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Abstract

A sterically accessible tert-butyl-substituted dipyrrinato di-iron(II) complex [(tBuL)FeCl]2 

possessing two bridging chloride atoms was synthesized from the previously reported solvento 

adduct. Upon treatment with aryl azides, the formation of high-spin FeIII species was confirmed 

by 57Fe Mössbauer spectroscopy. Crystallographic characterization revealed two possible 

oxidation products: (1) a terminal iron iminyl from aryl azides bearing ortho isopropyl 

substituents, (tBuL)FeCl(•NC6H3-2,6-iPr2); or (2) a bridging di-iron imido arising from reaction 

with 3,5-bis(trifluoromethyl)aryl azide, [(tBuL)FeCl]2(μ-NC6H3-3,5-(CF3)2). Similar to the 

previously reported (ArL)FeCl(•NC6H4-4-tBu), the monomeric iron imido is best described as a 

high-spin FeIII antiferromagnetically coupled to an iminyl radical, affording an S = 2 spin state as 

confirmed by SQUID magnetometry. The di-iron imido possesses an S = 0 ground state, arising 

from two high-spin FeIII centers weakly antiferromagnetically coupled through the bridging imido 

ligand. The terminal iron iminyl complex undergoes facile decomposition via intra- or 

intermolecular hydrogen-atom abstraction (HAA) from an imido aryl ortho isopropyl group, or 

from 1,4-cyclohexadiene, respectively. The bridging di-iron imido is a competent N-group transfer 

reagent to cyclic internal olefins as well as styrene. Although solid-state magnetometry indicates 

an antiferromagnetic interaction between the two iron centers (J = −108.7 cm−1) in 

[(tBuL)FeCl]2(μ-NC6H3-3,5-(CF3)2), we demonstrate that in solution the bridging imido can 

facilitate HAA as well as dissociate into a terminal iminyl species, which then can promote HAA. 

In situ monitoring reveals the di-iron bridging imido is a catalytically competent intermediate, one 

of several iron complexes observed in the amination of C–H bond substrates or styrene 

aziridination.
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1. INTRODUCTION

Given the importance of C–N bond forming reactions in the pharmaceutical industry,1 the 

direct incorporation of nitrogen functionality into unreactive C–H bonds remains an 

important synthetic challenge. To this end, great emphasis is being placed on utilizing 

transition metal catalysts as a tool for promoting reactivity in a controlled fashion. 

Motivated by understanding the key attributes required to facilitate N-group transfer 

chemistry, isolation and characterization of reactive intermediates have been targeted with a 

variety of metal centers, ligand platforms, and nitrene sources.2–4 As a result, a range of 

possible metal-bound nitrene motifs has been identified, comprised of metal nitrenoid-type 

species via simple coordinate covalent interaction of the nitrene with the metal center 

(Figure 1a), open-shell metal iminyl electronic structures (Figure 1b), as well as closed-shell 

terminally bound or bridging imido complexes (Figure 1c and d). These electronic 

descriptors highlight differences in both the covalency of the metal–nitrene interaction as 

well as the valency of the nitrogen center, features that are thought to influence the 

activation and functionalization of C–H bonds.

Late, first-row transition metals have been of interest for C–H functionalization chemistry 

given their inherent compressed ligand field allowing for tuning of reactivity. Manganese,5 

iron,6–18 cobalt,7,19–27 and nickel28–37 terminal imido complexes have been isolated; 

however, few display C–H amination reactivity. Almost all reported species feature low or 

intermediate spin states, favoring strong metal–N multiple bonds and decreasing the 

propensity for C–H activation or functionalization. The few exceptions, metal imido 

complexes reported by Hillhouse,31 Theopold,21 and our group,11 all can access open-shell 

electronic configurations that enforce unpaired electron density along the M–N bond vector, 

affording compounds poised for transferring the N-functionality into C–H bonds.

Bridging metal imidos supported by multiple metal centers have also been described in the 

literature,38–41 although their reactivity toward functionalization of C–H bonds is relatively 

limited. Among these, the di-copper imidos reported by Warren42,43 exhibit productive C–H 

amination chemistry, a transformation that is believed to occur via dissociation into a 

reactive terminal copper imido species.43,44 Similar dinuclear motifs have been reported 

with iron,15,45–56 cobalt,57 and nickel,30,36 the latter of which have been shown to undergo 

two-electron-type chemistry by transferring the N-functionality to isocyanides or carbon 

monoxide.30 However, no other examples of C–H functionalization mediated by these 
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bridging imido species have been previously discussed. Generally, the higher nuclearity 

bridging imido complexes are more robust, and, consequently, their role in C–H amination 

has not been widely explored. Questions regarding the ability for stepwise C–H activation at 

the dinuclear site, attenuation or enhancement of reactivity relative to terminal metal imidos, 

as well as factors that dictate the reactivity of these species remain interesting.

