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 The enzyme long-chain acyl-CoA synthetase 1 (ACSL1), 
which catalyzes conversion of free long-chain fatty acids 
into their acyl-CoA derivatives, has emerged as a metabolic 
rheostat in mouse skeletal muscle, heart, and adipose tis-
sue ( 1–3 ). Thus, mice defi cient in ACSL1 in skeletal mus-
cle exhibit a marked reduction in fatty acid utilization 
through  � -oxidation and a concomitant increase in glu-
cose utilization during fasting, and they are hypoglycemic 
during endurance training ( 4 ). In the heart, which relies 
heavily on fatty acids as an energy source, ACSL1 defi -
ciency results in reduced fatty acid oxidation and increased 
glucose utilization ( 1, 2 ). Mice with adipose tissue-selective 
ACSL1 defi ciency have reduced blood glucose levels dur-
ing cold exposure ( 3 ). Furthermore, an inducible whole-
body ACSL1-defi cient mouse model exhibits lower blood 
glucose levels than matched controls ( 1 ). Thus, mouse 
studies have revealed a clear relationship between reduced 
blood glucose levels and reduced ACSL1 activity in several 
tissues due to metabolic fl exibility in these tissues. 

 ACSL1 is ubiquitously expressed, with high levels in typ-
ical insulin target tissues, such as skeletal muscle, liver, and 
adipose tissue ( 5 ). ACSL1 is also expressed in myeloid cells, 
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replenishment, neutral lipid accumulation, and early ath-
erosclerosis in the context of diabetes ( 6, 7, 11 ). Mice de-
fi cient in ACSL1 selectively in myeloid cells or endothelial 
cells do not exhibit reduced blood glucose levels ( 6, 12 ). 

 Whereas mouse studies indicate that ACSL1 might play 
a critical role in maintaining glucose homeostasis and ath-
erosclerosis, the role of ACSL1 in humans is unknown. Be-
cause of the studies discussed above, we were particularly 
interested in the relationship between human  ACSL1  SNPs 
with variation in fasting glucose, diabetes, and risk of ath-
erosclerosis. We interrogated published [Meta-Analyses of 
Glucose and Insulin-Related Traits Consortium (MAGIC) 
and Diabetes Genetics Replication and Meta-Analysis 
(DIAGRAM) consortium] genome-wide association study 
(GWAS) scans of fasting glucose ( 13, 14 ) and diabetes sta-
tus ( 15 ) with respect to common [minor allele frequency 
(MAF) >5%] SNPs in the  ACSL1  locus (4q35.1). MAGIC 
contains >46,000 healthy nondiabetic individuals of Euro-
pean descent, while DIAGRAM has >56,000 individuals of 
primarily European descent (>12,000 with type 2 diabe-
tes). For the common  ACSL1  SNPs identifi ed through the 
MAGIC and DIAGRAM consortia, we conducted follow-up 
analyses of participants with and without diabetes from 
the Multi-Ethnic Study of Atherosclerosis (MESA) and in 
>200,000 subjects with and without type 2 diabetes in-
cluded in the Penn-T2D consortium. The analyses in 
MESA allowed us to expand discoveries from the pub-
lished GWAS effort to examine evidence of association  a ) 
across race/ethnic groups and  b ) with subclinical athero-
sclerosis traits, and the analysis in the Penn-T2D consor-
tium allowed us to expand our analysis to a much larger 
sample size. The association between  ACSL1  SNPs and 
coronary artery calcifi cation (CAC) was validated in African 
Americans ( 16 ). Furthermore, expression quantitative trait 
locus (eQTL) analysis was used to investigate if the identi-
fi ed  ACSL1  SNPs were associated with  ACSL1  levels in 
skin, lymphocytes, and adipose tissue, and fi nally, DNase I 
hypersensitive sites (DHSs) coinciding with these SNPs 
were analyzed in several fetal and adult human tissues. 

 Together, our results demonstrate that three SNPs in 
the  ACSL1  gene are associated with markers of fasting glu-
cose or diabetes status and that one of these SNPs is also 
signifi cantly associated with subclinical atherosclerosis. 
This represents the fi rst indication of ACSL1 contributing 
to the regulation of fasting glucose and risk of diabetes 
and subclinical atherosclerosis in humans. 

