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in various tissues ( 5–9 ). These lipid mediators induce cel-
lular stress known as lipid toxicity or “lipotoxicity” ( 4, 10, 
11 ). Therefore, it is of interest to learn the mechanisms 
that enable animals to store excess carbons safely as TG in 
the face of caloric overload. 

 In  Drosophila , a high sugar (HS) diet induces obesity ac-
companied by hyperglycemia, hyperlipidemia, and insulin 
resistance ( 12–16 ). Interestingly, the ability to convert di-
etary sugar into stored fat was protective against the effects 
of caloric overload, as lean mutants were unable to survive 
on HS diets ( 14, 17 ). We showed that carbon fl ux into es-
terifi ed fat was blunted after chronic HS feeding, consistent 
with a limited ability of animals to convert dietary sugar into 
TG ( 17 ). The  Drosophila  fat body (FB) stores and metabo-
lizes fat during feeding and starvation, and also controls 
whole-animal glucose disposal. Both larvae and adult fl ies 
become hyperglycemic and insulin resistant when their ca-
pacity to store fat is exceeded ( 17, 18 ). This is consistent 
with the model of “adipose tissue expandability” proposed 
as a mechanism of insulin resistance ( 19, 20 ). This model 
holds that the ability to increase the storage of fatty acids as 
inert TG is protective against metabolic disease. Consistent 
with this model, increasing adipose volume or fat content is 
protective, whereas exceeding the maximum capacity of 
adipose fat storage is deleterious. Based on our expression 
and metabolomic analyses in HS-fed larvae, we propose that 
CoA levels tightly regulate the FB’s maximum storage ca-
pacity by limiting TG synthesis. 

 CoA is required in all organisms, functioning as a cofac-
tor for an estimated 4% of enzymes and in more than 100 
different reactions ( 21, 22 ). CoA is required for fatty acid 
synthesis by acting as a cosubstrate for fatty acid synthase 
( 23, 24 ) and CoA is also required in order to esterify fatty 
acid substituents ( 25 ). Beta-oxidation requires two CoAs, 
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 The prevalence of obesity, or excessive TG accumula-
tion in adipose tissue, results from dietary excess and is 
increasing in many parts of the world. Obesity is a risk fac-
tor for several diseases, including cardiovascular disease, 
T2D, and cancer. A growing consensus exists, however, 
that obesity is protective against the adverse biochemical 
effects of caloric excess ( 1–4 ). Several studies have shown 
that obesity and T2D are accompanied by increases in 
FFAs, ceramides, DAG, and other potentially toxic lipids 
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Hemolymph was collected and shipped frozen. All metabolite ex-
traction was done by Metabolon. GC-MS (glycerol, cysteine) and 
LC-MS (positive ion monitoring mode; pantothenate, carnitine, 
palmitoyl-carnitine, and oleoyl-carnitine) were used to isolate the 
peaks representing each analyte, with injection standards used at 
fi xed concentrations to quantify the relative amounts of each me-
tabolite in six biological replicates per diet. Metabolites were 
identifi ed by automated comparison of the ion features in the 
extracted samples to a reference library as described previously 
( 29 ). Metabolite levels were normalized to protein content for 
FB, and to total volume for hemolymph. 

 CoA-SH determination 
 Eighty wild-type ( w 1118  ) wandering third-instar larvae were ho-

mogenized in 10 mM DTT/water and frozen at  � 80°C. Homog-
enates were defrosted, TCA precipitated, and washed six times 
with ether to remove lipids. Aqueous fractions were dried, resus-
pended, and run on a Waters HPLC, as described ( 17 ). 

 Metabolic assays 
 TG, FFA, and glycogen were assayed from groups of six frozen 

wandering L3 larvae as previously described ( 17 ). Hemolymph 
was isolated from groups of fi ve to twenty wandering larvae and 
assayed as previously described ( 17 ). 

 RESULTS 

 In previous gene expression profi ling experiments of 
HS-fed insulin-resistant larvae, we saw a dramatic (10-fold) 
increase in whole body expression of  vanin-like  (CG32754), 
which is predicted to encode a CoA metabolic enzyme, 
pantetheinase, that converts pantetheine to pantothenate 
(also known as vitamin B5) and cysteamine ( 12 ). We previ-
ously observed changes in fatty acid synthesis and esteri-
fi cation, which require CoA, in HS-fed larvae ( 17 ). We 
hypothesized that the increase in pantetheinase might be 
evidence of a homeostatic response to defects in CoA avail-
ability. FlyAtlas ( 30 ) data shows the highest levels of  vanin-
like  expression in the midgut, with expression only in midgut, 
hindgut, and Malpighian tubule (fl yatlas.org). Therefore, 
we quantifi ed  vanin-like  expression in isolated guts. 

