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Abstract

Motivation—Titration experiments measuring the gene expression from two different tissues, 

along with total RNA mixtures of the pure samples, are frequently used for quality evaluation of 

microarray technologies. Such a design implies that the true mRNA expression of each gene, is 

either constant or follows a monotonic trend between the mixtures, applying itself to the use of 

order restricted inference procedures. Exploiting only the postulated monotonicity of titration 

designs, we propose three statistical analysis methods for the validation of high-throughput genetic 

data and corresponding preprocessing techniques.

Results—Our methods allow for inference of accuracy, repeatability and cross-platform 

agreement, with minimal required assumptions regarding the underlying data generating process. 

Therefore, they are readily applicable to all sorts of genetic high-throughput data independent of 

the degree of preprocessing. An application to the EMERALD dataset was used to demonstrate 

how our methods provide a rich spectrum of easily interpretable quality metrics and allow the 

comparison of different microarray technologies and normalization methods. The results are on 

par with previous work, but provide additional new insights that cast doubt on the utility of 

popular preprocessing techniques, specifically concerning the EMERALD projects dataset.

Availability—All datasets are available on EBI’s ArrayExpress web site (http://www.ebi.ac.uk/

microarray-as/ae/) under accession numbers E-TABM-536, E-TABM-554 and E-TABM-555. 

Source code implemented in C and R is available at: http://statistics.msi.meduniwien.ac.at/float/

cross_platform/. Methods for testing and variance decomposition have been made available in the 

R-package orQA, which can be downloaded and installed from CRAN http://cran.r-project.org.

1 INTRODUCTION

Microarrays measure the abundance of thousands of distinct mRNA fragments 

simultaneously. The high dimension of the acquired data pose a complex issue to quality 

assessment. Titration experiments that measure the gene expression in two different tissues, 
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along with total RNA mixtures of the pure samples, have been shown to provide a valuable 

tool for the evaluation of quality related aspects of microarray data (Holloway et al., 2006; 

The MAQC Consortium, 2006). Such experiments operate on the assumption that for any 

fragment the abundance in the mixed samples can be determined as a function of their 

expression in the pure samples and the given mixture proportions (See Fig. 1 for a schematic 

depiction of this concept).

In contrast to spike-in studies where a set of mRNA fragments are added at predetermined 

concentrations to some of the samples, titration series are not based on synthetic RNA 

fragments [see e.g. Irizarry et al. (2006) responding to Choe et al. (2005)]. Titration series 

provide measurements from authentic biological samples that reflect the intricate 

characteristics of RNA samples. Their disadvantage is that they do not provide a gold 

standard (i.e. the set of true differentially expressed genes is unknown). The only knowledge 

available a priori in titration experiments is given by the mixture proportions and the 

thereby defined relationship between mRNA amounts throughout the titration series. Solely 

this relationship can be investigated, tested and compared on measurements acquired from 

several combinations of microarray platforms and preprocessing methods and is the basis for 

quality assessment. Holloway et al. (2006), for example, assume that the measured 

abundances follow a linear trend throughout the titration series. Shippy et al. (2006), 

however, observe ‘signal compression and expansion’, which would comprise a violation to 

such assumptions. Similarly, in microarray dose–response studies, Hu et al. (2005) report 

that linear model-based inference procedures fail to identify monotonic effects with non-

linear response curves, therefore methods allowing for more general monotonic trends are 

more efficient.

In this article, we propose statistical analysis methods to assess the accuracy, repeatability 

and agreement across different platforms for high-throughput genetic data. Our methods are 

based solely on the postulated monotonicity of titration designs, but do not rely on 

assumptions about the functional form of this trend. They are able to deal with grouping 

factors (e.g. repeated measurements, batch factors) that induce a hierarchical variance 

structure. Using these methods, we compare several combinations of microarray platforms 

and preprocessing strategies. In Section 2, we present our methods along the lines of a large-

scale titration experiment [parts of which have been previously used in (Scherer, 2009, 

chapter 9)] published by the EMERALD project that is described in Section 2.1. The 

methods, however, are applicable to titration designs in general, where one obvious 

candidate is the MAQC experiment presented in Shippy et al. (2006). Having a similar 

variance structure with one random effect ‘site’ allows the proposed methods to be directly 

applied.

