitor (miRNA Inhibitor-9)

(4464088, Ambion) using Lipofectamine 2000 (Invitrogen). In all

experiments an equal concentration of a non-targeting sequence

Pre-miRTM miRNA Precursor Negative Control #1 (pre-miR-NC)

(AM17110, Ambion) or miRNA Inhibitor Negative Control #1

(miRNA Inhibitor NC) (4464079, Ambion) was used.

Transfection of plasmids

HFL-1 cells were used for transient cDNA expression. Transfections

(3 lg of plasmid) were performed by electroporation using the Elec-

tro Cell Manipulator 600 (BTX, San Diego, CA). The pCMV5 empty

vector and the pCMV5-TGFBR2 expression vector were kindly

provided by Dr. Carmelo Bernabéu (Centro de Investigaciones

Biológicas, CSIC, Madrid, Spain). An expression vector containing

the human NOX4 open reading frame (pCMV5-NOX4) was

purchased from Origene (Rockville, MD). The pCMV6-AC-GFP

empty vector was also purchased from Origene (Rockville, MD).

The efficiency of transfection was ~20–30%. The over-expression of

TGFBR2 and NOX4 was confirmed by qRT–PCR (primer sequences

used for mRNA quantification are shown in Table EV5).

RNA extraction

Total RNA was isolated from cells and lung tissue using the

miRNeasy Mini Kit (QIAGEN, Valencia, CA). For RNA extraction in

paraffin-embedded human samples, miRNeasy FFPE Kit (QIAGEN)

was used. RNA quantity and quality were determined at 260 nm by

a Nanodrop spectrophotometer.

microRNA profiling

Taqman miRNA low-density arrays (TLDAs) (Applied Biosystems,

Foster City, CA) were selected as the platform for microRNA profil-

ing. This platform consists of a two-card set (Cards A and B) for a

total of 754 unique assays specific for human miRNAs present in the

Sanger miRBase v14 (http://microrna.sanger.ac.uk). After RNA

extraction, miRNA present in 500 ng of total RNA was subjected to

reverse transcription using the Megaplex RT Primer Human Pool A

and B and the Taqman microRNA reverse transcription kit (Applied

Biosystems) according to the manufacturer’s instructions. The resul-

tant cDNAs were analyzed using Human Card Set v3. Reactions

were incubated in an Applied Biosystems 7900HT Fast Real-Time

PCR system in 384-well TLDAs using the manufacturer’s recom-

mended protocol.

Statistical analysis of TLDAs data

The ABI TaqMan SDS v2.2 software was utilized to obtain raw thresh-

old cycle (Ct) value for each miRNA. Only miRNAs with a Ct ≤ 36

were included in the analyses. The Ct data were analyzed with the

StatMiner 4.2.8 software (Integromics; Madrid, Spain). Mammalian

small nuclear RNAU6 (snRNAU6) was used as endogenous control

gene for normalizing gene expression levels after application of the

geNorm [73] and NormFinder [74] algorithms. The delta Ct (DCt)
value was calculated by normalizing Ct values to the endogenous

housekeeping snRNAU6. The heat map was generated by the real-

time PCR data presented as DCt. Heat map scale bars indicate DCt
values and red and green colors depict low and high expression

levels, respectively. miRNAs showing similar DCt values were

grouped by hierarchical clustering. The delta delta Ct (DDCt) value

was calculated by subtracting the DCt of the reference sample (control

cells) from the DCt of each H2O2-treated sample. Relative quan-

tification (RQ) or fold change of each miRNA was generated using the

2�DDCt method [75]. Differentially expressed miRNAs were identified

by the parametric Limma test [76]. To take the multiple hypotheses

testing into account, P-values were adjusted (adj.) using the

Benjamini–Hochberg false discovery rate (FDR) correction [77].

Results were graphed in a volcano plot and miRNAs with Benjamini–

Hochberg adj. P-values < 0.05 (Table EV1) were highlighted.

Quantification of miRNA expression

Quantification of miR-9-5p expression was performed using the

miRCURY Locked Nucleic Acid (LNA) Universal RT microRNA PCR

(Exiqon, Denmark). Following reverse transcription (RT), the cDNA

template was amplified using microRNA-specific LNA primers for

mature miR-9-5p (204513, Exiqon, Denmark). qRT–PCR was

performed in a 96-well Bio-Rad CFX96 RealTime PCR System with a

C1000 Thermal Cycler using iQTM SYBR Green Supermix (Bio-Rad,

Hercules, CA). A Ct value for triplicate wells was obtained from each

amplification curve using the CFX Manager Bio-rad software (Bio-

Rad). Ct values were normalized to the endogenous control

snRNAU6. Relative miRNA expression was determined using the

2�DDCt method [75].

Quantification of pri-miRNAs expression

Quantitative expression studies of primary miR-9 (pri-miR-9) tran-

scripts were performed using TaqMan Pri-miRNA Assays (Applied

Biosystem). cDNA was obtained using the High Capacity RNA-to-

cDNA Kit (Applied Biosystem) and amplified using specific primers

for pri-miR-9-1, pri-miR-9-2, or pri-miR-9-3 (Hs03303201_pri,

Hs03303202_pri, and Hs03293595_pri, Applied Biosystem) in separate
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reactions. qRT–PCR was performed in an Applied Biosystems 7900HT

Fast RT–PCR system. The expression level of each pri-miR was calcu-

lated according to the 2�DDCt method [75], using the GAPDH gene as

an internal control. All reactions were performed in triplicate.