 MATERIALS AND METHODS 

 Candidate association analyses from large-scale consortia 
 To perform association analysis of common variants within the 

 ACSL1  gene region, we examined published GWAS and custom-
array results from the MAGIC and DIAGRAM consortia. We re-
port the SNP demonstrating the strongest association with the 
analyzed traits for each study. 

 MAGIC.   MAGIC published a GWAS of fasting glucose and 
fasting insulin in up to 46,196 nondiabetic participants of European 
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particularly in myeloid cells stimulated with infl ammatory 
molecules, such as Toll-like receptor (TLR) 4 ligands, Gram-
negative bacteria, TLR1/2 ligands, TLR3 ligands, TNF- � , 
and IFN- �  ( 6–8 ). Both in mouse and human macrophages, 
plasma membrane-associated ACSL1 levels increase after 
TLR4 and IFN- �  stimulation ( 6, 9 ) and also increase in hu-
man macrophages exposed to increased metabolic activa-
tion by insulin, elevated glucose, and palmitate ( 10 ). When 
these cells are exposed to metabolic or infl ammatory ac-
tivation, ACSL1 is required for effective phospholipid 
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 For each of the three SNPs identifi ed in consortium studies 
(  Table 1  ), primary analyses in MESA focused on the phenotype 
analyzed in discovery of each SNP, including glucose (log-trans-
formed) and diabetes status.  Secondary analysis examined sub-
clinical atherosclerosis (cIMT, iIMT, CAC presence/absence, 
and Agatston score for those with CAC >0). 

 Penn-T2D consortium.   The Penn-T2D consortium used pub-
licly available DIAGRAM meta-analyses data, updated by adding 
additional T2D GWAS/Metabochip studies that have not previ-
ously contributed data to the DIAGRAM consortium (fi ndings 
from these analyses are currently submitted for publication). The 
Penn-T2D consortium consists of data from 56,241 type 2 diabe-
tes cases and 187,815 controls. 

 Replication and validation in MESA and Penn-T2D for 
SNPs identifi ed in consortia studies 

 For each of the three  ACSL1  SNPs identifi ed in MAGIC and 
DIAGRAM associated with fasting glucose and diabetes ( Table 
1 ), analyses were focused on replicating and validating associa-
tion with the corresponding trait analyzed in discovery of each 
SNP in MESA and the Penn-T2D consortium. Statistical signifi -
cance for replication of the three SNPs was determined at a Bon-
ferroni-corrected threshold of  � = 0.05/3 = 0.017, whereas  � = 
0.05 was considered as nominal evidence of replication. For sec-
ondary analysis of subclinical atherosclerosis traits in MESA, we 
report fi ndings as signifi cant if they reach a Bonferroni-corrected 
threshold of  � = 0.05/12 = 0.0042, corresponding to three SNPs 
and four traits, or 12 tests. 

 Meta-analysis of CAC in African Americans 
 This study amassed data on 5,823 African Americans from 

eight US studies in CAC, examining various defi nitions of CAC: 
ln[CAC+1]; CAC present/absent; ln(CAC) where CAC >0; and 
BLOM   transformed CAC, defi ned by Gomez et al. ( 28 ). Results 
from the eight studies were meta-analyzed in METAL ( 16 ). For 
this validation study, we used the results from subjects with CAC 
>0 on 2,520 subjects. This cohort included African Americans 
from MESA (29% of subjects). Statistical signifi cance for replica-
tion of the three SNPs was determined at a threshold of  � = 0.05/
3 = 0.017 after Bonferroni correction. 

 CARDIoGRAMplusC4D consortium 
 In order to investigate association of the three identifi ed  ACSL1  

SNPs with cardiovascular events (myocardial infarction, symptom-
atic coronary events, or coronary stenosis), we took advantage of 
the CARDIoGRAMplusC4D consortium. CARDIoGRAM GWAS is 
a meta-analysis of 22 GWASs in participants of European descent 
involving 22,233 cases and 64,762 controls, and C4D GWAS is a 
meta-analysis of GWASs in participants of European and South 
Asian descent involving 15,420 coronary heart disease cases and 
15,062 controls. GWAS data from both of these consortia contain 
nonoverlapping participants ( 29 ). We used this publicly available 
data and conducted a fi xed-effects meta-analysis yielding a sample 
size of 37,653 coronary heart disease cases and 80,182 controls. 