In our analysis, we use the data structure induced by the titration design in several ways. 

Initially, we investigate if the postulated order structure is present in the data, estimate and 

test for deviations of the observed expression values from monotonicity. This part of the 

analysis can be considered as an assessment of accuracy, defined as the agreement between 

the result of a measurement and the value of the measurand (Taylor and Kuyatt, 1994). To 

assess to which degree the obtained measurements conform to the monotonicity 

requirement, we test consecutive differences between mixture groups for a significant 
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increase or decrease in expression, separately for each gene. We construct permutation tests 

accounting for the specific hierarchical variance structure of the EMERALD dataset 

adjusting for multiple testing using a recently proposed procedure (Guo et al., 2009), which 

accounts for directional errors. Thereby we can identify any significant deviation from the 

monotonicity assumption which is in violation of the intrinsic implications of the study 

design. More details on the approach are given in Section 2.3 and the results are presented in 

Section 3.1.

Further, order restricted methods allow us to improve estimates of variance components. 

These can be used to quantify the repeatability [i.e. the extent to which successive 

measurements of the same measurand carried out under identical conditions of measuring 

agree (Taylor and Kuyatt, 1994)]. Decomposition of the total variance allows us to identify 

noise that can be attributed to either procedural variation (e.g. imperfections in the wet lab 

procedures) or biological variation (i.e. the variability between different biological samples). 

Further, being corrected for structural variance components, the residual variance provides 

an estimate of the technical repeatability. In Section 2.4, we propose a novel method to 

estimate such variance components under order restrictions. In Appendix C in 

Supplementary Material, we report a simulation study that demonstrates the improvement 

due to the new method compared with estimators not exploiting order restrictions. The 

application to the dataset is discussed in Section 3.2.

Finally, we raise the topic of cross-platform agreement in terms of the correspondence of 

differential expression analysis between the measurement technologies. Differential 

expression between the two different organ materials introduces (based on the monotonicity 

assumption) a monotonous trend throughout the titration series. We therefore derive an 

inference procedure to test the null hypothesis of non-differential expression for each gene 

from a well annotated set of common genes, found on each platform. The test was based on 

isotonic regression and permutation-based multiple testing methods. The corresponding 

methods are described in Section 2.5 with results shown in Section 3.3.

Section 4 concludes the article with a discussion of our methods and results.

2 METHODS

2.1 Microarrays and preprocessing

The probe material used in the EMERALD experiment was harvested from six rats, where 

total RNA was extracted from livers and kidneys. The resulting sample material was then 

prepared in four mixtures:

1. pure liver material, which we will refer to as L;

2. 75% liver mixed with 25% kidney material, which we will call M1;

3. 25% liver and 75% kidney, in the following simply M2; and

4. pure kidney material, which is denoted as K.
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This yielded four times six batches of sample material. Each batch was labeled and 

hybridized to three arrays from each of three different commercially available microarray 

platforms. The microarray platforms used in the EMERALD project were as follows:

• Affymetrix GeneChip Rat Genome 230 2.0;

• Illumina RatRef-12 v1 Expression BeadChip; and

• Agilent Whole Rat Genome Microarray 4x44K.

In summary, this amounts to:

The ArrayExpress accession page of the Illumina dataset states concerns about the quality of 

several arrays from this experiment. Following these suggestions and careful quality control, 

we removed six arrays from this dataset. Furthermore, we removed one array from the 

Affymetrix dataset due to quality concerns. For details, see Appendix A in Supplementary 

Material.