Analysis of mRNA expression

RT was carried out with 500 ng of total RNA using the iScriptTM

cDNA Synthesis kit (Bio-Rad). qRT–PCR was carried out with the

iQTMSYBR Green Supermix (Bio-Rad), using a 96-well Bio-Rad

CFX96 RT–PCR System with a C1000 Thermal Cycler (Bio-Rad). A

Ct value was obtained from each amplification curve using CFX96

analysis software provided by the manufacturer. Relative mRNA

expression was determined using the 2�DDCt method [75]. GAPDH

gene was used for normalization purposes. The primer sequences

used for mRNA quantification are shown in Table EV5.

microRNA target prediction bioinformatics tools and functional
clustering analyses

The online microRNA databases and target prediction tools Target-

Scan (http://www.targetscan.org), miRanda (http://www.microrna.

org) and miRwalk (http://www.umm.uni-heidelberg.de/apps/zmf/

mirwalk/) were used to identify potential miR-9-5p targets

(Table EV2). These were selected for Functional Annotation Cluster-

ing in the bioinformatics Database for Annotation, Visualization and

Integrated Discovery (DAVID) v6.7 (http://david.abcc.ncifcrf.gov/)

[78] using the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway databases. Enrichment score was reported as the minus log

transformation of the geometric mean of P-values (modified Fisher’s

exact test). The P-value was corrected for multiple hypothesis testing

with the Benjamini–Hochberg FDR algorithm [77]. Terms with a

corrected P < 0.05 were considered significant. This same list was

used for comparison with genes related to the “TGF-b signaling

pathway” (Tables EV3 and EV4).

Luciferase assays and site-specific mutagenesis

To characterize the candidate sites, cDNA fragments corresponding

to the three prime untranslated regions (30 UTRs) of human TGFBR2

and NOX4 were amplified by RT–PCR from genomic DNA of HFL-1

cells. For site-specific mutagenesis, the regions in the 30 UTRs

complementary to the seed sequence of miR-9-5p were mutated

using the Multisite-QuikChange directed mutagenesis kit (Strata-

gene, La Jolla, CA) and primers used are shown in Table EV6. Point

mutations (PM) are a two-base change in the seed sequence for

miR-9-5-p. For luciferase assays, WT or mutant 30 UTRs were cloned

into the psiCHECK-2 vector (Promega, Madison, WI). Inserts were

sequenced to confirm appropriate structure. The activity of Renilla

luciferase was normalized by the internal firefly luciferase activity.

HFL-1 cells were transiently co-transfected with 125 ng psiCHECK-

2/TGFBR2 or psiCHECK-2/NOX4 reporter plasmids and 40 nM pre-

miRs by triplicate. Luciferase assays were performed 24 h later

using the Dual-Luciferase reporter system (Promega, Madison, WI).

The Renilla and firefly luciferase signals were detected using a

Glomax multidetection system (Promega, Madison). Smad-specific

luciferase reporter (CAGA-luc) was a generous gift from Dr. Aris

Moustakas (Biomedical Center Uppsala, Sweden) [33]. Transient

transfection experiments were performed with HFL-1 cells and

promoter activity was estimated by luminometry as described previ-

ously using pRL-CMV plasmid (a Renilla luciferase under the control

of the CMV promoter) for normalization purposes [79].

Analysis of intracellular ROS by flow cytometry

HFL-1 cells were incubated with 10 lM DCFH-DA for 15 min at

37°C in humidified air with 5% CO2 at 37°C. After incubation, the

single cell fluorescence of 10,000 cells for each sample was

measured using a BD FACSCantoTM II High Throughput Sampler

flow cytometer (Becton Dickinson Bioscience, Franklin Lakes, NJ).

All the data analyses were performed using Flow Jo v6.4.1 software

(Treestar, Ashland, OR).

Western blot analysis and antibodies

Briefly, cells were washed with PBS, homogenized and lysed in

150 ll RIPA buffer containing 150 mM NaCl, 0.1% SDS, 1% sodium

deoxycholate, 1% NP-40 and 25 mM Tris–HCl pH 7.6, in the presence

of protease (Complete, Roche Diagnostics, Mannheim, Germany) and

phosphatase inhibitors (Sigma-Aldrich). Cells were harvested by

scraping and the samples were clarified by centrifugation at 10,000 g

for 15 min at 4°C. Protein concentrations were determined by the

BCA Protein Assay Kit (Thermo Scientific, Rockford, IL). Equal

amounts of protein (10–50 lg) from the total extract were separated

on 8–10% SDS–polyacrylamide gels and transferred onto nitrocellu-

lose blotting membranes (GE Healthcare, Germany) at 12 V for

20 min in a semi-dry Trans-Blot Turbo system (Bio-Rad). Membranes

were blocked by incubation for 1 h with 5% non-fat milk in PBS

containing 0.5% Tween-20 and blotted with specific antibodies to

TGFb-RII (C16) (1:1,000, sc-220, Santa Cruz Biotechnology), NOX4

(1:1,000, NB110-58851, Novus Biologicals, Littleton, CO), a-actin
(1A4) (1:2,000, sc-32251, Santa Cruz Biotechnology), fibronectin