We have demonstrated that high-spin FeII complexes stabilized by weak-field dipyrrin 

ligands promote catalytic C–H bond amination both intra- and intermolecularly.58,59 The 

observed reactivity has been ascribed to the unique electronic structure of the isolated 

putative intermediate: a high-spin FeIII center antiferromagnetically coupled to an aryl-

iminyl radical and supported by a sterically encumbered ligand.11 This species serves as a 

viable nitrene delivery reagent, where amination of toluene as well as aziridination of 

styrene at room temperature was demonstrated. While this electronic structure has been 

invoked for other metal imido complexes,21,29,42,60 no other isolated examples have been 

reported. To address whether the iron iminyl electronic configuration is enforced by the 

sterically protected dipyrrin system, we explored the influence of a less sterically hindered 

tert-butyl-substituted dipyrrin platform. Additionally, we sought to assess whether this 

ligand scaffold permits access to other modes of interaction between the nitrene and the 

metal center and establish the effect on N-group transfer chemistry in the context of C–H 

amination. Herein, we report investigations of both a terminal iron iminyl and a bridging 

iron imido species isolated with a more sterically accessible ligand. Our findings correlate 

the ability of these species to activate C–H bonds with the potential for accessing high-spin 

electronic configurations at the iron center. Studies conducted to understand the reactivity of 

the isolated bridging imido reveal the possibility for unprecedented direct C–H activation at 

the dinuclear site, as well as revealing its competency during catalysis.

2. RESULTS AND DISCUSSION

Following literature protocol, metalation of the lithiated tert-butyl-substituted 

dipyrromethene affords the solvated complex (tBuL)FeCl(OEt2) (1) consistent with 

published characterized data (tBuL = 1,9-di-tert-butyl-5-(2,6-dichlorophenyl)-

dipyrromethene).59 Our previous work with isolated metal-nitrene intermediates has shown 

that these species display a high propensity for hydrogen-atom abstraction (HAA).11 As 

such, we sought to minimize access to weak C–H bonds by removing the bound diethyl 

ether molecule from the iron coordination sphere. Refluxing 1 in toluene, followed by 

heating under vacuum, furnishes a dimeric ferrous species [(tBuL)FeCl]2 (2) as a green 

microcrystalline powder (Scheme 1). Slow evaporation of a benzene solution of 2 at room 

temperature afforded crystals suitable for X-ray diffraction. The solid-state molecular 

structure of 2 (Figure 2a) displays two chloride atoms bridging the iron centers (Fe–Cl–Fe 

angle of 92.70(3)°) adopting a distorted trigonal monopyramidal geometry.

57Fe Mössbauer analysis of 2 revealed the presence of a single iron environment with 

parameters (δ = 0.94 mm/s, |ΔEQ| = 1.96 mm/s) in line with other high-spin FeII dipyrrin 

complexes previously synthesized.11 Variable-temperature magnetic susceptibility 

measurements corroborate the S = 0 spin state assignment resulting from two weakly 

antiferromagnetically interacting FeII centers, with a χMT value of 6.40 cm3K/mol at 295 K 
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and a coupling constant of −1.95 cm−1 (Figure S-2). The higher than expected magnetic 

moment (μeff = 7.15 μB at 295 K versus 6.93 μB) for two non-interacting high-spin ferrous 

centers is in line with the presence of large zero-field splitting as found upon fitting the 

reduced magnetization data collected at 1–7 T over the 1.8–10 K temperature range: g1 = g2 

= 2.075, D = 13.48 cm−1, D2 = 13.16 cm−1, |E1/D1| = 0.33, and |E2/D2| = 0.33.

2.1. Canvassing Nitrene Capture Viability of 2

With 2 in hand, we began examining its efficacy for nitrene capture from aryl azides 

(Scheme 2). Addition of a thawing solution of 2 in benzene-d6 to a stoichiometric amount of 

4-tert-butylphenyl azide immediately resulted in a new paramagnetically shifted 1H NMR 

spectrum. 57Fe Mössbauer analysis of the reaction mixture reveals a new iron-containing 

species with isomer shift and quadrupole splitting values supporting a high-spin FeIII 

formulation (δ = 0.30 mm/s, |ΔEQ| = 2.04 mm/s, Figure S-3a), as the parameters are in good 

agreement with those previously reported for the FeIII iminyl radical species 

(ArL)FeCl(•NC6H4-4-tBu) (δ = 0.28 mm/s, |ΔEQ| = 2.29 mm/s).11 This is not an isolated 

example; rather, rapid oxidation of 2 to afford trivalent iron complexes is observed with 

several aryl azides (4-methoxy-, 4-nitro-, 2,6-diisopropyl-, and 3,5-bis-

(trifluoromethyl)phenyl azide) as evidenced via 57Fe Mössbauer analysis (Figure S-3). 

However, all of these reaction mixtures feature two distinct iron species, with contribution 

from a divalent iron species (Figure S-3, green trace). With the exception of 4-tert-

butylphenyl azide and 3,5-bis-(trifluoromethyl)phenyl azide, which do not fully consume 2, 

we propose these ferrous species result upon fast decay of the FeIII intermediates, suggesting 

a reactive nature for the proposed ferric products. Despite our attempts to cleanly synthesize 

and isolate all of the products mentioned above, we were unsuccessful in confirming the 

identity of the species formed upon treatment of 2 with any of the para-substituted aryl 

azides. However, modified syntheses of the products formed in the presence of either 2,6-

diisopropylphenyl azide and 3,5-bis(trifluoromethyl)phenyl azide were amenable for 

characterization.