 HS feeding increased expression of  vanin-like  in the 
midgut by 4-fold (  Fig. 1B  ), suggesting that the gut might 
contribute to maintenance of systemic CoA levels by pro-
ducing pantothenate to be used in other tissues when 
CoA levels are depleted.  We also observed a 50% increase 
in expression of the putative pantothenate transporter, 
 CG10444 , in gut RNA-seq, although edgeR did not identify 
a signifi cant difference (data not shown), consistent with a 
need for pantothenate or CoA during HS feeding. Once 
exported from the gut, circulating pantothenate could be 
converted back into CoA to support fatty acid synthesis 
and esterifi cation in the FB, which is essential for larval 
survival on a HS diet ( 17 ) ( Fig. 1A ). 

 We focused subsequent studies of expression and me-
tabolism in the FB by using RNA-seq and metabolomics to 
characterize CoA metabolism there. Thioester hydrolase 
(encoded by CG1774), an enzyme that catalyzes the pro-
duction of CoA-SH from acyl-CoA rather than pantothe-
nate, was increased 3-fold at the mRNA level in whole 

one for each fatty acid to enter the mitochondrion and a 
second CoA for thiolysis after transport ( 26 ). CoA also regu-
lates intracellular redox state via its free sulfhydryl group 
( 25 ) and it regulates ketone biogenesis via acetyl-CoA ( 27 ). 

 In this study, we set out to identify metabolites that could 
contribute to lipotoxicity in the face of caloric overload. 
Our studies revealed that CoA levels were reduced, while 
FFA levels were increased, in HS-fed larvae. Reducing FB 
levels of pantothenate kinase (fumble, CG5725) or phos-
phopantothenyl cysteine synthase (PPCS, CG5629), both of 
which catalyze steps in CoA synthesis from pantothenic acid 
(PA), led to reduced TG storage and an increase in the se-
verity of HS diet-induced fatty acid accumulation. By con-
trast, supplementing the HS diet with the CoA precursor, 
PA, increased TG synthesis and lowered glucose and FFA 
levels in the presence of caloric overload. Thus, CoA is limit-
ing in the face of a HS diet, and we propose that increasing 
CoA levels represents a novel therapeutic target for indi-
viduals with obesity-associated metabolic disorders. 

 MATERIALS AND METHODS 

 Genetics 
 Wild-type  w 1118   lines were from the Vienna  Drosophila  Resource 

Center. TRiP control,  UAS-PK i   and  UAS-PPCS i   (stocks GL00149 
and JF03206, respectively)  UAS-RNA i   lines were from Harvard’s 
DRSC TRiP collection.  UAS-Dcr2; r4-GAL4  was used to express 
transgenes in the larval FB ( 28 ). 

 Diets 
 The control (0.15 M sucrose) and HS (0.7 M sucrose) diets 

were made using a modifi ed Bloomington semi-defi ned food as 
described previously ( 12 ). D-PA hemicalcium salt was from Sigma 
(P5155) and was added in a volume of 30  � l to a fi nal concentra-
tion of 0.3 to 3 mM, with 3 mM producing optimal phenotypic 
rescue. Water (30  � l) was added to HS food as a control in these 
experiments. Wild-type  w 1118   were used in PA supplementation 
experiments. 

 Expression analyses 
 FBs were isolated from wild-type  w 1118  ;  UAS-Dcr2; r4-GAL4  or 

 w 1118  ;  UAS-Dcr2; cg-GAL4  wandering third-instar larvae and RNA 
isolated and quantifi ed as described using Illumina Hi-Seq   ( 17 ). 
Data from both control lines were pooled to increase power to 
detect expression differences due to diet. A total of 13 biological 
FB replicates per diet were analyzed over several lanes. These 
data were deposited at GEO (GSE76214). For guts, six biological 
replicates were isolated and RNA extracted. RT was used to make 
cDNA, which was then analyzed by quantitative (q)PCR  . Primers 
used to detect  vanin-like  mRNA were 5 ′ -TCCCGAGGATCAGATA-
AACC-3 ′  and 5 ′ -ACAGGGTCACCAGAAACTCC-3 ′ .  Vanin-like  levels 
were normalized to  RpL32  mRNA ( CG7939 ) using 5 ′ -CAGCATA-
CAGGCCCAAGAT-3 ′  and 5 ′ - GCACTCTGTTGTCGATACCC-3 ′ . 
Similar results were observed using a primer pair targeting a dif-
ferent region of  vanin-like . 

 PA, carnitine, acyl-carnitine, cysteine, and glycerol 
determination 

 FBs were isolated from wild-type  w 1118  ;  UAS-Dcr2; r4-GAL4  
wandering third-instar larvae and immediately placed in PBS on 
ice, then homogenized before shipping on dry ice to Metabolon. 
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which encode the intermediate steps in the CoA biosyn-
thesis pathway. We also observed increases in mRNA 
encoding two other enzymes that produce free CoA (Ppat-
Dpck and HMG-CoA synthase,  Fig. 1G, H ). Therefore, we 
decided to study this pathway biochemically. 

