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Abstract

In this paper, we describe a model for maximum likelihood estimation (MLE) of the relative 

abundances of different conformations of a protein in a heterogeneous mixture from small angle 

X-ray scattering (SAXS) intensities. To consider cases where the solution includes intermediate or 

unknown conformations, we develop a subset selection method based on k-means clustering and 

the Cramér-Rao bound on the mixture coefficient estimation error to find a sparse basis set that 

represents the space spanned by the measured SAXS intensities of the known conformations of a 

protein. Then, using the selected basis set and the assumptions on the model for the intensity 

measurements, we show that the MLE model can be expressed as a constrained convex 

optimization problem. Employing the adenylate kinase (ADK) protein and its known 

conformations as an example, and using Monte Carlo simulations, we demonstrate the 

performance of the proposed estimation scheme. Here, although we use 45 crystallographically 

determined experimental structures and we could generate many more using, for instance, 

molecular dynamics calculations, the clustering technique indicates that the data cannot support 

the determination of relative abundances for more than 5 conformations. The estimation of this 

maximum number of conformations is intrinsic to the methodology we have used here.

I. Introduction

The utility of small angle X-ray scattering (SAXS) to provide structural information was 

first demonstrated by Guinier's studies of metallic alloys in the late 1930s [1]. SAXS 

measurements were initially employed to characterize the sizes and shapes of biological 

macromolecules by Guinier and Fournet in 1955 [2]. Throughout the 60s and 70s, SAXS 

was widely utilized to study the structures of proteins in solution. However, its popularity 
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decreased due to the inability to extract three-dimensional information from the patterns. 

Demonstration that SAXS data can be used to establish the low-resolution shape of 

macromolecules in solution [3] coupled with availability of appropriate synchroton source 

beam lines has triggered rapid growth of the approach [4]. These methods work for 

scattering of solutions from proteins (or other macromolecules) that adopt a single 

conformation in solution. However, in many cases, very interesting biochemical questions 

arise about the ensemble behavior of proteins in solution under conditions wherein they 

adopt multiple conformations. In particular, ensembles or mixtures of distinct conformations 

represent important applications of SAXS [5], [6], [7], and [8]. The goal of these studies 

may be to determine the relative concentrations and/or the structures of each of the most 

highly abundant species. To what extent can a single scattering pattern be used to estimate 

the relative abundances of different conformations in a solution? Here we approach that 

question using a novel maximum likelihood estimation (MLE) approach and compare the 

estimates made to those produced by a commonly used existing method.

Proteins are complex molecular machines whose functions often depend on conformational 

changes, i.e. a “lid” closes to trap a substrate in an enzyme's active site [9]. X-ray 

crystallography experiments provide atomically detailed “snapshots” of protein structures, 

enabling many insights into understanding protein structure-function relationships [10]. 

However, crystal structures offer information on a single protein conformation, a single 

snapshot selected from the conformational ensembles of structures the protein must adopt 

during its function [11]. Consequently, conformational states that are biologically important, 

such as long-lived intermediates along a conformational transition pathway, are difficult to 

identify by crystallography.

In contrast, small-angle X-ray scattering (SAXS) of protein solutions, and its wide-angle 

counterpart (WAXS), provide information about protein structure averaged over the 

ensemble of available structures under any given solution condition, allowing in principle 

the identification of changes in conformation due to ligand binding [12] or a change in redox 

state [13]. In particular, if a protein exists in distinct conformational states, then SAXS data 

will represent, to first order, the weighted combination of the intensity of scattering from 

each individual state, where the weights are determined by the fraction of the population 

present in each state. Consequently, SAXS/WAXS experiments that “sweep” a parameter 

such as temperature [14] or protein concentration [15], to vary the relative abundances of 

these conformations, offer the possibility of obtaining new insights into protein function.

Directly determining the number of conformations present in a mixture requires a 

knowledge of the complete state of the protein system, such as energy and temperature. In 

particular, to calculate the number of conformations, one must be able to partition the energy 

of an ensemble. However, this is not yet a well-defined problem for a heterogeneous mixture 

of proteins. If we simplify the problem and only attempt to estimate the relative population 

of states, then it is well-known in basic thermodynamic principles that they are equal to the 

ratio of exponentials of the energies of the states to the total energy of the ensemble. 

However even in this setting, to calculate the relative abundances, it is necessary to know 

the ratio of the energies among different states in the same environment. However, in 

practice this prior information about the system isn't known, in which case the best unbiased 
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estimate is to assume that all states are equally likely. In the rest of this manuscript, we 

follow this assumption.

There are three primary challenges to estimating unknown relative abundances of protein 

conformations in a mixture solution that must be addressed. First, resolving the 

identifiability issue in the estimation problem that employs measured data that are 

numerically badly scaled (i.e. nearly linearly dependent, from a naive analysis) and that 

include significant noise. Second, obtaining estimation solutions for the conformations that 

are biophysically interpretable. Third, determining novel, as-yet-unidentified conformational 

states in addition to the ones that are presently known. There are three main methods 

commonly used for the estimation of the relative abundances of scattering profiles: (1) the 

singular-value decomposition (SVD) [11]; (2) MIXTURE [5]; (3) OLIGOMER [5]. While 

the SVD and MIXTURE methods do not address any of the challenges laid out above, 

OLIGOMER addresses the second challenge.