2.2. Isolation and Characterization of Terminal Iminyl Complex

Stirring a solution of 2 with 2,6-diisopropylphenyl azide at −40 °C for 5 h (Scheme 3) 

cleanly affords a new product as confirmed by a single quadrupole doublet in the 57Fe 

Mössbauer spectrum of the reaction mixture (Figure 3a). Gratifyingly, layering a 

fluorobenzene solution of this product with pentane affords a green crystalline material, 

which was characterized by X-ray diffraction to unveil a terminally bound imido/iminyl 

moiety (tBuL)FeCl(•NC6H3-2,6-iPr2) (3) (Figure 2b).

The solid-state molecular structure displays an Fe–Nim bond length of 1.768(4) Å, in 

excellent agreement with the metrics reported for (ArL)FeCl(•NC6H4-4-tBu) (1.768(2) Å)11 

and significantly elongated with respect to previously isolated terminal iron imidos.6,9,10 

Interestingly, the imido unit does not reside in the plane of the dipyrrin ligand, and it 

displays an almost linear Fe–Nim–CAr bond (178.7(4)° vs 156.43(17)° for 

(ArL)FeCl(•NC6H4-4-tBu)). The distinct iminyl moiety configuration around the iron center 

could result from the less sterically encumbered ligand platform; however, the influence of 

the ortho aryl substituents cannot be excluded.
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Comparison of the C–C bond lengths within the aryl group (Cipso–Cortho 1.435(6), 1.439(6) 

Å; Cortho–Cmeta 1.374(6), 1.382(6); Cmeta–Cpara 1.385(6), 1.373(6) Å) with those of the 

respective benzene moiety in an isolated FeII aniline adduct (vide infra 4) (Cipso–Cortho 

1.399(5), 1.402(5) Å; Cortho–Cmeta 1.396(5), 1.398(5) Å; Cmeta–Cpara 1.381(6), 1.384(6) Å) 

emphasizes the elongation of the Cipso–Cortho bonds, without any other significant 

distortions. Additionally, the double bond character of the N–Cipso bond (1.325(5) Å) is also 

indicative of the radical density not being fully localized on the nitrogen atom. Bimolecular 

reactivity to afford a C–C coupled product similar to that reported for a nickel 2,6-

diisopropyl-imide bearing radical character on the imido linkage61 was not observed, 

suggesting a lack of electron density at the para-position. We have previously found that 

treatment of the corresponding (ArL)FeCl with phenyl azide furnishes [(ArL)-FeCl]2(μ-

N(Ph)(C6H5)N) following C–N bond coupling of two (ArL)FeCl(•NPh) moieties.11 No such 

product was detected either; however, the additional imido ortho groups may be preventing 

such interaction. In conjunction with the 57Fe Mössbauer data, these results are suggestive 

of an FeIII iminyl radical electronic description.

To probe the electronic structure of iminyl 3, the magnetic behavior was investigated via 

SQUID magnetometry (Figure 3b). Variable-temperature (VT) direct-current (dc) 

susceptibility data collected over the temperature range 5–300 K provided a χMT of 2.76 

cm3K/mol (4.70 μB) at 295 K, consistent with the spin-only value of 3.00 cm3K/mol (4.90 

μB) for a quintet state. The persistence of the S = 2 molecular spin state at room temperature 

highlights the strength of the coupling interaction, which cannot be thermally overcome (208 

cm−1 at 300 K). Magnetization measurements were collected under dc fields 1–7 T over the 

temperature range 1.8–10 K. The 7T isofield curve plateaus at 3.31 μB (at 1.8 K), 

significantly lower than the expected magnetic saturation of 4.0 μB for an S = 2 spin state, 

indicating the presence of magnetic anisotropy. The reduced magnetization data were fit 

using the program PHI62 to find an acceptable model for a quintet state with the following 

parameters: g = 1.95, D = 2.91 cm−1, and |E/D| = 0.21.

2.2.1. Theoretical Analysis for the Electronic Structure of 3—Further support for 

the proposed electronic structure of 3 came from DFT. An unrestricted, single-point 

calculation at the B3LYP level63 using the crystallographic coordinates determined for 3 
converged to the broken-symmetry BS(5,1) solution, with an estimated exchange coupling 

constant of −655 cm−1 to corroborate the magnetometry. The calculated 57Fe Mössbauer 

parameters (δ = 0.39 mm/s, ΔEQ = −1.80 mm/s) were found to be in good agreement with 

the experimental data. The resulting corresponding orbitals reveal that the β-electron resides 

in an Fe–N π symmetric orbital, highlighting the attenuated bond order of the Fe–N bond, in 

line with the experimentally observed elongation. Furthermore, the Mulliken spin density 

plot (α–β) (Figure 3c) illustrates radical delocalization throughout the entire aryl ring. As 

such, we believe that the antiferromagnetically coupled FeIII iminyl radical formulation 

predicted is an appropriate description for 3, as implicated by all experimental results (57Fe 

Mössbauer spectroscopy, X-ray diffraction studies, and SQUID magnetometry).

2.2.2. Reactivity of the Iminyl Radical 3—Given the observed instability of 3 within 

minutes at room temperature, we hypothesized that the less sterically protected iron iminyl 
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would be more reactive toward C–H bonds than the previously isolated iminyl 

(ArL)FeCl(•NC6H4-4-tBu). Indeed, within 12 h, a standing solution of 3 converts cleanly to 

an FeII aniline adduct 4, where one of the isopropyl groups has been dehydrogenated 

following two sequential HAA steps (Figure 2c, Scheme 4).