(1:1,000, F7387) and phosphorylated Smad2 pSmad2 (Ser465/Ser467)

(1:1,000, 3101, Cell Signaling, Danvers, MA). After incubation with

IRDye 800 goat anti-rabbit and IRDye 600 goat anti-mouse (1:15,000,

LI-COR Biosciences, Lincoln, NE) secondary antibodies, membranes

were imaged in triplicates with the Odyssey Infrared Imaging System

(LI-COR Biosciences). Band sizing was performed using the ImageJ

1.42 software (http://rsb.info.nih.gov/ij) and relative protein expres-

sion was determined by normalizing to GAPDH (1:5,000, MAB374,

Millipore, Bedford, MA). Phospho-Smad2 activity was calculated by

normalizing to total Smad2 (D43B4) (1:1,000, 5339, Cell Signaling).

Protein fold changes were normalized to values of control cells.

Cell proliferation, cell viability and apoptosis assays

For cell counting, 20 × 103 lung fibroblasts per well were seeded into

24-well plates. HFL-1 cells were transfected with 40 nM pre-miRs.

Viable and non-viable cells were counted and the average cell

number from triplicate measurements was determined. After seeding

3 × 103 transfected cells per well in 96-well plates, cell viability was

determined with the XTT assay, using the Cell Proliferation Kit II

(Roche Diagnostics). Apoptotic cells were detected by FACS using

the PE Annexin V Apoptosis Detection Kit I (BD Biosciences

Pharmingen, San Diego, CA). Cells were analyzed in a BD FACSCan-

toTM II High Throughput Sampler flow cytometer (Becton Dickinson
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Bioscience). Apoptotic cell death was measured as PE Anexin

V-positive/7-AAD-negative cells.

Cell migration and invasion assays

Cellular migration and invasion assays were performed in 24-trans-

well permeable supports with 8.0 lm pore size (Corning, MA). In

brief, cells were transfected with 40 nM pre-miR-s as described

above. After 48 h, cells were detached with trypsin-EDTA (Gibco)

and 3 × 104 cells for migration and 5 × 104 cells per well for inva-

sion assays were suspended in serum-free F12K medium (ATCC)

and added to the upper chamber. Bottom wells were filled with

serum-free F12K medium containing 5 ng/ml TGF-b1 (R&D

Systems) as chemoattractant. For invasion assays inserts were pre-

coated with 50 ll of 300 lg/ml rat-tail collagen I (BD Biosciences)

at 37°C overnight. Cells were allowed to migrate or invade for 24

and 48 h at 37°C in 5% CO2. After incubation non-moving cells on

the top of the membrane were removed with a cotton swab.

Membranes containing cells were fixed with 4% paraformaldehyde

(PFA) for 10 min and washed with PBS. Nuclear staining was

performed with DAPI (Sigma-Aldrich) for 10 min. Membranes were

mounted on slides using mowiol (Calbiochem, Nottingham, U.K.).

Cell fluorescence was visualized in a Nikon Eclipse T2000U micro-

scope. To determine the total number of cells per insert, migratory

and invasive cells were counted in four random fields per slide

under light microscopy with a 10× objective lens. This count was

divided by the area of the viewing field and multiplied by the entire

area of the insert. The percentage of migrating/invading cells was

calculated by dividing this result by the total of cells seeded.

Immunofluorescence

HFL-1 cells were seeded onto 24-well plates containing 10-mm-

diameter glass coverslips. They were transfected with 40 nM

pre-miRs. After 24-h starvation cells were incubated with 5 ng/ml

TGF-b1 (R&D Systems) for the indicated times. After treatments

cells were fixed with 4% PFA for 10 min and permeabilized with

0.25% Triton X-100 in PBS for 5 min at room temperature. Cells

were washed with PBS, blocked with 1% BSA in PBS for 1 h and

incubated overnight at 4°C with anti-a-actin (1A4) (1:2,000,

sc-32251, Santa Cruz Biotechnology), anti-fibronectin (1:1,000,

F7387, Sigma-Aldrich) and anti-Smad2/3 (1:1,000, 610843, BD

Biosciences). Nuclear staining was performed with DAPI (Sigma-

Aldrich). F-actin was stained with tetramethylrhodamine isothiocyanate-

conjugated phalloidin (1:1,000, Sigma-Aldrich). The cover slips

were mounted on slides using mowiol (Calbiochem). Cell fluores-

cence was visualized by a Nikon Eclipse T2000U microscope.

Immunohistochemical analysis of mouse lung tissue

Lung tissue sections were deparaffinized and heated to expose the

hidden antigens using Real Target Retrieval Solution containing citrate

buffer, pH 6.0 (Dako, Glostrup, Denmark). Samples were pre-treated

with Real Peroxidase-Blocking Solution (Dako) to block endogenous

peroxidase. The primary antibodies employed were as follows: a-actin
(1A4) (1:600, sc-32251, Santa Cruz Biotechnology), TGFb-RII (C16)

(1:500, sc-220, Santa Cruz Biotechnology) and phospho-Smad2

(Ser465/Ser467) (1:600, 3101, Cell Signaling). Non-specific binding of

secondary antibodies was blocked by pre-treating slides with goat

serum. A biotinylated goat anti-rabbit IgG was applied to detect rabbit

primary antibodies and complexes were visualized using the R.T.U

Vectastain Elite ABC Kit (Vector Laboratories, Burlingame, CA).