The sensitivity of the genetic material to slight aberrations in the wet lab procedure makes 

microarray measurements vulnerable to the introduction of systematic biases. Therefore, 

microarray measurements are typically subjected to extensive data preprocessing. Besides 

several platform-specific procedures like background correction, normalization plays an 

influential role during this preanalysis step. In order to see, if and how, such methods effect 

the quality criteria investigated in this work, the EMERALD data were subjected to two 

different normalization procedures [Baseline normalization (median scaling) and Quantile 

normalization]. This results in two additional versions of the dataset, besides the 

unpreprocessed data, providing insight on the effectiveness of such algorithms. For Baseline 

normalization, the per chip median was subtracted from the corresponding log expression 

values and subsequently the overall median (across all expressions measured with a 

particular platform) was added. Quantile normalization was performed according to the 

algorithm defined in Gentleman et al. (2005, chapter 1). Data were downloaded from 

ArrayExpress and processed using R (R Development Core Team, 2008) and Bioconductor 

(Gentleman et al., 2004). Recent annotation files were acquired from the respective 

manufacturer web sites (http://www.affymetrix.com/, http://www.agilent.com/, http://

www.illumina.com/) (see Appendix B in Supplementary Material for details). In contrast to 

Agilent and Illumina, which provide one probe reading per reporter, Affymetrix features 

several probe readings per reporter. To summarize the corresponding measurements, we 

used the robust multiarray average (RMA) (Irizarry et al., 2003) either directly on the raw 

data or after normalization was applied. Normalization was performed based on the 

expressions of all reporters provided by each particular platform. Expression values from all 

platforms and normalization procedures were analyzed on the log2 scale.

To select a common set of proficiently annotated probes that were featured on each of the 

investigated platforms, probes were mapped to RefSeq (Pruitt et al., 2006) NM identifiers 

(see Appendix B in Supplementary Material). This identified a set of 5927 transcripts for 

which a probe was provided by all platforms. All downstream analysis after normalization 
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and summarization (in the case of Affymetrix) were done based on this set of common 

reporters.

2.2 Notation and model definition

To keep notation short, we will refer to the three platforms with the shortened names Affy, 

Agil and Illu. Expression values are typically denoted by y using the following indices:

Note that in our terminology expression value refers to preprocessed measurement values 

(i.e. log-transformed, normalized). Thus, ygijk denotes a preprocessed expression value for 

probe g, group i, animal j and replicate k. Separate models are assumed for different 

platforms and normalization procedures. Corresponding indices, however, were omitted in 

the definition. Overlined variables indicate averages, calculated using the arithmetic mean. 

The relevant margins are indicated by the indices, which are replaced by dots. For example, 

 stands for the average expression of probe g in mixture group i for all replicates and 

animals.

Besides the noise generated by the imprecision of the measurement technology, there is 

variation due to the use of animals with genetic differences. This variance structure 

generated by the experimental design can be directly translated into a mixed model 

definition, assumed for each probe separately.

(1)

with the assumptions:

The levels of the fixed effect αgi are comprised by the four different mixture groups. 

Biological variation between different rats was modeled by the random effect βgj. Since 

material coming from different rats was processed and mixed separately, we also included 

the random interaction term γgij.

To incorporate the assumption of monotonicity of the titration response, the effects αgi 

including the special case of constant expression are required to either follow an up- or 

downward trend, i.e.

(2)
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(3)

2.3 Accuracy

Information on the true amounts of mRNA fragments in the sample quantifying the accuracy 

of the measurements is lacking. We are, therefore, limited to an investigation of the probe 

amount not showing a monotonous titration response. The EMERALD experiment provides 

three comparisons between adjacent mixture groups: L–M1, M1–M2 and K – M2. Each can 

be positive, zero or negative, generating 27 possibilities for the expressions to change 

throughout the titration series. Only 14 of these possible trends are monotonous including 

the special case of unchanged expression. We, therefore, employ a test for the direction of 

change between consecutive mixture groups describing the shape of expression changes for 

each gene, platform and normalization method.

For each gene g the linear contrasts (i.e. L–M1, M1 – M2, K – M2) are estimated using t-

statistics. P-values of the marginal null hypotheses were computed by random permutation 

of samples within the animals (i.e. leaving the variance structure intact). Under the null 

hypothesis, we assume exchangeability of the samples within each animal regardless of 

titration group i. Hence, the data conditional univariate null distribution for each gene g can 

be computed by permuting samples of the two particular mixture groups but only within 

each block of the individual random effect (βj) (Pesarin, 2001). Multiplicity correction was 

performed as described in Guo et al. (2009). This algorithm provides control of the mixed 

directional false discovery rate, which is defined as the sum of the expected proportion of 

erroneous rejections and the expected proportion of directional errors among all rejections.