Furthermore, exposure of 2,6-diisopropylphenyl azide to a 10 mol % solution of 2 in toluene 

affords nearly quantitative conversion to the respective 2-isopropyl-6-(prop-1-en-2-yl)-

aniline. Treatment of 3 with excess 1,4-cyclohexadiene generates the expected FeII (2,6-

diisopropylaniline) (5) four-coordinate complex as confirmed by 1H NMR (Scheme 4). 

However, in the presence of a stronger C–H bond such as cyclohexene (BDE = 81 kcal/

mol64), the facile intramolecular HAA pathway dominates and no C–H amination is 

detected.

Although 3 is not a viable N-group transfer reagent, its ability to perform two sequential 

HAA steps is of interest. Literature reports on metal imidos undergoing intramolecular HAA 

showcase either subsequent insertion of the nitrogen functionality into the supporting 

ligand,21,42 generation of a metallacycle,25 or further radical chemistry along the ligand 

scaffold.65 A recently reported FeIV bisimido complex was shown to undergo a similar 

dehydrogenation of the 2,6-diisopropylphenyl imido moiety to afford the corresponding iron 

amide [(IMes)Fe(HNC6H3-2,6-iPr2) (HNC6H3-2-iPr-6-(CH2) (CH3))].66 In the present 

example, nitrene insertion into the ortho benzylic C–H bond would afford a four-membered 

ring, which is thermodynamically disfavored, whereas formation of a new Fe–C bond 

following a rebound reaction with the benzylic radical is likely sterically prohibited. 

However, the posited FeIII amido complex resulting from HAA is competent to further 

activate C–H bonds.

2.3. Isolation of Di-iron Bridging Imido Complex

2.3.1. Synthesis and Characterization—Exposure of 2 to 5 equiv of 3,5-

bis(trifluoromethyl)phenyl azide in hexanes at −40 °C for 6 h provided clean access to a new 

dark-green species (Scheme 5). X-ray diffraction studies on single crystals obtained from a 

2:1 mixture of hexanes:benzene at −35 °C unveiled a di-iron complex bridged through an 

aryl imido unit [(tBuL)-FeCl]2(μ-NC6H3-3,5-(CF3)2) (6) (Figure 2d). The Fe–N–Fe linkage 

displays Fe–N bond lengths of 1.888(4) and 1.893(4) Å and an Fe–N–Fe angle of 132.1(2)°, 

parameters similar to those reported by West45 for a (μ-p-tolylimido) bis[(N,N′-ethane-1,2-

diyl-bis(salicylaldiminato))iron(III)] (average Fe–N 1.88(1) Å, Fe–N–Fe 129.6(6)°), and 

slightly elongated as compared to those found by Borovik46 for bis[bis[(N′-tert-

butylureaylato)-N-ethyl]-N-methylaminatoferrate(III)]-(l-xylylimido) (average Fe–N 

1.870(2) Å, Fe–N–Fe 105.37(8)°) as a result of the additional bridging ligands present in the 

latter example.

The 57Fe Mössbauer spectrum of 6 (Figure 4a) displays one quadrupole doublet (with 

parameters δ = 0.33 mm/s, |ΔEQ| = 1.48 mm/s) indicative of a ferric oxidation state for the 

two metals. VT magnetic susceptibility measurements revealed an antiferromagnetic 

interaction of the two iron centers. A plot of χMT versus T displays a gradual decrease 

between 300 and 50 K as expected for an S = 0 ground state (Figure 4b). At 50 K, the χMT 
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levels out at a value higher than zero due to the presence of an impurity in the sample. 

Assuming a high-spin FeIII impurity, we found a suitable fit for the susceptibility data using 

the program PHI62 (g = 1.95, 11.8% monomeric impurity) and extracted an exchange 

coupling constant67 (J) of −108.7 cm−1. Similar magnetic behavior has been described for 

the (μ-p-tolylimido) bis[(N,N′-ethane-1,2-diyl-bis(salicylaldiminato))-iron(III)], with an 

antiferromagnetic coupling interaction of −103 ± 0.5 cm−1.45 Formation of a bridging imido 

species could arise via the transient generation of a terminal iron iminyl analogous to 3, 

similar to the bimolecular coupling of two (ArL)FeCl(•NPh) moieties to afford 

[(ArL)FeCl]2(μ-N(Ph)-(C6H5)N).11 In the present example, however, intermolecular 

reactivity is not manifest at the para position as a result of the increased steric protection 

provided by the meta trifluoromethyl groups. Instead, the exposed nitrogen center on the 

imido unit undergoes further reaction with 0.5 equiv of 2 to afford a closed-shell bridging 

imido. Evidence for the intermediacy of an iron iminyl species can be gathered from 19F 

NMR spectra of reactions of 2 with varying amounts of 3,5-bis(trifluoromethyl)phenyl azide 

conducted in benzene-d6. Under stoichiometric conditions (1 equiv of azide per dimer) or 

small excess of azide, 6 is found to be the major complex observed in the 19F NMR 

immediately upon mixing the thawing solutions of 2 and azide (19F NMR δ −67.03 ppm, 

Figure S-19). If 2 is exposed to a large quantity of azide, a separate species, with a 

resonance at −29.5 ppm in the 19F NMR, is present in appreciable quantities (Figure S-19), 

although the 57Fe Mössbauer spectrum still reveals 6 as the dominant product (Figure S-20). 