 Multiple Tissue Human Expression Resource analysis 
 The Multiple Tissue Human Expression Resource (MuTHER) 

consortium data (http://www.muther.ac.uk) were used to inves-
tigate if the three identifi ed  ACSL1  SNPs were associated with 
 ACSL1  levels, representing an eQTL analysis. MuTHER contains 
genome-wide expression (Illumina HT-12v3 array) profi les on 
lymphocytes, subcutaneous fat, and skin biopsies from  � 856 
twins from the TwinsUK BioResource. MuTHER was interro-
gated for changes in probe ILMN_1684585 ( ACSL1 ). 

descent in 2010 ( 13 ). A subsequent effort from MAGIC per-
formed a GWAS of the same traits with adjustment for BMI in an 
expanded sample of up to 51,750 nondiabetic participants of 
European descent ( 14 ). 

 DIAGRAM.   The DIAGRAM consortium performed a GWAS 
of type 2 diabetes in 12,171 cases and 56,862 controls comprising 
the DIAGRAM v3 GWAS ( 15 ). The SNPs identifi ed through 
GWAS contributed to the design of the Metabochip, a custom 
genotyping array used for genetic association analysis of type 2 
diabetes in an expanded sample of (primarily European descent) 
34,840 cases and 114,981 controls. 

 Genetic association analysis of ACSL1 variants in MAGIC and 
DIAGRAM.   We focused on  ACSL1  variants within 50 kb of the 
 ACSL1  gene, using LocusZoom ( 17 ) to identify SNPs within the 
region from the published GWAS and custom genotyping array 
results. We then conducted candidate association analyses for 
each of the four selected published data sets, the original MAGIC 
GWAS ( 13 ), the MAGIC BMI-adjusted GWAS ( 14 ), the DIA-
GRAM v3 GWAS ( 15 ), and the DIAGRAM Metabochip ( 15 ). For 
each lookup, we applied a Bonferroni correction for the number 
of SNPs identifi ed within the target region. Here, we report those 
SNPs reaching the specifi ed Bonferroni threshold for at least one 
of the published data sets. 

 Analysis of  ACSL1  SNPs in MESA 
 MESA.   The MESA is a longitudinal cohort study of subclini-

cal cardiovascular disease and risk factors in 6,814 men and 
women 45 to 84 years of age, initially free of overt disease, that 
predict progression to disease or progression of subclinical dis-
ease ( 18 ). The MESA Family Study (MESAFS) recruited 1,595 
African American and Hispanic family members 45 to 84 years of 
age specifi cally for genetic analysis, and the MESA Air Pollution 
Study recruited an additional 257 participants ( 19 ). MESA par-
ticipants had detailed medical histories and examinations for an-
thropometry, blood pressure, and vascular imaging [to obtain 
measures of subclinical atherosclerosis of CAC and common 
(cIMT) and internal carotid intima-media thickness (iIMT)] 
( 20 ). Glucose concentrations were determined from fasting sam-
ples, and diabetes status was defi ned using the 2003 American 
Diabetes Association fasting criteria (fasting glucose  � 126 mg/dl) 
( 21 ) and/or diabetes treatment. Characterization of MESA 
subjects included in the present study is included in the sup-
plementary Materials and supplementary Tables 1 and 2. MESA 
participants were genotyped using the Affymetrix Human SNP 
array 6.0 ( 22 ). Imputation was conducted with IMPUTE v2 using 
Phase 1 v3 of the cosmopolitan 1,000 genomes reference set 
( 23 ), followed by robust quality control ( 24 ). 

 Genetic association analysis in MESA.   MESA participants were 
stratifi ed by race/ethnic group using an unrelated subset of indi-
viduals from MESA and from MESAFS, by selecting, at most, one 
individual from each pedigree, based on inferred relationships 
in KING ( 25 ). Linear regression of quantitative phenotypes or 
logistic regression of dichotomous phenotypes was performed 
under an additive 1 d.f  . genetic dosage model in R. For pheno-
types with a substantial familial component, we performed analy-
sis using linear mixed-effects models for quantitative traits, or 
generalized estimating equations for dichotomous traits, to ac-
count for familial relationships as implemented in the package 
R/GWAF ( 26 ). A basic model including age, gender, study site, 
and principal components of ancestry was used. Fixed effect 
meta-analysis was performed to combine race/ethnic specifi c re-
sults using METAL ( 27 ). 
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 Identifi cation of chromatin accessibility and transcription 
factor binding motifs 

 Chromatin accessibility data were obtained from public reposi-
tories for human cell lines [ENCODE Consortium ( 30 )] as well 
as fetal and adult tissues and primary cell lines [Roadmap Epig-
enomics Consortium ( 31 ) and unpublished observations] and   
intersected with the three SNPs examined by this work. Tran-
scription factor binding motif locations were determined as de-
scribed by Vierstra et al. ( 32 ). 