2.4 Repeatability

The model specified in (1) naturally lends itself to an analysis of repeatability as a measure 

of the variation observed in repeated measurements. Our primary target in this investigation 

was the residual error as defined by σ∊. The two random effects βgj and γgij comprise noise 

contributed either by actual differences in the gene expression between animals or 

procedural inconsistencies in the preparation of the mRNA samples. Neither of which can be 

solely attributed to the measurement quality provided by the used platform. It is, therefore, 

necessary to decompose the variance observed in the data to provide an estimate of the 

relevant variance term σ∊.

The order restrictions (2,3) on the levels of the fixed effect αi can be exploited to enable an 

improved estimate for the means of expression levels in each mixture group. Isotonic 

regression provides such estimates. For a given set of points and prespecified direction, it 

finds the set of ordered points that is closest to the original in terms of the squared distance 

(Brunk, 1955). The corresponding algorithm works by recursively pooling and averaging 

adjacent groups of points that violate the specified order restriction until a valid fit is found. 

We denote the isotonic estimates based on a particular set by  or , where the 

former indicates the fit to the set of means  assuming an increasing trend and 

the latter a decreasing trend.
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Sampson et al. (2003) investigated a simplified isotonic regression scenario and suggest an 

improved variance estimate by incorporating information about the observed order. We 

extend this idea to the problem of variance decomposition. The idea is simple: specify the 

levels of the fixed effect according to the pooled groups given by isotonic regression and 

estimate the variance components using this updated model definition. As an example 

assume that for a particular mRNA fragment we observe  but , 

an upward trend except for the mean in group M2 being lower than the mean in M1. Pooling 

groups M1 and M2, however, will generate the correct order. Therefore, we calculated the 

variance components using a standard method, with the levels M1 and M2 merged in the 

model definition. The intuition behind this approach, is that whenever the order restriction is 

violated for adjacent pairs, one can assume the means in either group to be equal. The 

corresponding means can, therefore, be estimated from a larger sample and degrees of 

freedom can be retained by estimating this mean only once.

The experimental design in the EMERALD dataset is balanced, however, removing arrays 

from the analysis, due to quality concerns, or merging levels in the fixed effect introduces 

imbalance to the model matrix. Classical ANOVA methods cannot be applied in such 

circumstances, but iterative methods like Restricted Maximum Likelihood (REML) can deal 

with such situations (Searle et al., 1992). We also consider Henderson’s method III (Searle 

et al., 1992) which is a modified ANOVA method not requiring the design to be balanced. It 

provides closed solutions for estimates of the variance components and hence promises 

improved computation times.

Our simulations (see Appendix C in Supplementary Material) show that restricted estimation 

of variance components using information from isotonic regression is indeed preferable to 

unrestricted methods. In scenarios where there is no or only a slight trend throughout the 

titration series, this approach yields a lower mean squared error (MSE) in estimates of the 

interaction term σγ, while introducing only negligible bias. Our simulations show that in 

terms of Bias and MSE the implementation using Henderson’s procedure is less efficient 

than the alternative procedure based on REML as implemented by the nlme package 

(Pinheiro and Bates, 2000) in GNU R (R Development Core Team, 2008). Computation 

times for Henderson’s procedure, however, were shorter by approximately a factor of 100. 

For the analysis in Section 3.2, we used the REML-based method for its improved 

efficiency. In situations where the number of investigated probes is even larger (e.g. next 

generation sequencing experiments), one might compromise some efficiency in favor for a 

marked speed improvement and use the procedure based on Henderson’s method.