 The gene expression results shown in  Fig. 1  suggested 
compensatory regulation of CoA production in HS-reared 
larvae. Therefore, we hypothesized that CoA might limit 
fatty acid esterifi cation into TG in the face of a HS diet 
(  Fig. 2A  ).  First, we characterized the levels of free CoA in 
whole larvae reared on control or HS diets. HS feeding led 
to a signifi cant decrease in CoA concentrations in whole 

animals ( 12 ). We observed a corresponding increase in 
 thioester hydrolase  expression in FBs upon HS feeding ( Fig. 
1C ). The transcriptional upregulation of both  vanin-like  
and  thioester hydrolase  in gut and FB, respectively, could oc-
cur in response to a defi cit in CoA. CoA is required to pro-
duce fatty acid substrates for lipogenesis in the FB and for 
over 100 other reactions ( 21, 22 ). Examining the pathway 
more closely in FB gene expression datasets, we noted 
upregulation of catalytic steps in CoA synthesis including 
 pantothenate kinase  (CG5725, known as  fumble  in  Drosophila ; 
 Fig. 1D ), although there was no change in expression of 
genes encoding the enzymes PPCS and Ppcdc ( Fig. 1E, F ), 

  Fig. 1.  HS diets increase expression of CoA metabolic enzymes. A: CoA metabolic pathway: pantothenate can be derived from the diet 
and traffi cked from the gut to the FB for CoA synthesis. CoA can also be derived from several intracellular sources. B–H: Gene expression 
was quantifi ed using tissue-specifi c qPCR [(B) guts] or RNA-seq [(C–H) FBs] from wild-type larvae reared on control (ctl) or 0.7M sucrose 
(HS) diets.  Pantetheinase , also known as  vanin-like  (B),  thioesterhydrolase  (C),  fumble/pantothenate kinase  (D),  phosphopantothenoylcysteine synthase  
(PPCS) (E),  phosphopantothenoylcysteine decarboxylase  (Ppcdc) (F),  bifunctional phosphopantetheine adenylyltransferase-dephospho-CoA kinase  (Ppat-
Dpck) (G), and  HMG-CoA synthase  (H).   
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metabolism accumulated in both the FB (glycerol and car-
nitine;  Fig. 2D, E , respectively) and hemolymph (palmi-
toyl-carnitine and oleoyl-carnitine;  Fig. 2F, G , respectively). 
Glycerol requires CoA in order to generate TGs from 
FFAs, whereas carnitine, palmitoyl-carnitine, and oleoyl-
carnitine all require CoA in order to promote fatty acid 
 � -oxidation ( Fig. 2A ). Our metabolomic analyses were not 
sensitive enough to detect free CoA or fatty acyl-CoAs in 
these samples, but support the model nonetheless. 

third-instar larvae ( Fig. 2B ), consistent with a trend toward 
decreased CoA shown in our previous work ( 17 ). Metabo-
lomic analyses of FBs and hemolymph supported a role for 
pantothenate in lipogenesis during challenge with HS di-
ets. Pantothenate levels were decreased in the FB, consis-
tent with an increase in shunting of pantothenate toward 
CoA synthesis via increased pantothenate kinase expres-
sion in FBs from larvae fed HS diets ( Fig. 2C ). At the same 
time, intermediates that require free CoA to promote lipid 

  Fig. 2.  CoA may be limiting in HS-reared wild-type larvae. A: CoA and pantothenate (the ionic form of PA, which is required for the 
synthesis of CoA) were observed in reduced quantities, whereas metabolites involved in the utilization of CoA were observed in increased 
quantities, in HS-fed larvae. B: Free CoA-SH in whole larvae measured by HPLC; pantothenate (C), glycerol (D), carnitine (E), palmitoyl-
carnitine (F), oleoyl-carnitine (G). Parts (C–E) were extracted from isolated FBs and (F, G) were extracted from isolated hemolymph.   
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we concluded that CoA is likely limiting for several pro-
cesses on HS diets, including TG storage and fatty acid  � -
oxidation. Therefore, we tested to determine whether we 
could rescue some of the effects of HS diets by increasing 
CoA levels. To do this, we supplemented the HS diet with 
the CoA precursor, PA, to test whether it could increase the 
ability of larvae to store TG when fed HS diets. PA supple-
mentation signifi cantly increased TG storage in HS-fed lar-
vae (  Fig. 4A  ) and reduced FFA concentrations ( Fig. 4B ).  PA 
supplementation also increased weight and reduced hemo-
lymph glucose in larvae reared on HS diets, consistent with 
a potential increase in insulin signaling ( Fig. 4C, D ). The 
decrease in hemolymph glucose was likely not due to incor-
poration into disaccharides or polysaccharides because PA 
did not affect levels of trehalose or glycogen ( Fig. 4E, F ). PA 
supplementation did not affect free CoA-SH levels ( Fig. 
4G ). We also tested whether PA could improve insulin sen-
sitivity in cultured FBs, as measured by exogenous insulin 
stimulation of Akt phosphorylation at serine 505. No signifi -
cant improvement in insulin responsiveness was seen when 
PO 4 -Akt was measured in insulin-stimulated FBs from wan-
dering larvae reared on HS compared with HS + PA (4H). 
As an additional dietary approach, we tested whether add-
ing cysteine to pantothenate could improve any HS-induced 