Mouse primary antibodies were visualized applying the Vector

M.O.M. Immunodetection Kit (Vector Laboratories, Burlingame, CA).

Tissue sections were revealed using DAB (Dako) as chromogen and

finally counterstained with hematoxylin. Slides were mounted with

mowiol (Calbiochem). Images were taken using a Leica DMD108

microscopy (Leica Microsystems CMS GmbH, Wetzlar, Germany).

miRNA in situ hybridization (ISH)

For detection of miR-9-5p in mouse lung samples a specific 50 and
30-DIG labeled miRCURY locked nucleic acidTM (LNA) oligonu-

cleotide (Exiqon, Denmark) was used (miR-9-5p detection probe

sequence: 50-TCATACAGCTAGATAACCAAAGA-30). The 50 and 30-
DIG labeled scramble miRNA (Exiqon) was used as a negative

control (scramble probe sequence: 50-GTGTAACACGTCTA
TACGCCCA-30). ISH was performed according to Exiqon’s protocol.

Sections were developed with nitro-blue tetrazolium chloride (NBT)/

5-bromo-4-chloro-3-indolyl-phosphate (BCIP) color substrates

(Roche Diagnostics). Slides were mounted with mowiol (Cal-

biochem). Positive blue cytoplasmic staining was observed with a

Nikon Eclipse T2000U microscope.

Lentiviral vector construct

The lentivector-based miRNA precursor constructs expressing the

miR-9-5p (lenti-miR-9) (MMIR-9-1-PA-1) and the scramble negative

control (lenti-SC) (MMIR-000-PA-1) were purchased from SBI

System Biosciences (Mountain View, California). Pseudoviral parti-

cles were prepared using the pPACK-F1 Lentivector packaging

system (SBI System Biosciences) and HEK 293T producer cell line.

The titration of pseudoviral particles generated with the lentiviral

vectors was determined by calculating the percentage of positive

GFP expression cells by flow cytometry in a BD FACSCantoTM II High

Throughput Sampler flow cytometer (Becton Dickinson Bioscience)

72 h after infection. The lentivirus titers were calculated as

described [80] and expressed in infection units (ifu)/ml.

Experimental pulmonary fibrosis model and in vivo delivery of
lentiviral vectors and miRNA inhibitors

C57BL/6 mice were purchased from Charles River Laboratory

(Wilmington, MA). LF was induced in 6–8-week-old C57BL/6 mice

by application of bleomycin (Sigma-Aldrich) as described [28] with

some modifications. Mice were anesthetized with intraperitoneal

injection of ketamine (100 mg/kg) plus xylazine (10 mg/kg). The

tongues of anesthetized mice were gently pulled forward with

forceps and bleomycin (1.5 U/kg body weight in 40 ll saline serum)

was delivered into the oropharyngeal cavity. To determine the effect

of miR-9-5p over-expression in the bleomycin-mice model of LF,

1 × 106 ifu/ml of lentivirus were diluted in 40 ll saline serum and

delivered into the mice oropharyngeal cavity 4 days before bleo-

mycin instillation. Delivery of lentiviral vectors was tested by detec-

tion of GFP expression in the lungs. To evaluate the persistence of

lentiviral transduction in our model miR-9-5p expression level was
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determined by qRT–PCR as described above. To modulate the

expression of miR-9-5p in vivo 7 mg/kg body weight in 40 ll saline
serum per mouse of miR-9-5p Inhibitor (miRNA Inhibitor miR-9-5p,

MH10022, mirVana custom Inhibitor, Ambion) was delivered into

the oropharyngeal cavity 4 and 2 days before bleomycin instillation.

Sequestering of miR-9-5p was determined by analysis of miR-9-5p

expression by qRT–PCR as described above. As controls WT

animals were provided with the same volume of saline serum,

lenti-SC, or miRNA Inhibitor Negative Control (miRNA Inhibitor

NC, 4464079, mirVana Inhibitor, Ambion). Mice were sacrificed at

the indicated time points and the PBS-perfused lungs were harvested

for analysis. The extent of LF was assessed by hematoxylin and

eosin (H&E) and Masson’s trichrome stainings in mice paraffin-

embedded lung samples. Images were taken using a Leica DMD108

microscopy (Leica Microsystems). mRNA expression levels were

determined by qRT–PCR. Total fibrotic areas per lung (mm2) were

quantified using the Digital Microimaging Device software (Leica

Microsystems). Histopathologic evaluation was performed in a

blinded fashion by two independent pathologists using a progressive

score (from grade 0 to 3). Fibrosis scoring included evaluation of

ECM deposits and presence of fibroblasts. Animals were handled in

agreement with the Guide for the Care and Use of Laboratory

Animals contained in Directive 2010/63/EU of the European Parlia-

ment. Approval was granted by the local ethics review board of

Centro de Biologı́a Molecular “Severo Ochoa” in Madrid.