2.5 Agreement

In this section, we investigate to which degree the different platforms and normalization 

methods detect the same genes as differentially expressed. Thus, we test for each gene if 

there is a monotone trend in the expression levels throughout the titrations. Instead of pair 

wise comparisons of adjacent titration levels, we use a more powerful overall test for a 

monotonic trend for each gene, based on a test statistic proposed by Barlow (1972), to test 

the null hypothesis of equal means against an order restricted alternative. Based on (1), (2) 

and (3), we test the null hypothesis of equal means in the fixed effects α
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(4)

against the two ordered alternatives

(5)

(6)

with at least one strict inequality. The test statistic is given by:

(7)

(8)

(9)

The  statistic for gene g is the ratio of the residual sum of squares of the isotonic 

regression fit, assuming an upward trend, against the residual sum of squares of the null 

model of equal means. Similarly, the  is calculated accordingly using isotonic 

regression assuming a downward trend. The directional decision is then made by choosing 

the smaller of the two statistics. , therefore, gives a two-sided test statistic. Lin et al. 

(2007) assess a permutation version of this test in the context of genetic data and find that it 

is the most powerful among a selection of alternative test statistics. Approximation of the 

marginal null distribution of test statistics was accomplished by randomly permuting 

samples within each animal to account for the hierarchical structure in the data. Permutation 

is performed as described in Section 2.3 with the difference that samples from all four 

mixture groups are permuted. To adjust for multiple testing controlling the family wise error 

rate (FWE), we use a resampling-based approach by Westfall and Young (1993). Permuting 

samples in parallel for all genes, the multivariate distribution of the vector of test statistics 

( ,…, ,…, ) under the global null hypothesis can be computed. We used the single-step 

maxT procedure, which controls the FWE in the strong sense [under the assumption of 

subset pivotality, see (Westfall and Young, 1993)] and also safeguards against potential 

errors in term of the directional decision. Alternatively, one can use the residual to total sum 

of squares ratio from a linear model instead of E2. This amounts to a test of the null 

hypothesis against a linear trend. We detail such an approach in Appendix F in 

Supplementary Material.
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These permutation tests are applied separately to the data from each combination of platform 

and normalization method. For each platform and normalization, we control the FWE at a 

two-sided level of α = 5%. Then for each pair of platforms or normalizations we computed 

the specific agreement (Cicchetti and Feinstein, 1990) of the resulting lists of genes with 

significant upward or downward trends. This measure of overlap is defined by the number of 

rejected hypotheses with the same directional decision, with both platforms or 

normalizations, divided by the number of hypotheses rejected on average (in that direction) 

with these platforms or normalizations. Genes, having a significant upward trend in one 

analysis but a significant downward trend in another, were called discordant. For these, the 

shown percentages are computed as the proportion of discordant genes within all genes that 

show a significant trend on at least one platform or normalization.

Note that under the assumption that for all platforms the same null hypotheses are tested, 

specific agreement is just a function of the statistical power of the procedures. Therefore, it 

depends not only on the platform and pre-processing method but also on the sample size, the 

statistical tests and multiplicity correction used, as well as the underlying pattern of 

differentially expressed genes. However, lack of overlap may also be due to systematic 

biases of the considered platforms or analysis methods. A strong indicator for the presence 

of bias is the number of discordant test decisions. Since the FWE rate is controlled at level α 

and the test results across platforms and normalization methods can be expected to be 

positively correlated (since they are based on the same data or biological material), the 

probability to observe discordant test decisions in a specific pairwise comparison of 

platforms or normalization methods is lower than α2.

3 RESULTS

Exploratory investigation of the raw data has uncovered a distinct overall trend of 

expression values. Figure 2 shows that the non-normalized signals are on average larger in 

kidney than in liver samples. Typically, the proportion of fragments that change between 

conditions is expected to be small enough so that the per sample distributions of expression 

values are similar. This assumption is, as an example, explicitly used in several quality 

assessment procedures and deviations are considered as an indication for quality issues 

(Gentleman et al., 2005, chapter 3).

