Skip to main content
. 2016 Jan 4;52(18):3615–3618. doi: 10.1039/c5cc09423b

Table 2. Experimental spectroscopic parameters determined for the observed conformers of serinol.

  I II III IV V
A a (MHz) 6049.9322(41) e 5981.6740(48) 4208.5954(10) 7679.4716(36) f 5327.3056(33)
B (MHZ) 2265.0200(11) 2257.0848(12) 3130.7067(12) 1968.9155(10) 2367.0593(11)
C (MHz) 1981.1930(13) 1965.8411(14) 2527.3601(15) 1689.0099(12) 1762.9563(12)
Δ J (kHz) 0.482(46) 0.409(45) 0.920(90) 0.293(29) 0.636(43)
Δ JK (kHz) 2.051(25) –0.971(22)
Δ K (kHz) 7.69(10) 6.34(11)
χ aa (MHz) –0.299(11) –3.9203(77) –2.3658(73) –3.2357(72) –3.8976(90)
χ bb (MHz) 2.338(13) 2.388(13) 1.228(10) 1.640(14) 2.252(13)
χ cc (MHz) –2.039(13) 1.533(13) 1.138(10) 1.596(14) 1.646(13)
ΔE (MHz) 0.2943(20)
σ b (kHz) 14 14 13 14 13
N c 60 66 62 92 62
a/b/c d y/y/y y/y/y y/y/y y/y/y y/y/y

a A, B, and C are the rotational constants; Δ J, Δ JK, and Δ K are the quartic centrifugal distortion constants; χ aa, χ bb, and χ cc are 14N nuclear quadrupole coupling constants; ΔE is the difference in energy between the two tunnelling states of serinol IV.

brms deviation of the fit.

cNumber of hyperfine transitions.

dYes (y) or no (n) observation of a-, b-, and c-type transitions.

eStandard error in parentheses in the units of the last digit.

fThe rotational constants obtained for each tunneling state were the same, within experimental error, when fitted separately.