Human IPF patients’ lung samples

Human lung tissue samples were obtained from surgical biopsies of

patients from Hospital “Ramon y Cajal” in Madrid, after written

approval and according to the Spanish and European legislation.

Seven lung tissue samples with the diagnosis of IPF and three

samples from histologically normal lungs (controls) from the Patho-

logy Department collection were selected. Samples were analyzed

by H&E and Masson’s trichrome stainings. Images were taken with

a DMD108 microscopy (Leica Microsystems). RNA extraction and

miR-9-5p expression level analysis were performed as described

above. The protocol was approved by the ethics committee of the

Hospital “Ramon y Cajal” in Madrid.

Statistical analysis

Data with only one grouping variable were analyzed with Kruskal–

Wallis non-parametric ANOVA with post-test multiple comparisons

using Dunn’s procedure or by nonparametric two-tailed Mann–

Whitney U-test. Differences between only two groups were analyzed

statistically with nonparametric two-tailed Mann–Whitney U-test.

Data were analyzed with use of version 5.01 of the GraphPad Prism

package (La Jolla, CA). A value of P < 0.05 was considered to be

statistically significant (*/#/@: P < 0.05, **/##: P < 0.01). Data are

reported as mean � SEM.

Expanded View for this article is available online:

http://embor.embopress.org

Acknowledgements
We thank Laura Fernández Martín, Jaime Fernández Barrera, Javier Casares

and Miguel Ángel Alonso from the CBMSO (Madrid, Spain) for their technical

assistance in the plasmid transfection by electroporation, María Jesús Martín

Bermejo, Francisco Javier Nieto and Paola Bovolenta from the CBMSO (Madrid,

Spain) for their technical assistance in the lentivirus production and ISH proto-

cols and the genomic and flow cytometry units at the CBMSO (Madrid, Spain)

for excellent technical support. This work was supported by grants from the

Ministerio de Economía y Competitividad (MINECO) SAF 2012-31338 (SL), SAF

2013-47611 (MLC) and CSD 2007-00020 (SL), Instituto de Salud Carlos III

REDinREN RD12/0021/0009 (SL and LGB) and FIS PS12/00094 (LGB),

Comunidad de Madrid “Fibroteam” S2010/BMD-2321 (SL and MLC) and Funda-

ción Renal “Iñigo Alvarez de Toledo” (SL), all from Spain. Supported by Euro-

pean Cooperation in Science and Research COST actions BM-1203 (EU-ROS)

and BM-1005 (ENOGAS) (SL). The CBMSO receives institutional support from

Fundación “Ramón Areces”. Marta Fierro was supported by a postdoctoral

grant of the Juan de la Cierva Program; Óscar Busnadiego and Cristina

Espinosa have been fellows of the FPI program, all from MINECO, Spain.

Author contributions
SL conceived and directed research; SL and MFF designed the experiments;

MFF performed and analyzed the majority of experiments; OB helped with the

bleomycin-induced LF mouse model; PS and MR performed histological analy-

sis; CED prepared the luciferase reporter constructs; EBR provided technical

assistance for mouse experiments; HP and MLGB supervised and conducted

patient sample collection and analyses; RR performed the miRNA arrays and

helped with the bioinformatics analysis; MLC provided valuable reagents and

advice; MLGB provided helpful advice and discussion; all authors discussed the

results; and SL and MFF wrote the manuscript.

Conflict of interest
An European patent based on this work was filed in June 2014 (Application

No./Patent No.: 14382239.3-1401) by Consejo Superior de Investigaciones Cien-

tíficas (CSIC) (Madrid, Spain) and GENDIAG Laboratories (Barcelona, Spain).

References

1. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol

214: 199 – 210

2. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic

translation for fibrotic disease. Nat Med 18: 1028 – 1040

3. Meltzer EB, Noble PW (2008) Idiopathic pulmonary fibrosis. Orphanet J

Rare Dis 3: 8

4. Noble PW (2006) Idiopathic pulmonary fibrosis: natural history and

prognosis. Clin Chest Med 27: S11 – S16, v

5. Nalysnyk L, Cid-Ruzafa J, Rotella P, Esser D (2012) Incidence and preva-

lence of idiopathic pulmonary fibrosis: review of the literature. Eur

Respir Rev 21: 355 – 361

6. Noble PW, Barkauskas CE, Jiang D (2012) Pulmonary fibrosis: patterns

and perpetrators. J Clin Invest 122: 2756 – 2762

7. Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp

Med 208: 1339 – 1350

8. Amara N, Goven D, Prost F, Muloway R, Crestani B, Boczkowski J (2010)

NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts

from patients with idiopathic pulmonary fibrosis and mediates TGFbeta1-

induced fibroblast differentiation into myofibroblasts. Thorax 65: 733 – 738

9. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S,

Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth

factor-beta1-induced differentiation of cardiac fibroblasts into

myofibroblasts. Circ Res 97: 900 – 907

ª 2015 The Authors EMBO reports Vol 16 | No 10 | 2015

Marta Fierro-Fernández et al miR-9-5p prevents organ fibrogenesis EMBO reports

1375



10. Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC,

Pennathur S, Martinez FJ, Thannickal VJ (2009) NADPH oxidase-4 medi-

ates myofibroblast activation and fibrogenic responses to lung injury.