A likely explanation for this phenomenon is that differences in the total to messenger RNA 

proportions generate such an overall trend. While equal amounts of total RNA were used for 

each array, the observed signals reflect only the fraction constituted by messenger RNA. A 

higher concentration of detectable mRNA in the kidney samples would lead to overall 

stronger signals on arrays hybridized with this material. Since estimates (Shippy et al., 

2006) of these quantities from the data are too variable to conclusively identify an imbalance 

in mRNA proportions as a cause of this phenomenon, further measurements would be 

needed. Shippy et al. (2006) describe a method for measuring these proportions. For 

Affymetrix, Hannah et al. (2008) propose a method to normalize such global mRNA shifts 

using a set of external RNA spike-ins.
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We estimated that the normalization parameters based on the entirety of probes featured on a 

particular platform, however, restrict our analysis to the set of well-annotated probes 

common to all three technologies as defined in Section 2.1. Considering all measurements 

from a specific platform, the chip-wise medians of baseline and all chip-wise quantiles of 

quantile normalized data, respectively, are by definition of the respective methods, constant 

throughout the titration groups. Columns two and three of Figure 2 show normalized 

expression values from our set of well-annotated probes common to all platforms. These 

display remnants of the overall expression increase, from liver to kidney, observed in the 

raw data. This indicates that the overall trend in raw expressions is more pronounced for 

fragments measured by the well-annotated probes common to all platforms than in the 

remaining probes. Further exploration of this finding (data not shown) revealed a higher 

proportion of measurements with very low expressions throughout all titration groups 

among the set of probes not included in the analysis and suggested an increased amount of 

fragments that are not expressed. Such measurements, which are solely noise, would not be 

affected by unequal total to messenger RNA concentrations in liver and kidney material and 

hence not show the otherwise implied trend.

3.1 Accuracy

Figure 3 presents the results of the shape analysis. Each of the three consecutive differences 

(L–M1, M2–M1 and K–M2) were tested using the test described in Section 2.3. Multiplicity 

correction was applied to control the mixed directional false discovery rate at the 5% level. 

In Figure 3, the 27 distinct possibilities of test results for each reporter were summarized 

into eight categories. Significant non-monotonous trends (i.e. at least one significant 

increase together with at least one significant decrease), non-significant trends (i.e. for all 

three differences the null hypotheses of no expression change could not be rejected) and 

monotonous trends characterized by the number of significant expression changes. Non-

monotonous trends should not be observed under the premises of a titration series and are a 

clear indication of data artifacts. The distribution of different trend shapes changes strongly 

between differently normalized data, a phenomenon that we explain in more detail in 

Section 3.3. Furthermore, we observe that normalization, for all platforms, leads to a larger 

number of rejections. With the exception of Agilent, the maximum is reached on quantile 

normalized data. Both normalization procedures lead to a slight increase in the number of 

observed non-monotonous trends, which are contrary to the implications of the titration 

series. Although these figures are below the error margin provisioned by the five percent 

mixed directional false discovery rate, such trends are not observed (with one exception in 

the Illumina data) on non-normalized data. This indicates that data artifacts are introduced 

upon normalization.

3.2 Repeatability

Relating to the EMERALD dataset, the variance components defined in Section 2.2 can be 

attributed to several sources of variation. The variation of the individual effect, σβ, 

represents variance introduced by differing levels of mRNA amounts between rats. The 

interpretation of the variation in the interaction term, σγ, is more intricate. Possible sources 

are inconsistencies in the mixture proportions, and also biological differences between 

animals in the strength of the titration response. The residual variance σ∊ is the variation 
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introduced by unspecified factors. We use it as an estimate of the measurement error 

inherent to each platform, also including error introduced by any component not specified in 

the model (e.g. different scanners, fluidics stations, etc.). Figure 4 shows boxplots of 

estimates for these components computed on data preprocessed by the two normalization 

methods as well as on the unnormalized data. Estimates are shown as percent proportions of 

the total variance to provide a scale that is comparable between different normalization 

methods. We observe that both normalization methods manage to reduce the residual 

variance on all platforms. However, quantile normalization achieves slightly better results 

than baseline normalization. This pattern in residual error reduction corresponds well with 

the increased amounts of rejections achieved on normalized data presented in Figure 3.

3.3 Trend tests and their agreement

We report for each platform and normalization method the number of genes where the null 

hypothesis of non-differential expression throughout titration levels is rejected, and as 

outlined in Section 2.5 investigate to which degree the different platforms and normalization 

methods detect the same genes as differentially expressed genes within the same directional 

decision.