In the absence of crystallographic confirmation and on the basis of these observations, we 

have tentatively assigned the signal at −29.5 ppm as the monomeric FeIII iminyl 

(tBuL)FeCl(•NC6H3-3,5-(CF3)2).

2.3.2. Electronic Structure of Bridging Imido 6—Electronic investigations of 6 via an 

unrestricted single-point DFT calculation63 using the crystallographic coordinates 

determined for 6 corroborate the presence of the antiferromagnetic coupling between the 

two iron centers with an estimated exchange coupling constant of −120 cm−1 (Figure 4c), in 

very good agreement with the experimentally observed value. Furthermore, analysis of the 

broken symmetry corresponding orbitals reveals both σ (Fe dz
2, Npz, overlap integral of 

0.32)-and π (Fe dxz, Npx, overlap integral of 0.35)-mediated exchange pathways, reflecting 

the strength of the coupling interaction (Figure S-8). Calculated 57Fe Mössbauer parameters 

(Fe1, δ = 0.34 mm/s, ΔEQ = +1.35 mm/s; Fe2, δ = 0.35 mm/s, ΔEQ = −1.22 mm/s) correlate 

well with experimental data.

Given the large metal–metal distance (3.4549(10) Å), a direct Fe–Fe coupling mechanism is 

unlikely.68 As suggested by the DFT calculations, the antiferromagnetic interaction is 

instead mediated via a superexchange pathway through the imido moiety. The moderate 

magnitude of the exchange coupling constant reveals the diminished degree of orbital 

overlap between the metal d orbitals and the corresponding p orbitals of the bridging unit 

relative to what would be expected for a perfectly linear Fe–N–Fe linkage, as predicted by 

the Goodenough–Kanamori rules.69–71 Indeed, strong antiferromagnetic interactions have 

been inferred for the recently reported bridging nitrido di-iron porphyrin complexes 

displaying nearly linear Fe–N–Fe linkages (estimated exchange coupling constant values 

exceeded −250 cm−1).72 Similar correlations between the Fe–X–Fe angle and the degree of 
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coupling have been previously described for a series of bridging oxo or sulfido complexes, 

which were shown to display larger exchange coupling constant values with increasing Fe–

X–Fe angles (X = O or S).73

As a result of the direct effect of the bridging angle on the extent of coupling, geometrical 

changes that may occur in solution could significantly alter the magnetic behavior of these 

complexes. In the case of 6, a 1H NMR silent spectrum is detected at room temperature 

consistent with a paramagnetic high-spin ferric system rather than a diamagnetic species that 

would be expected upon antiferromagnetic coupling of the two iron centers. Unfortunately, 

solution magnetic susceptibility measurements were not feasible due to rapid decay of 

solubilized 6 above −40 °C.

Considering the electronic structure of 6, the strong antiferromagnetic interaction between 

the two high-spin ferric centers detected via solid-state magnetometry gives rise to a spin 

ladder comprised of five possible dimer states with a total spin ranging between 0 and 5, 

states that can be used to describe the electronic configuration of the system as affected by 

thermal energy.74–78 The 2J energy difference of −217.4 cm−1 between the ground state 

singlet and excited state triplet is comparable to the thermal energy at room temperature 

(208 cm−1), suggesting that in the solid state at room temperature, the S = 1 state is 

significantly populated, but complete uncoupling of the two metals is not achieved. In 

solution, however, molecular motions can disrupt the geometry of the Fe–N–Fe linkage 

leading to diminished orbital overlap, thus decreasing the magnitude of the 

antiferromagnetic interaction. As a result, thermal energy can overcome the exchange 

coupling to afford a dimeric system consisting of two non-interacting high-spin FeIII ions. 

These, in turn, possess unpaired electron density along the Fe–N bond vector, a feature that 

we believe is essential for C–H activation reactivity. Therefore, the electronic structure 

analysis suggests the potential for 6 to undergo direct HAA, reactivity that contrasts the 

chemistry of most synthetic di-iron bridging oxo complexes, which are rather unreactive 

toward C–H bonds unless they can unveil a terminal oxo unit.79

2.3.3. Reactivity of the Bridging Imido—The limited reports on C–H functionalization 

mediated by metal imido intermediates prompted us to probe the viability of the isolated 

bridging imido as a reactive nitrene source. In the presence of excess 1,4-cyclohexadiene, 

consumption of 6 is observed within 30 min at room temperature to form several new 

compounds, including the FeII aniline adduct (tBuL)FeIICl(H2NC6H3-3,5-(CF3)2) (7) as 

confirmed by both 1H and 19F NMR (Scheme 6, Figure S-21). If instead 6 is exposed to a 

substrate possessing a single hydrogen atom source such as 2,4,6-tri-tert-butylphenol (BDE 

= 83 kcal/mol64), one major species can be detected via 19F NMR at −148.1 ppm (Figure 

S-22, inset). This complex can be independently prepared via a three-step synthesis (Scheme 

6): direct metathesis of 2 with lithium 3,5-bis(trifluoromethyl)anilide affords the 

corresponding FeII anilide derivative 8 (Figure 5a); further treatment of 8 with 

tetrabutylammonium chloride and ferrocinium hexafluorophosphate affords the FeIII 

chloride anilide complex 9 as evidenced by the solid-state molecular structure shown in 

Figure 5b. 9 is also slowly generated upon addition of 2,4,6-tri-tert-butylphenoxyl radical to 
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7, suggesting that the BDEs of the N–H bond for the FeII aniline adduct 7 and 2,4,6-tri-tert-

butylphenol are comparable.64

We propose two possible pathways for the observed HAA reactivity of 6 (Scheme 7). 