Nat Med 15: 1077 – 1081

11. Martin-Garrido A, Brown DI, Lyle AN, Dikalova A, Seidel-Rogol B,

Lassegue B, San Martin A, Griendling KK (2011) NADPH oxidase 4

mediates TGF-beta-induced smooth muscle alpha-actin via p38MAPK

and serum response factor. Free Radic Biol Med 50: 354 – 362

12. Aroeira LS, Aguilera A, Sanchez-Tomero JA, Bajo MA, del Peso G,

Jimenez-Heffernan JA, Selgas R, Lopez-Cabrera M (2007) Epithelial to

mesenchymal transition and peritoneal membrane failure in peritoneal

dialysis patients: pathologic significance and potential therapeutic inter-

ventions. J Am Soc Nephrol 18: 2004 – 2013

13. Krediet RT, Lindholm B, Rippe B (2000) Pathophysiology of peritoneal

membrane failure. Perit Dial Int 20(Suppl 4): S22 – S42

14. Margetts PJ, Bonniaud P (2003) Basic mechanisms and clinical implica-

tions of peritoneal fibrosis. Perit Dial Int 23: 530 – 541

15. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-

Jimenez C, Jimenez-Heffernan JA, Aguilera A, Sanchez-Tomero JA, Bajo

MA, Alvarez V et al (2003) Peritoneal dialysis and epithelial-to-

mesenchymal transition of mesothelial cells. N Engl J Med 348: 403 – 413

16. Yang AH, Chen JY, Lin JK (2003) Myofibroblastic conversion of mesothe-

lial cells. Kidney Int 63: 1530 – 1539

17. Ambros V (2004) The functions of animal microRNAs. Nature 431:

350 – 355

18. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and

function. Cell 116: 281 – 297

19. Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell

death, and tumorigenesis. Br J Cancer 94: 776 – 780

20. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of

tiny RNAs with probable regulatory roles in Caenorhabditis elegans.

Science 294: 858 – 862

21. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B,

Hayward DC, Ball EE, Degnan B, Muller P et al (2000) Conservation of

the sequence and temporal expression of let-7 heterochronic regulatory

RNA. Nature 408: 86 – 89

22. Galasso M, Sana ME, Volinia S (2010) Non-coding RNAs: a key to future

personalized molecular therapy? Genome Med 2: 12

23. Wu X, Piper-Hunter MG, Crawford M, Nuovo GJ, Marsh CB, Otterson GA,

Nana-Sinkam SP (2009) MicroRNAs in the pathogenesis of Lung Cancer.

J Thorac Oncol 4: 1028 – 1034

24. Yang BF, Lu YJ, Wang ZG (2009) MicroRNAs and apoptosis: implications

in the molecular therapy of human disease. Clin Exp Pharmacol Physiol

36: 951 – 960

25. Zorio E, Medina P, Rueda J, Millan JM, Arnau MA, Beneyto M, Marin F,

Gimeno JR, Osca J, Salvador A et al (2009) Insights into the role of

microRNAs in cardiac diseases: from biological signalling to therapeutic

targets. Cardiovasc Hematol Agents Med Chem 7: 82 – 90

26. Pottier N, Cauffiez C, Perrais M, Barbry P, Mari B (2014) FibromiRs:

translating molecular discoveries into new anti-fibrotic drugs. Trends

Pharmacol Sci 35: 119 – 126

27. Kumarswamy R, Volkmann I, Thum T (2011) Regulation and function of

miRNA-21 in health and disease. RNA Biol 8: 706 – 713

28. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N,

Abraham E (2010) miR-21 mediates fibrogenic activation of pulmonary

fibroblasts and lung fibrosis. J Exp Med 207: 1589 – 1597

29. Pandit KV, Milosevic J, Kaminski N (2011) MicroRNAs in idiopathic

pulmonary fibrosis. Transl Res 157: 191 – 199

30. Cheng X, Ku CH, Siow RC (2013) Regulation of the Nrf2 antioxidant

pathway by microRNAs: new players in micromanaging redox home-

ostasis. Free Radic Biol Med 64: 4 – 11

31. Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic

response. FASEB J 18: 816 – 827

32. Vaughan MB, Howard EW, Tomasek JJ (2000) Transforming growth

factor-beta1 promotes the morphological and functional differentiation

of the myofibroblast. Exp Cell Res 257: 180 – 189

33. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct

binding of Smad3 and Smad4 to critical TGF beta-inducible elements in

the promoter of human plasminogen activator inhibitor-type 1 gene.