Figure 5 shows the observed proportions of significant trends. Regardless of normalization 

or platform, the proportion of probes for which the null of constant expression across 

titration levels could be rejected (at a two sided FWE level of 5%) in favor of a monotonous 

trend is exceptionally high and ranges from 56% to 75%. Because of the higher power of the 

trend test, this exceeds the number of rejections achieved by the shape test in Section 3.1. 

Regardless of platform, non-normalized data shows three to five times more significant 

upward than downward trends. This is consistent with the overall upward trend of 

expression values observed in Figure 2. After normalization with either method (baseline or 

quantile normalization), the number of significant upward and downward trends became 

more balanced.

Figure 6 summarizes the absolute numbers of concordant test decisions as well as percent 

overlap (as defined in Section 2.5) in all pair wise comparisons of different platforms for 

each normalization method. We observe that the specific agreement across platforms for 

genes with significant upward trends ranges (depending on the platforms and normalization 

methods) from 79% to 85%. In contrast, the specific agreement for downward trends is in 

the range 63–84%. In all platfroms, normalization leads to a decrease in specific agreement 

for up and downward trends with the exception of Affymetrix compared with Agilent data, 

where non and baseline normalized data give approximately the same specific agreement for 

upward trends. This is surprising, since the increase in power induced by normalization (as 

indicated by the increased number of rejections) should lead to the contrary and suggests 

that normalization may introduce bias. Another indication of bias is the considerable 

increase of gene numbers showing significant trends of opposite directions across platforms, 

if the analysis is based on normalized instead of raw values. This is in clear violation of the 

assumption that the platform tests the same hypothesis considering the strict error control 

used in this analysis. This negative effect of the normalization can be alleviated to some 

degree by filtering out genes with overall low expression values, which improves both the 
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agreement between platforms and decreases the proportion of contradicting directional 

decisions (see Appendix E in Supplementary Material). An analysis of the annotation quality 

of our set of 5927 common probes in Appendix B in Supplementary Material shows that 

further improvement of agreement (≈1% point) can be achieved by using probes that solely 

match the sequences of their annotated genes.

For all platforms and normalization methods, the specific agreement between the analysis of 

raw and normalized data is (in part considerably) lower for downward than for upward 

trends (see Appendix D in Supplementary Material ). With the exception of the Agilent 

platform, the number of discordant genes is relatively low. This illustrates that the increase 

in downward trends on normalized data is predominantly a result of genes with no 

significant trend in the raw data measurements, becoming significant in the downward 

direction after normalization. It has to be noted, however, that on raw data one tests for 

significant differences in absolute measurements. Normalized data lead to expression values 

relative to an overall amount of expression in a sample, hence possibly leading to different 

null hypothesis. In this light, agreement across normalization reveals more about both the 

distribution of expression values and amount of systematic differences between samples 

than of the measurement quality.

A comparison between Barlow’s E2 statistic and a statistic based on the residual sum of 

squares from a linear model (see Appendix F in Supplementary Material) shows that neither 

statistic performs uniformly better in terms of power. Whereas the former identifies more 

genes (up to 4%) on non-normalized and baseline normalized data (with the exception of 

Agilent), the latter rejects the null hypothesis of no trend for more genes (up to 4%) on 

quantile normalized data (see Table 4 in Appendix F in Supplementary Material). Regarding 

agreement, both statistics perform equally well. Barlow’s E2 statistic has power against a 

larger variety of trends, whereas the linear model is only advantageous against linear trends. 

Furthermore, and in contrast to the linear model, isotonic regression does not require 

knowledge of the mixture proportions.

4 DISCUSSION

The methods suggested in this article allow the inference of accuracy, repeatability and 

cross-platform agreement of genetic data acquired from titration experiments. Exploiting 

only the postulated monotonicity of this design, our framework needs little assumptions on 

the underlying data generating process and is therefore applicable to all sorts of genetic 

high-throughput data [e.g. the MAQC titration experiment (Shippy et al., 2006)]. Such data 

are acquired from numerable platforms each of which executes and preprocesses slightly 

differently. Therefore, independence from the degree of preprocessing is an essential 

requirement for an objective data quality evaluation. Although the focus of this article has 

been on microarrays, it has to be stressed that we derive our methods in the absence of 

microarray-specific assumptions. This makes them easily portable to upcoming 

technologies, as for example next-generation sequencing.