Analysis of the 19F NMR spectrum of a solution of 6 in benzene-d6 upon standing at room 

temperature for 3 min reveals the emergence of the proposed monomeric iron iminyl species 

(signal at −29.5 ppm, Figure 6). This observation suggests 6 may undergo dissociation to the 

iron iminyl (Scheme 7), which is competent for HAA as showcased via the two isolated 

monomeric iron iminyl radical complexes.11

A closer look at the decay of 6 in solution over time unveils the rapid formation of an 

additional fluorine containing species prior to generation of the iron(III) anilide 9 (Figure 6). 

A frozen solution EPR spectrum displays a rhombic signal consistent with an S = ½ spin 

state in addition to signals in line with high-spin FeIII centers (Figure S-23). To justify the 

doublet spin state, we propose formation of a mixed valent di-iron bridging amido complex 

(corresponding to the fluorine resonance at −77.34 ppm) that could be accessed via direct 

HAA from 6 (Scheme 7). An antiferromagnetic coupling of high-spin ferric and ferrous 

centers would result in a S = ½ molecular spin state. Following formation of a di-iron amido 

compound, dissociation to furnish 9 should be facile as the Fe–N bonds are weakened; and, 

thus, the coupling interaction is expected to decrease as well.80

In the presence of C–H substrates, we were pleased to find that 6 serves as a viable N-group 

transfer reagent, mediating C–H amination of allylic (cyclohexene, cyclooctene, 

cyclooctadiene) or benzylic (toluene) C–H bonds as well as aziridination of styrene (Scheme 

8). Interestingly, a 5:3 mixture of products can be detected upon activation of cyclooctadiene 

(GC–MS). The two compounds differ by a C=C bond transposition, providing indirect 

evidence for the generation of an allylic radical during the C–H activation step. 

Consequently, we propose that reaction of 6 with C–H substrates proceeds via initial HAA, 

furnishing the iron(III) amide 9, and subsequent radical recombination to afford the 

functionalized products.

To test the viability of the proposed stepwise mechanism, the isolated Fe amide 9 proved 

suitable for investigation of the radical recombination step. The frozen solution EPR of 9 
(Figure S-14) displays features in line with a high-spin ferric formulation, an electronic 

description further corroborated by 57Fe Mössbauer spectroscopy (Figure S-13). 

Examination of complex 9 by DFT63 unveils 7.72% spin density on the nitrogen atom 

(Figure 5d), suggesting the possible involvement of 9 in radical-type chemistry. Indeed, 

treatment of 9 with triphenylmethyl radical results in rapid formation of 3,5-

bis(trifluoromethyl)-N-tritylaniline and regeneration of 2 (Scheme 9, Figure S-30). The 

ability of 9 to capture the carbon-based radical species and afford the functionalized amine 

product highlights the role of this species in the C–H amination process mediated by 6. 

Interestingly, heating a benzene-d6 solution containing 9 in the presence of 1,4-

cyclohexadiene at 65 °C results in slow conversion to the aniline adduct 

(tBuL)FeIICl(H2NC6H3-3,5-(CF3)2) (7) (Figure S-29), emphasizing the importance of the 

unpaired electron density along the Fe–N π-vector to engender reactivity toward C–H bonds.
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2.3.4. Catalytic N-Group Transfer Chemistry—Motivated by our previously reported 

catalytic intermolecular C–H amination protocol,59 we sought to address the viability to 

transfer the N-functionality provided by 3,5-bis(trifluoromethyl)phenyl azide into C–H 

bonds. Toward this end, exposing a 10 mol % solution of 2 in cyclohexene, cyclooctene, or 

cyclooctadiene to 3,5-bis(trifluoromethyl)phenyl azide (Scheme 10) produces the 

corresponding aminated products in modest to good yields (Table 1). Reaction with the 

stronger C–H bond of toluene results in formation of the corresponding benzyl amine in 

21% yield as determined by 1H NMR. Additionally, detection of 3,5-

bis(trifluoromethyl)aniline, diazene, the overoxidized imine product, as well as ligand 

functionalization via either 1H NMR or mass spectrometry accounts for the lower yield 

observed for C–H amination. If the reaction is conducted in styrene instead, the expected 

aziridine is obtained in 92% yield as quantified via 19F NMR.

2.3.5. In Situ Monitoring during Catalysis—Prompted by these results and the 

reactivity of the isolated bridging imido complex, we envisioned that 6 can function as a 

catalytically competent intermediate. To elucidate the catalytic viability of any of the species 

associated with the bridging imido complex, a time-course analysis for the reaction of 2 with 

excess 3,5-bis(trifluoromethyl)phenyl azide in cyclohexene was conducted (Scheme 11). 

The 19F NMR spectrum collected immediately upon warming the reaction to room 

temperature features resonances consistent with formation of the postulated monomeric iron 

iminyl and bridging amido complexes as well as the isolated bridging imido 6 (Figure 7b), 

albeit in insignificant amounts relative to the quantity of azide or corresponding cyclohexyl 

amine product (Figure 7a and Figure S-26). These signals, however, do not persist at room 

temperature as would be expected for catalytically relevant intermediates (Figure 7b).