 Human study approvals 
 Each study obtained approval from their respective institu-

tional review board and the ethics committee of each participating 
institution, including the University of Alabama at Birmingham, 
Washington University, University of Mississippi Medical Center, 
University of Minnesota, Northwestern University, Kaiser Per-
manente (Oakland, CA), University of Washington, Columbia 
University, Johns Hopkins School of Medicine, University of Cali-
fornia Los Angeles School of Medicine, Wake Forest University 
School of Medicine, University of Michigan Health Sciences and 
Behavioral Sciences, the Cedars-Sinai Medical Center, the Univer-
sity of Virginia, and the University of Pennsylvania, and informed 
consent from participants. All methodology was compliant with 
the principles set forth in the Declaration of Helsinki and Title 
45, US Code of Federal Regulations, Protection of Human 
Subjects. 

 RESULTS 

  ACSL1  association analysis in published results from 
MAGIC 

 After Bonferroni correction (signifi cance threshold  � = 
0.05/173 = 2.9 × 10  � 4 ) for 173 SNPs within  ACSL1  in the 
MAGIC GWAS, we identifi ed rs7681334 as signifi cantly as-
sociated with fasting glucose (MAF = 0.40,  P  = 8.4 × 10  � 6 ; 
  Fig. 1A   and  Table 1 ).  After Bonferroni correction (signifi -
cance threshold of  � = 0.05/183 = 2.7 × 10  � 4 ) for 183 SNPs 
within  ACSL1  in the MAGIC BMI-adjusted GWAS, we iden-
tifi ed rs4862423 in addition to rs7681334 as signifi cantly 
associated with fasting glucose (MAF = 0.43,  P  = 4.6 × 10  � 7 ; 
 Fig. 1B  and  Table 1 ). 

  ACSL1  association analysis in published results from 
DIAGRAM 

 We identifi ed rs735949 as signifi cantly associated with 
diabetes status (MAF = 0.06,  P  = 7.8 × 10  � 5 ) after Bonfer-
roni correction for 173  ACSL1  SNPs in the DIAGRAM v3 
GWAS. We also identifi ed rs735949 as signifi cantly associ-
ated with diabetes status (MAF = 0.06,  P  = 3.7 × 10  � 6 ) after 
correction for 9  ACSL1  SNPs in the DIAGRAM Metabo-
chip data ( Fig. 1C, D  and  Table 1 ). 

 Replication of  ACSL1  results identifi ed from consortia 
studies in MESA 

 In combined meta-analysis across race/ethnic groups 
for nondiabetic participants from MESA, we identifi ed 
nominal (but not Bonferroni-corrected) evidence of repli-
cation for the association of  ACSL1  rs4862423 with BMI-
adjusted fasting glucose; further, the observed direction of 
effect was consistent with that seen in MAGIC ( Table 1 ; 
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status in the Penn-T2D Meta (  Table 2  ).  The observed di-
rection of effect was consistent with that seen in MAGIC and 
DIAGRAM.  ACSL1  rs4862423, which was associated with 
fasting glucose in the BMI-adjusted MAGIC with sugges-
tive evidence of replication in MESA ( Table 1 ), showed a 
suggestive association with diabetes status ( P  = 0.065) in 
the Penn-T2D Meta for which the direction of effect was 
consistent with that seen with fasting glucose in MAGIC 
and MESA. Thus, the association of  ACSL1  rs735949 and 
rs7681334 with fasting glucose and diabetes status is repli-
cated in large cohorts. The association of rs4862423 with 
fasting glucose was signifi cant in the BMI-adjusted MAGIC 
in nondiabetic subjects, yet failed to reach signifi cant as-
sociation with diabetes status in the Penn-T2D Meta. 