The results from the EMERALD dataset demonstrate how our methods provide easily 

interpretable quality metrics are on par with results from the previous work on titration 
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experiments (Barnes et al., 2005; Hu et al., 2005; Maouche et al., 2008) as well as 

corresponding findings from the MAQC project (Guo et al., 2006; The MAQC Consortium, 

2006). Additionally, we provide new insights regarding the investigated normalization 

procedures. To our knowledge, we are the first to compare non-normalized to normalized 

data, in the context of a microarray titration experiment, that is designed with the aim to 

produce authentic biological data with a proportion of differentially expressed genes larger 

than what can be simulated using spike-in experiments. Therefore, it poses an interesting 

challenge to the evaluation of such procedures. This is due to common assumptions, namely 

that the true differentially expressed genes are relatively few and balanced in terms of 

direction (Stafford, 2008, chapter 2), being violated by the measurements generated in such 

experiments. Under this premise, they provide an opportunity to study the robustness of such 

procedures against violations of their corresponding assumptions. The EMERALD dataset 

highlights some of the pitfalls of microarray data analysis and its subsequent interpretation. 

Initially, there is the issue whether the large proportion of upward trends is a biological 

feature or a procedural artifact. This phenomenon has been discussed in (Shippy et al., 2006) 

and (Stafford, 2008, chapter 6) in the context of the MAQC project titration experiment. The 

hypothesis of unequal total to messenger RNA concentrations would be an adequate 

explanation for many aspects of the data. Considering this assumption, baseline and quantile 

normalization would appear to be satisfactory candidate methods to remove such a trend. 

Our results show, however, that the performance of neither baseline or quantile 

normalization is convincing in the case of the EMERALD dataset. The increase in non-

monotonous trends, as well as directional decisions being inconsistent across platforms, 

clearly indicates the introduction of bias by normalization. Non-normalized data provide 

preferable accuracy and agreement with the only slight disadvantage in terms of 

repeatability. According to our results, normalization poses a tradeoff between accuracy and 

agreement on the one hand and repeatability and power on the other, when dealing with a 

large proportion of differentially expressed genes. This tradeoff should be considered in the 

choice of a normalization procedure for experiments for which the assumption that the 

proportion of differential expressed genes is small is likely to be violated. Regarding general 

cross-platform gene comparisons, our results show that the agreement across platforms 

using the same normalization is higher than the agreement across normalizations within one 

platform, making it advisable to decide on a single normalization procedure. A significant 

limitation of the agreement measure used in this analysis is its dependency on the power of 

the test and the distribution of alternative hypotheses. The specific numbers are of limited 

generalizability with regard to other experiments, where these conditions might differ. It 

might be possible to construct alternative measures utilizing estimates of the power 

(Zehetmayer and Posch, 2010) in order to achieve better comparability between different 

studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic of the EMERALD titration series.
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Fig. 2. 
Expression value distributions for the 5971 well-annotated common probes averaged per 

mixture.
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Fig. 3. 
Shape profiles: distribution of detected trends for the three platforms and normalization 

methods. The last line (n.mon.) in each panel gives the proportion of genes with significant 

non-monotonous trends. The second last line (insig.) shows the proportion of genes for 

which none of the three linear contrasts could be rejected. The remaining lines show the 

proportions of genes for which one, two or three of the tested contrasts showed a significant 

difference in a specific direction, while the remaining comparisons showed no significant 

changes in expression. Numbers in the margins of each panel give the absolute numbers of 

genes in that category.
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Fig. 4. 
Variance components expressed in percent of the total variance. Each panel shows boxplots 

of estimates based on a specific platform – normalization combination.
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Fig. 5. 
Percentages and absolute numbers of probes found with a significant upward or downward 

trend. None, refers to probes for which the null hypothesis could not be rejected.

Klinglmueller et al. Page 20

Bioinformatics. Author manuscript; available in PMC 2016 February 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 6. 
Percentage overlap (dots) and absolute numbers of concordant upwards (up), downwards 

(dn) and discordant (dc) test decisions for pair wise comparisons of platforms. Overlap is 

defined as in Section 2.5.
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