On the basis of these findings, we can formulate a mechanism for the catalytic C–H 

amination transformation mediated by 2: treatment of 2 with the aryl azide furnishes a 

terminal FeIII iminyl radical species, which can either undergo HAA through interaction 

with the C–H substrate or couple to 2 giving rise to 6. As demonstrated above, the bridging 

imido also manifests HAA ability to afford the FeIII anilide complex 9. Finally, generation 

of 9 via either pathway is succeeded by radical recombination with the carboradical to 

release the amine product and regenerate 2 (Scheme 12).

2.3.6. Observation of Other Reactive Intermediates—The in situ 19F NMR 

monitoring of the stoichiometric (Figures 6 and S-25) and catalytic (Figures 7 and S-26) 

reactions of 6 reveals several unaccounted for 19F signals, suggesting a more complex 

reactivity profile of 6. In an effort to understand the implications of these alternate reactivity 

paths arising from 6 toward the C–H amination process, investigations to identify these 

unknown species were undertaken.

We hypothesized that, given the high-spin nature of the iron complexes, ligand exchange 

should be a facile process such that disproportionation of 6 into two trivalent iron species 

could occur yielding (tBuL)FeIIICl2 (10) and a terminally bound imido 

(tBuL)FeIII(NC6H3-3,5-(CF3)2). Attempts to synthesize the latter compound via treatment of 

9 with an additional equivalent of lithium 3,5-bis(trifluoromethyl)anilide that could act as a 

base were unsuccessful. Instead, a new ferric bis-anilide (tBuL)FeIII(NHC6H3-3,5-(CF3)2)2 

Iovan and Betley Page 10

J Am Chem Soc. Author manuscript; available in PMC 2016 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(11) was isolated and confirmed crystallographically (Figure 5c). Preparation of 11 could 

also be achieved directly via metathesis of (tBuL)FeCl2 (10) with 2 equiv of lithium 3,5-

bis(trifluoromethyl)anilide (Scheme 13). 19F NMR analysis of a solution of 11 reveals a 

single resonance at −128.0 ppm, a signal that is consistent with one of the 19F species 

detected following decomposition of 6 in solution (Figure 6) or during the reaction of 2 with 

3,5-bis(trifluoromethyl)phenyl azide (Figure S-25).

Complex 11 could arise from the corresponding ferrous anilide species (8) either upon 

reaction with the 3,5-bis(trifluoromethyl)phenyl azide and subsequent HAA or via ligand 

exchange with 9 (Scheme 14). Indeed, treatment of 8 with aryl azide rapidly furnishes 11 in 

solution as judged via both 19F NMR and frozen solution EPR (Figure S-28), whereas 

mixing solutions of 8 and 9 results in formation of both 11 and 2 (Figure S-27). Unlike the 

mono-anilide 9, 11 does not undergo HAA in the presence of 1,4-cyclohexadiene at 65 °C. 

Though, treatment of 11 with triphenylmethyl radical furnishes the corresponding trityl 

aniline product and the FeII anilide complex 8 (Figure S-31). Despite the reduced oxidative 

power to effect HAA, the ability of 11 to undergo radical recombination suggests that 11 
could be a competent intermediate in the C–H functionalization process.

3. CONCLUSIONS

In this report, we have showcased the isolation of two iron complexes that possess either a 

terminal iminyl or a bridging imido. Characterization of these species suggests that the 

antiferromagnetically coupled high-spin FeIII iminyl radical formulation previously 

described11 is a prominent electronic feature not dictated or affected by the steric demands 

of the dipyrrin framework. Both of these complexes demonstrate high reactivity toward C–H 

bonds: the terminal aryl iminyl bearing ortho-isopropyl substituents was shown to undergo 

two sequential HAA steps intramolecularly, whereas the di-iron bridging 3,5-

bis(trifluoromethyl)-imido was found to successfully deliver the nitrene functionality into 

allylic and benzylic C–H bonds. Given the access to a maximally high-spin electronic 

configuration at the metal center, the iron-imido multiple bond is significantly attenuated, 

resulting in enhanced reactivity in comparison to most isolated metal imidos. As evidenced 

by several of the species presented herein, we propose that the high-spin nature of these 

metal complexes that places unpaired electron density along the Fe–N bond vector is 

essential for reactivity toward C–H bonds.

Furthermore, we have established the ability of the di-iron imide to perform C–H amination, 

and our investigations suggest that both dissociation to a terminal iron iminyl as well as 

direct C–H activation at the dinuclear imido site are viable pathways to accomplish this 

transformation. We propose that, despite the antiferromagnetic interaction manifested in the 

solid state, two independent high-spin FeIII centers can be unveiled in solution, permitting 

reactivity. Additionally, isolation of several reactive metal complexes arising from the 

bridging imido 6 not only emphasizes the complexity of our system, it also highlights the 

diverse reactivity pathways accessed by 6. We believe that the reactivity showcased by the 

bridging imido as presented in this report may have implications toward the highly regio- 

and chemoselective intermolecular allylic C–H amination process mediated by an 
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adamantyl-substituted dipyrrin scaffold,59 revealing another possible role of how the 

bridging motif may contribute to the C–H functionalization chemistry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Possible metal-bound nitrene intermediates, varying the nuclearity and valency of the 

nitrogen center.
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Scheme 1. 
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Figure 2. 
Solid-state molecular structures for (a) [(tBuL)FeCl]2 (2), (b) (tBuL)FeCl(•NC6H3-2,6-iPr2) 