  ACSL1  SNP association with subclinical atherosclerosis 
in MESA 

 For subclinical atherosclerosis traits, we observed asso-
ciation of  ACSL1  rs7681334 with CAC Agatston score 
(among participants with CAC >0) in combined meta-
analysis across race/ethnic groups (  Table 3  ; P = 0.003). 
 The association was stronger in participants without diabe-
tes ( Table 3 ; P = 0.001). We further observed association of 
rs4862423 with CAC in participants without diabetes ( Table 3 ; 
P = 0.002). Race/ethnic stratifi cation provides consistent 

P = 0.037). The effect allele (T/C) frequency was 0.350 in 
MAGIC European Caucasians and 0.407 in MESA Cauca-
sian participants. The observed effect size and strength of 
association for rs4862423 was most notable in MESA Afri-
can Americans without diabetes compared with other 
race/ethnic groups ( P  = 0.033; supplementary Table 3). 
We did not observe additional race/ethnic specifi c associa-
tions for fasting glucose-related SNPs (supplementary Ta-
bles 3 and 4). We did not observe statistically signifi cant 
evidence of replication for rs7681334 with fasting glucose 
or for rs735949 with diabetes status ( Table 1  and supple-
mentary Table 5). Thus, these results demonstrate that the 
T allele in rs4862423 (T/C) associates signifi cantly with 
increased fasting blood glucose levels in MAGIC, with sug-
gestive evidence of replication in MESA. 

 Replication and validation of  ACSL1  SNP associations in 
Penn-T2D meta-analyses 

 In a second study [Penn-T2D meta-analyses (Penn-T2D 
Meta) data], which is larger than either of the two consor-
tia used for discovery analysis and the MESA replication 
study, we were able to confi rm the association of  ACSL1  
rs735949 with diabetes status. Furthermore, rs7681334, 
which was associated with fasting blood glucose in MAGIC 
( Table 1 ) was also signifi cantly associated with diabetes 

  Fig. 1.  Regional association plots for statistically signifi cant SNPs identifi ed through candidate association studies in  ACSL1  in published 
results from genetic consortia. SNP rs7681334 association with fasting glucose in the original MAGIC GWAS (A), SNP rs4862423 association 
with fasting glucose in the MAGIC BMI-adjusted GWAS (B), SNP rs735949 association with diabetes status in DIAGRAM v3 GWAS (C), and 
SNP rs735949 association with diabetes status in DIAGRAM Metabochip (D). The plots are generated using LocusZoom with 1000 Genomes 
CEU as the reference for calculating linkage disequilibrium  .   
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 TABLE 3. Summary of statistically signifi cant genetic association results for Agatston calcium score in MESA          

Group SNP ID HG 19 Position
Effect/Other 

Allele EAF  a  N Beta SE  P 

All participants rs7681334 185,710,859 A/G 0.497/0.450/ 
 0.647/0.944

3,852  � 0.126 0.043 0.003

Participants without 
diabetes

rs7681334 185,710,859 A/G 0.496/0.452/ 
 0.644/0.928

3,172  � 0.157 0.046 0.001

Participants without 
diabetes

rs4862423 185,726,548 T/C 0.407/0.270/ 
 0.499/0.658

3,172  � 0.150 0.048 0.002

Results are presented based on the basic model of genetic association including adjustment for age, gender, 
study site, and principal components of ancestry. 

  a   EAF for MESA shown separately for Caucasian/African American/Hispanic/Chinese participants.

 TABLE 2. Summary of association with type 2 diabetes status of the three identifi ed SNPs in the  ACSL1  gene 
region from Penn-T2D Meta         

SNP ID Effect Allele Noneffect Allele Beta SE  P N Case N Control

rs7681334 A G 0.031 0.009 6.56E-04 56,241 187,815
rs735949 T C 0.069 0.014 1.02E-06 56,241 187,815
rs4862423 T C 0.024 0.013 6.51E-02 20,516 66,774

directions of effect for both of these  ACSL1  SNPs for Cau-
casian, African American, and Hispanic participants, but 
not Chinese participants (supplementary Tables 6 and 7). 
In addition, both SNPs showed stronger effects on CAC 
in nondiabetics compared with those with diabetes (Co-
chran’s Q test for heterogeneity, rs7681334,  P  = 0.12; 
rs4862423,  P  = 0.04). 