 Because steady-state levels of metabolites do not refl ect the 
metabolic fl ux through that pathway, we took a functional 
approach to test whether the conversion of pantothenate to 
CoA was important for tolerance of HS diets. We targeted two 
enzymes that catalyze CoA synthesis from pantothenate, the 
rate-limiting  pantothenate kinase  ( PK  also known as  fumble , 
 CG5725 ) and  phosphopantothenoylcysteine synthase  ( PPCS , 
 CG5629 ), which, like  fumble , is required for growth of  Dro-
sophila  S2 cells ( 31 ). Because the FB is the primary site of TG 
synthesis in the fl y, we used FB-specifi c RNAi to reduce CoA 
biosynthesis from pantothenate by targeting PK/fumble and 
PPCS in this tissue ( Fig. 1A ). The  r4-GAL4  driver was used in 
combination with a  UAS-Dicer2  transgene to maximize degra-
dation of endogenous mRNA. Knockdown of either gene 
product led to reduced numbers of larvae on HS diets (not 
shown), consistent with an essential role for CoA in support-
ing TG synthesis. Mutant larvae were leaner, with increased 
FFA levels, when compared with wild-type controls reared on 
the same HS diet (  Fig. 3A, B  ).  These larvae also exhibited 
reduced size, compared with HS-fed wild-type larvae ( Fig. 
3C ). Surprisingly, no increase in hemolymph glucose con-
centration was observed in either mutant ( Fig. 3D ). 

 Given that knockdown of the CoA synthetic enzymes, 
pantothenate kinase and PPCS, exacerbated phenotypes, 

  Fig. 3.  FB-specifi c targeting of genes encoding enzymes in CoA synthesis exacerbates metabolic phenotypes resulting from challenge 
with the HSD.  UAS-Dcr2; r4-GAL4  transgenes were used to target  fumble  ( PK ,  CG5725 ) or  PPCS  ( CG5629 ) in the FB using transgenic RNAi. 
TG (A), FFA (B), weights (C), and hemolymph glucose (D).   
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not tolerate cysteine supplementation ( 32 ) (data not 
shown). A modest but nonsignifi cant increase in FB cyste-
ine levels was observed by LC-MS (1.5-fold,  P  < 0.2), suggest-
ing that cysteine depletion was not a contributing factor to 
the observed reduction in CoA. 

phenotypes, as cysteine also contributes to CoA synthesis 
as a substrate for PPCS ( Fig. 1A ). No improvements were 
observed relative to pantothenate supplementation, and 
decreased weights were observed with cysteine alone, in 
agreement with another recent study showing that fl ies do 

  Fig. 4.  PA supplementation of wild-type larvae increases metabolic fl ux into TG in the face of caloric overload. Whole animal TG (A), 
whole animal FFA (B), weights (C), hemolymph glucose (D), hemolymph trehalose (E), whole animal glycogen (F), free CoA-SH (G), and 
FB insulin sensitivity (H).   
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It is interesting to note that some studies have shown a 
benefi t for cysteine supplementation in T2D ( 53, 54 ). We 
presume that a number of metabolites have the potential 
to become rate-limiting under different physiological con-
ditions. Nonetheless, our data support a substrate-limited 
model where increasing the production of CoA benefi ts 
animal health in the face of a HS diet. 

 PA is available over-the-counter as calcium pantothenate 
in vitamin B5 supplements. In a recent study, pantothenate 
supplementation promoted CoA-dependent keto genesis 
and improved liver function in an animal model of nonalco-
holic fatty liver disease ( 23 ). We propose that vitamin B5 
represents a potential therapy for insulin resistance result-
ing from overnutrition. Although pantothenate supplemen-
tation would be expected to increase adiposity, our work 
suggests a signifi cant benefi t in terms of metabolic health. 
PA’s low cost and toxicity profi le make it an especially attrac-
tive target for future clinical studies.  
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helpful discussions. They thank Zeke Maier and Washington 
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