(3), (c) (tBuL)FeCl(H2NC6H3-2-iPr2-6-C(CH2) (CH3)) (4), and (d) [(tBuL)FeCl]2(μ-

NC6H3-3,5-(CF3)2) (6) with thermal ellipsoids at 50% probability level. Color scheme: Fe, 

orange; N, blue; Cl, aquamarine; F, green. Hydrogens, solvent molecules, and disordered 

isopropyl group in 3 are omitted for clarity.
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Scheme 2. 
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Scheme 3. 
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Figure 3. 
(a) Zero-field 57Fe Mössbauer spectrum of (tBuL)FeCl(•NC6H3-2,6-iPr2) (3) collected at 90 

K: δ = 0.37 mm/s, |ΔEQ| = 2.17 mm/s. (b) Variable-temperature susceptibility data for of 3 
collected at 1.0 T, with χMT = 2.76 cm3K/mol at 295 K; (inset) reduced magnetization 

collected at 7 fields (1–7 T) over the temperature range 1.8–10 K. Magnetization fit 

parameters obtained with PHI:62 g = 1.95, D = 2.91 cm−1, |E/D| = 0.21. (c) Mulliken spin 

density plot (α–β) calculated63 for 3, illustrating the antiferromagnetic coupling between the 

high-spin FeIII and the iminyl radical, J = −655 cm−1.
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Scheme 4. 
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Scheme 5. 
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Figure 4. 
(a) Zero-field 57Fe Mössbauer spectrum for [(tBuL)FeCl]2(μ-NC6H3-3,5-(CF3)2) (6) 

collected at 90 K: δ = 0.33 mm/s, |ΔEQ| = 1.48 mm/s. (b) Variable-temperature susceptibility 

data for 6: χMT vs T collected at 1.0 T. Fit parameters obtained with PHI:62 g = 1.95, J = 

−108.7 cm−1, 11.8%  monomeric impurity displayed in green. (c) Mulliken spin density 

plot (α–β) calculated63 for 6, illustrating the antiferromagnetic coupling between the two 

high-spin FeIII centers, Jcalc = −120 cm−1.
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Scheme 6. 
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Figure 5. 
Solid-state molecular structures for (a) [(tBuL)Fe(NHAr′)]2 (8), (b) (tBuL)FeCl(NHAr′) (9), 

and (c) (tBuL)Fe(NHAr′)2 (11) with thermal ellipsoids at 50% probability level. Color 

scheme: Fe, orange; N, blue; Cl, aquamarine; F, green. Hydrogens, solvent molecules, and 

disordered trifluoromethyl groups in 11 are omitted for clarity; Ar′ = 3,5-

bis(trifluoromethyl)phenyl. (d) Mulliken spin density plot calculated63 for 9, illustrating 

7.72% spin density on the nitrogen atom.
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Scheme 7. 
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Figure 6. 
19F NMR spectra of a benzene-d6 solution of 6 upon standing at room temperature over 

time. Proposed observed species (δ in ppm): red (δ −29.5) (tBuL)FeCl(•NC6H3-3,5-(CF3)2), 

dark blue (δ −67.03) [(tBuL)FeCl]2(μ-NC6H3-3,5-(CF3)2) 6, green (δ −77.34) 

[(tBuL)FeCl]2(μ-HNC6H3-3,5-(CF3)2), purple (δ −128.0) (tBuL)Fe-(HNC6H3-3,5-(CF3)2)2 

11, light blue (δ −148.1) (tBuL)FeCl-(HNC6H3-3,5-(CF3)2) 9.
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Scheme 8. 

Iovan and Betley Page 28

J Am Chem Soc. Author manuscript; available in PMC 2016 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 9. 
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Scheme 10. 
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Figure 7. 
19F NMR spectra for the time-course of the catalytic reaction of 3,5-

bis(trifluoromethyl)phenyl azide with 20 mol % of 2 in cyclohexene. (a) Spectrum after 10 

min, showing the relative amount of azide and the corresponding cyclohexylamine product 

(signals at −62.97 ppm) to the iron complexes. (b) Decay of iron complexes over time 

(increased intensity to show the boxed region in top spectrum). Proposed observed species 

(δ in ppm): red (δ −29.04) (tBuL)FeCl-(•NC6H3-3,5-(CF3)2), dark blue (δ −66.46) 

[(tBuL)FeCl]2(μ-NC6H3-3,5-(CF3)2) 6, green (δ −77.10) [(tBuL)FeCl]2(μ-HNC6H3-3,5-

(CF3)2), purple (δ −128.0) (tBuL)Fe(HNC6H3-3,5-(CF3)2)2 11, light blue (δ −144.1) 

(tBuL)FeCl(HNC6H3-3,5-(CF3)2) 9.
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Scheme 12. 
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Scheme 13. 
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Scheme 14. 
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Table 1

Catalytic Reactivity of 2 and 3,5-Bis(trifluoromethyl)phenyl Azide
d

Substrate Product Yield (%)

76
a

35
a

85
a

21
b

92
c

a
Isolated yields.

b1H NMR yield using ferrocene as internal standard.

c19F NMR yield using 1,2-difluorobenzene as internal standard.

d
All reactions were conducted neat in substrate.
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