 CAC results in meta-analysis of African Americans 
 The association of rs4862423 with CAC observed in 

MESA African Americans among those with CAC scores >0 
was signifi cant in the expanded sample (  Table 4  ).  How-
ever, the association of rs7681334 with CAC in MESA was 
not observed in the African American sample. Further-
more, an association between rs735949 and CAC was ob-
served in the African American sample, but not in MESA 
( Tables 3 and 4 ). Thus, the association of rs4862423 with 
subclinical atherosclerosis was consistent between the two 
studies. The association of rs735949 and rs7681334 with 
CAC appeared to be infl uenced by other factors. 

 Analysis of association of  ACSL1  SNPs in the 
CARDIoGRAMplusC4D consortium 

 In addition to testing  ACSL1  SNPs for association with 
diabetes and subclinical atherosclerosis, we determined 
whether the  ACSL1  SNPs modifi ed risk for clinical end 
points (coronary heart disease). In the CARDIoGRAM-
plusC4D consortium data, there were no signifi cant asso-
ciations of  ACSL1  SNPs rs7681334, rs735949, or rs4862423 
with coronary heart disease (supplementary Table 8). 

 Chromatin accessibility at the  ACSL1  locus 
 The three trait-associated  ACSL1  SNPs are located within 

the fi rst (rs4862423) and second (rs7681334, rs735949) 
introns of the  ACSL1  gene. Noncoding GWAS SNPs are 
concentrated in regulatory DNA elements, where they 
may modulate transcription factor binding ( 33 ). Thus, we 
asked whether these  ACSL1  polymorphisms coincided 
with DHSs, which generically indicate transcription factor 

binding at active regulatory elements ( 30 ).  ACSL1  utilizes 
alternative promoters, which appear to have different lev-
els of tissue selectivity (  Fig. 2A  ).  SNP rs4862423 is located 
in intron 1 of  ACSL1 , a region that is highly accessible to 
DNase I in fetal heart tissue, and to a lesser extent in other 
fetal tissues ( Fig. 2B ) as well as adult heart, mucosal (gas-
tric and small bowel), pancreatic, and skeletal muscle tis-
sue (data not shown). This site does not appear to be 
active in the hepatocyte cell line HepG2 but is accessible 
in multiple cultured epithelial and skeletal muscle cell 
lines (data not shown). Furthermore, rs4862423 coincides 
with a recognition site for RREB1 (ras responsive element 
binding protein 1;  Fig. 2C   ). Although rs735949 coincides 
with a DHS in primary skin melanocytes (data not shown), 
we did not observe regulatory element activity coinciding 
with rs7681334 in any of the cell lines and tissues for which 
DHS data are available. 

 eQTL analysis 
  ACSL1  SNPs were analyzed for evidence of eQTLs using 

the MuTHER consortium data on three tissues: subcuta-
neous fat, lymphocytes, and skin. There were no signifi -
cant associations for any of the three SNPs with probe 
ILMN_1684585 ( ACSL1 ).  P  values for rs7681334 were 0.45 
in fat, 0.59 in lymphocytes, and 0.76 in skin. The corre-
sponding  P  values for rs735949 were 0.13, 0.56, and 0.054, 
and for rs4862423, they were 0.35, 0.73, and 0.68 (supple-
mentary Table 9). The most signifi cant SNP associated 
with probe ILMN_1684585 in skin biopsies was rs745805 
( P  = 0.0014), which is in high linkage disequilibrium with 
rs735949 ( r  2  = 0.832 in 1000G pilot 1 CEU; supplementary 
Table 9). These results suggest that rs735949 might be as-
sociated with  ACSL1  expression levels in some tissues. 

 DISCUSSION 

 The role of ACSL1 in humans is unknown, although mouse 
studies have shown that this enzyme plays an important 
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signifi cant association (defi ned as  P  < 0.05) was observed 
for any of the three SNPs in a large-scale GWAS meta-
analysis of BMI ( 34 ). 

 The present study also demonstrates a signifi cant as-
sociation of rs4862423 with subclinical atherosclerosis, 
measured as CAC scores >0 in MESA and in a follow-up 
meta-analysis study in African Americans. The direction-
ality of the association was different for fasting glucose 
and CAC. Thus, rs4862423 allele T was associated with in-
creased fasting glucose and decreased CAC. The reason 
for the difference in directionality is unclear. Analysis of 
cardiovascular events in CARDIoGRAMplusC4D did not 
show association with the three  ACSL1  SNPs. It is possible 
that the association occurs only with early atherosclerosis 
or with calcifi cation, rather than with more advanced le-
sions and clinical events. In this context, it is interesting 
that ACSL1 in mice is required for early lesions of athero-
sclerosis, with a less obvious effect on advanced lesions ( 6 ). 