EMBO J 17: 3091 – 3100

34. Thannickal VJ, Toews GB, White ES, Lynch JP III, Martinez FJ (2004)

Mechanisms of pulmonary fibrosis. Annu Rev Med 55: 395 – 417

35. Li M, Krishnaveni MS, Li C, Zhou B, Xing Y, Banfalvi A, Li A, Lombardi V,

Akbari O, Borok Z et al (2011a) Epithelium-specific deletion of TGF-beta

receptor type II protects mice from bleomycin-induced pulmonary

fibrosis. J Clin Invest 121: 277 – 287

36. Ying SY, Chang DC, Miller JD, Lin SL (2006) MicroRNA protocols. Perspec-

tives. Methods Mol Biol 342: 351 – 358

37. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, De

Wever O, Mareel M, Gabbiani G (2012) Recent developments in

myofibroblast biology: paradigms for connective tissue remodeling. Am J

Pathol 180: 1340 – 1355

38. Barkauskas CE, Noble PW (2014) Cellular mechanisms of tissue fibrosis.

7. New insights into the cellular mechanisms of pulmonary fibrosis. Am

J Physiol Cell Physiol 306: C987 –C996

39. Zeisberg M, Kalluri R (2013) Cellular mechanisms of tissue fibrosis. 1.

Common and organ-specific mechanisms associated with tissue fibrosis.

Am J Physiol Cell Physiol 304: C216 –C225

40. Li Y, Jiang D, Liang J, Meltzer EB, Gray A, Miura R, Wogensen L,

Yamaguchi Y, Noble PW (2011b) Severe lung fibrosis requires an

invasive fibroblast phenotype regulated by hyaluronan and CD44. J Exp

Med 208: 1459 – 1471

41. Verrecchia F, Mauviel A (2007) Transforming growth factor-beta and

fibrosis. World J Gastroenterol 13: 3056 – 3062

42. Aroeira LS, Aguilera A, Selgas R, Ramirez-Huesca M, Perez-Lozano ML,

Cirugeda A, Bajo MA, del Peso G, Sanchez-Tomero JA, Jimenez-Heffernan

JA et al (2005) Mesenchymal conversion of mesothelial cells as a mecha-

nism responsible for high solute transport rate in peritoneal dialysis: role

of vascular endothelial growth factor. Am J Kidney Dis 46: 938 – 948

43. Jimenez-Heffernan JA, Aguilera A, Aroeira LS, Lara-Pezzi E, Bajo MA, del

Peso G, Ramirez M, Gamallo C, Sanchez-Tomero JA, Alvarez V et al

(2004) Immunohistochemical characterization of fibroblast subpopula-

tions in normal peritoneal tissue and in peritoneal dialysis-induced

fibrosis. Virchows Arch 444: 247 – 256

44. Margetts PJ, Kolb M, Galt T, Hoff CM, Shockley TR, Gauldie J (2001)

Gene transfer of transforming growth factor-beta1 to the rat

peritoneum: effects on membrane function. J Am Soc Nephrol 12:

2029 – 2039

45. Kinnula VL, Fattman CL, Tan RJ, Oury TD (2005) Oxidative stress in

pulmonary fibrosis: a possible role for redox modulatory therapy. Am J

Respir Crit Care Med 172: 417 – 422

46. Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control

DROSHA-mediated microRNA maturation. Nature 454: 56 – 61

47. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2010) Smad proteins

bind a conserved RNA sequence to promote microRNA maturation by

Drosha. Mol Cell 39: 373 – 384

EMBO reports Vol 16 | No 10 | 2015 ª 2015 The Authors

EMBO reports miR-9-5p prevents organ fibrogenesis Marta Fierro-Fernández et al

1376



48. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403 – 410

49. Massague J, Seoane J, Wotton D (2005) Smad transcription factors.

Genes Dev 19: 2783 – 2810

50. Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, Thannickal VJ,

Cardoso WV, Lu J (2011) miR-29 is a major regulator of genes associated

with pulmonary fibrosis. Am J Respir Cell Mol Biol 45: 287 – 294

51. Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson

KF, Konishi K, Yousem SA, Singh M, Handley D et al (2010) Inhibition

and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care

Med 182: 220 – 229

52. Fattman CL (2008) Apoptosis in pulmonary fibrosis: too much or not

enough? Antioxid Redox Signal 10: 379 – 385

53. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell

membrane to the nucleus. Cell 113: 685 – 700

54. Hecker L, Logsdon NJ, Kurundkar D, Kurundkar A, Bernard K, Hock T,

Meldrum E, Sanders YY, Thannickal VJ (2014) Reversal of persistent

fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl

Med 6: 231ra247

55. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD,

McCarty JH, Pellicoro A, Raschperger E, Betsholtz C, Ruminski PG

et al (2013) Targeting of alphav integrin identifies a core molecular path-

way that regulates fibrosis in several organs. Nat Med 19: 1617– 1624

56. Henderson NC, Sheppard D (2013) Integrin-mediated regulation of

TGFbeta in fibrosis. Biochim Biophys Acta 1832: 891 – 896

57. Peng R, Sridhar S, Tyagi G, Phillips JE, Garrido R, Harris P, Burns L,

Renteria L, Woods J, Chen L et al (2013) Bleomycin induces molecular

changes directly relevant to idiopathic pulmonary fibrosis: a model for

“active” disease. PLoS ONE 8: e59348

58. Konigshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A, Rose

F, Fink L, Seeger W, Schaefer L et al (2009) WNT1-inducible signaling

protein-1 mediates pulmonary fibrosis in mice and is upregulated in

humans with idiopathic pulmonary fibrosis. J Clin Invest 119: 772 – 787

59. Kim DH, Saetrom P, Snove O Jr, Rossi JJ (2008) MicroRNA-directed tran-

scriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA

105: 16230 – 16235

60. Younger ST, Corey DR (2011) Transcriptional gene silencing in mamma-

lian cells by miRNA mimics that target gene promoters. Nucleic Acids

Res 39: 5682 – 5691

61. Piriyapongsa J, Bootchai C, Ngamphiw C, Tongsima S (2012) microPIR:

an integrated database of microRNA target sites within human

promoter sequences. PLoS ONE 7: e33888

62. Mubarak KK, Montes-Worboys A, Regev D, Nasreen N, Mohammed KA,

Faruqi I, Hensel E, Baz MA, Akindipe OA, Fernandez-Bussy S et al (2012)