 All three  ACSL1  SNPs are located in intronic regions of 
 ACSL1  (introns 1 and 2), and our studies demonstrate that 
the two SNPs most clearly associated with fasting glucose 
and diabetes (rs7681334 and rs735949) do not associate 
with identifi ed DNase I accessible regions in several cells, 
fetal or adult tissues most likely to be relevant for these 
phenotypes. However, we show that rs735949 is associated 
with a DNase accessible region in primary skin melano-
cytes. A previous study identifi ed association of rs735949 

role as a metabolic rheostat mechanism in several tissues, 
and hence, that loss of ACSL1 results in reduced blood 
glucose levels due to reduced fatty acid oxidation under 
conditions in which excess energy is needed. We dem-
onstrate here that specifi c SNPs in the  ACSL1  gene are 
signifi cantly associated with fasting glucose (rs7681334 
and rs4862423) or with diabetes status (rs735949) in the 
MAGIC and DIAGRAM consortia. We also report evidence 
of replication of the association of rs4862423 with fasting 
glucose in nondiabetic participants from MESA, and asso-
ciation of both rs7681334 and rs735949 with diabetes 
status in Penn-T2D Meta. Although the Penn-based con-
sortium includes the DIAGRAM data, it contains twice the 
number of cases included in DIAGRAM. Together, these 
four studies make a strong case for signifi cant association 
of the three  ACSL1  SNPs with fasting glucose and diabetes. 
Furthermore, whereas MAGIC and DIAGRAM included 
subjects primarily of European descent, MESA includes 
subjects of different race/ethnic groups (mostly Cauca-
sian, African American, and Hispanic participants and 
a smaller fraction of Chinese participants). The smaller 
sample size in MESA (7,847 participants) compared with 
the MAGIC and DIAGRAM consortia and Penn-T2D Meta 
probably contributed to the lower level of signifi cance and 
statistical power. It is unlikely that the association of the 
 ACSL1  SNPs with glucose levels is signifi cantly confounded 
by BMI or adiposity because no nominally statistically 

 TABLE 4. Summary of results on genetic association results for Agatston calcium score in meta-analysis of CAC 
among African Americans         

SNP ID HG 19 Position Effect/Other Allele EAF N Beta SE  P 

rs4862423 185,726,548 T/C 0.2448 2,523  � 0.1757 0.0611 0.004
rs735949 185,716,232 T/C 0.954 2,523  � 0.343 0.1322 0.009
rs7681334 185,710,859 A/G 0.4555 2,523  � 0.0066 0.0538 0.912

  Fig. 2.  Chromatin accessibility at the  ACSL1  locus. A: Normalized densities of DNase I cleavages are shown for 14 human fetal tissues, with 
the positions of three GWAS SNPs indicated by gray vertical lines. B: Localization of rs4862423 within a DNase I accessible region with the 
highest activity in fetal heart. C: Position of SNP (red box) within a binding motif of RREB1 (blue box).   
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associated with increased metabolic syndrome risk ( 41 ). 
A recent study suggested that rs6552828 (located near 
rs4862423) might result in differences in  ACSL1  expres-
sion ( 42 ). It is therefore possible that rs4862423 and other 
polymorphisms in intron 1 of the  ACSL1  gene result in al-
tered expression of ACSL1 in specifi c tissues. 

 In summary, our study is the largest to date examining 
 ACSL1  SNPs in humans, and the fi rst to examine the asso-
ciation between  ACSL1  SNPs, fasting glucose, diabetes, 
and subclinical atherosclerosis. Our results demonstrate 
that three SNPs in the  ACSL1  gene are associated with 
markers of fasting glucose or diabetes status and that one 
of these SNPs is also signifi cantly associated with subclini-
cal atherosclerosis. This represents the fi rst evidence of 
 ACSL1  association with regulation of fasting glucose and 
risk of diabetes and subclinical atherosclerosis in humans 
and suggests possible links between these traits and acyl-
CoA synthesis.   
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