Parenchymal trafficking of pleural mesothelial cells in idiopathic

pulmonary fibrosis. Eur Respir J 39: 133 – 140

63. Nasreen N, Mohammed KA, Mubarak KK, Baz MA, Akindipe OA, Fernan-

dez-Bussy S, Antony VB (2009) Pleural mesothelial cell transformation

into myofibroblasts and haptotactic migration in response to TGF-beta1

in vitro. Am J Physiol Lung Cell Mol Physiol 297: L115 – L124

64. Chen X, Liang H, Zhang J, Zen K, Zhang CY (2012) Secreted

microRNAs: a new form of intercellular communication. Trends Cell Biol

22: 125 – 132

65. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin

GA (2011) MicroRNAs in body fluids–the mix of hormones and biomark-

ers. Nat Rev Clin Oncol 8: 467 – 477

66. Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel

biomarkers and extracellular communicators in cardiovascular disease?

Circ Res 110: 483 – 495

67. Tijsen AJ, Pinto YM, Creemers EE (2012) Circulating microRNAs as diag-

nostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ

Physiol 303: H1085 –H1095

68. Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, Oeh J, Modrusan Z,

Bais C, Sampath D et al (2012) Tumour-secreted miR-9 promotes

endothelial cell migration and angiogenesis by activating the JAK-STAT

pathway. EMBO J 31: 3513 – 3523

69. Lopez-Cabrera M, Aguilera A, Aroeira LS, Ramirez-Huesca M, Perez-

Lozano ML, Jimenez-Heffernan JA, Bajo MA, del Peso G, Sanchez-Tomero

JA, Selgas R (2006) Ex vivo analysis of dialysis effluent-derived

mesothelial cells as an approach to unveiling the mechanism of peritoneal

membrane failure. Perit Dial Int 26: 26 – 34

70. Strippoli R, Benedicto I, Foronda M, Perez-Lozano ML, Sanchez-Perales

S, Lopez-Cabrera M, Del Pozo MA (2010) p38 maintains E-cadherin

expression by modulating TAK1-NF-kappa B during epithelial-to-

mesenchymal transition. J Cell Sci 123: 4321 – 4331

71. Perez-Lozano ML, Sandoval P, Rynne-Vidal A, Aguilera A, Jimenez-Hef-

fernan JA, Albar-Vizcaino P, Majano PL, Sanchez-Tomero JA, Selgas R,

Lopez-Cabrera M (2013) Functional relevance of the switch of VEGF

receptors/co-receptors during peritoneal dialysis-induced mesothelial to

mesenchymal transition. PLoS ONE 8: e60776

72. Sandoval P, Loureiro J, Gonzalez-Mateo G, Perez-Lozano ML, Maldonado-

Rodriguez A, Sanchez-Tomero JA, Mendoza L, Santamaria B, Ortiz A, Ruiz-

Ortega M et al (2010) PPAR-gamma agonist rosiglitazone protects

peritoneal membrane from dialysis fluid-induced damage. Lab Invest 90:

1517 – 1532

73. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A,

Speleman F (2002) Accurate normalization of real-time quantitative RT-

PCR data by geometric averaging of multiple internal control genes.

Genome Biol 3: RESEARCH0034

74. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time

quantitative reverse transcription-PCR data: a model-based variance

estimation approach to identify genes suited for normalization,

applied to bladder and colon cancer data sets. Cancer Res 64:

5245 – 5250

75. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data

using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

Methods 25: 402 – 408

76. Smyth GK (2004) Linear models and empirical bayes methods for assess-

ing differential expression in microarray experiments. Stat Appl Genet

Mol Biol 3: Article 3

77. Hochberg YBAY (1995) Controlling the false discovery rate: a practical

and powerful approach to multiple testing. J Roy Stat Soc 57: 12

78. Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki

RA (2003) DAVID: database for annotation, visualization, and integrated

discovery. Genome Biol 4: P3

79. Rodriguez-Pascual F, Redondo-Horcajo M, Lamas S (2003) Functional

cooperation between Smad proteins and activator protein-1 regulates

transforming growth factor-beta-mediated induction of endothelin-1

expression. Circ Res 92: 1288 – 1295

80. Ding B, Kilpatrick DL (2013) Lentiviral vector production, titration,

and transduction of primary neurons. Methods Mol Biol 1018:

119 – 131

ª 2015 The Authors EMBO reports Vol 16 | No 10 | 2015

Marta Fierro-Fernández et al miR-9-5p prevents organ fibrogenesis EMBO reports

1377