Specifically, the SVD determines, in a least squares sense, the minimum number of patterns 

required to describe an experimental scattering profile by representing the scattering 

intensity data set matrix as a multiplication of basis vectors weighted by their contributions 

[11]. It is, of course, a very powerful technique. However it is not robust to noise in the 

measurements and it results in a basis set in which no member of the set necessarily 

corresponds to the intensity distribution of an actual structure. Therefore, the SVD method 

can address none of the challenges mentioned above.

Two publicly available software packages which implement more sophisticated methods to 

estimate abundances of more physically meaningful structures from SAXS data are 

MIXTURE and OLIGOMER [5]. The MIXTURE method defines a basis set consisting of 

droplet or cylindrical functions, or other primitives, to represent the measured SAXS 

intensities. It finds the relative abundances of members of that basis set for multiple 

conformational states of a protein through nonlinear curve fitting. Unlike the SVD, with 

MIXTURE one can resolve a measured intensity from a mixture of particles with simple 

geometrical shapes containing up to ten different components. In other words, the basis 

vectors have a geometrical meaning. However, even though interpreting a mixture in terms 

of a weighted average of given geometrical structures may be valuable in determining rough 

shapes, this method does not provide a direct explanation of the relative distribution of 

actual conformations of a protein. Moreover, the non-linear curve fitting approach utilized 

by MIXTURE does not use information about the measurement noise; therefore it may be 

susceptible to changes in the noise characteristics. Thus, MIXTURE can not address any of 

the challenges listed above. On the other hand, the OLIGOMER software can identify 

different protein conformations utilizing known measured intensities as the basis functions 

through a non-negative linear least-squares algorithm (NNLSE) for realtive abundance 

estimation [5], [16]. Even though OLIGOMER addresses the second challenge, by itself 

NNLSE does not consider the statistical characteristics of the measurement noise and does 

not attempt to address the identifiability issue in the estimation problem. Therefore, 

OLIGOMER can not address the first challenge. Moreover, since OLIGOMER uses the 

intensities of known conformations as the basis vectors, it cannot address the third challenge 

either.
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Here, we propose an approach to the first two challenges only. Specifically, employing 

SAXS intensity vectors corresponding known conformations of a protein as the basis set and 

proposing a specific noise model based on both theory and experimental observations, we 

develop a constrained MLE approach to estimate the relative abundances of multiple 

conformational states in a protein solution. This approach provides a biophysically 

interpretable estimation approach that is robust to measurement noise. Moreover, to 

overcome the identifiability issues in the estimation problem, we develop a basis subset 

selection method based on the Cramér-Rao bound on the error of estimating relative 

abundances. The proposed subset selection method finds the subset of intensities for which 

the total estimation error is minimized. We also show that this subset selection method 

enables us to choose intensities corresponding to identifiable conformations.

The structure of the rest of this paper is as follows: First, in Section II, we provide 

background information on SAXS. Then, in Section III, we explain our assumptions on the 

measured SAXS intensities and accordingly demonstrate the proposed measurement model 

which incorporates measurement noise and measurement intensities. In Section IV we 

develop a maximum likelihood based method for estimation of mixture coefficients in the 

heterogeneous mixture. Then in Section IV-A we describe a subset selection method which 

uses k-means clustering of SAXS intensities of conformations identified through X-ray 

crystallography and the Cramér-Rao bound on mixture coefficient estimation error to choose 

a sparse set of intensities that are sufficient to represent a subset of intensities which 

correspond to conformations that are identifiable from the data. Finally, in Section V, we use 

the 45 known conformations of adenylate kinase (ADK) to provide a computational example 

to demonstrate the estimation performance of the proposed method and compare it to that of 

OLIGOMER on the same data.

II. Small Angle X-Ray Scattering

A typical SAXS experiment is illustrated in Figure 1. In SAXS experiments, a circular 

average of X-ray intensities from a solution is measured, which we can represent as follows:

(1)

where A(q) is the 3D Fourier transform of the excess electron density Δρ(r) with r = [x, y, z] 

as the Cartesian coordinates in laboratory frame, and q = (q,Ω) is the scattering vector in 

terms of scattering coordinates in reciprocal space with q ∈ [qmin, qmax]. qmin and qmax 

depend on the experimental conditions and the dimensions of the detector array, Ω is the 

solid angle in reciprocal space, and A(q) can be computed using

(2)

where Vr is the total volume of molecule and a thin hydration layer [18]. Circularly averaged 

SAXS intensity is then calculated using
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(3)

where,

(4)

dmax is the diameter of the smallest sphere that would contain the molecule hydrational layer 

and γ(r) is the spherically averaged autocorrelation function of the excess electron density 

[3]. In this paper, we use the software package CRYSOL [19] to calculate SAXS intensities 

of known conformations of a protein [3]. CRYSOL starts from atomic coordinates in a 

protein data base (PDB) file and calculates the SAXS intensities taking into account the 

hydration layer. Specifically, it calculates the Fourier transform of the excess electron 

densities employing spherical Bessel functions and spherical harmonics in the range of 

scattering vector q, then it is calculated as

(5)

where Alm, Blm and Clm are partial amplitudes of particles in vacuum, in excluded volume 

and in the border layer, respectively, ρ0 is average electron density, and ρs is hydration layer 

electron density. More details are available in the literature [19].

III. Proposed Measurement Model

In this section, we describe the measurement model that we propose to represent the SAXS 

intensities. We assume that a measured intensity from a solution is a linear combination of 

intensities of different conformations in the solution:

(6)

where Im(s, q) is the measured intensity distribution,  are the 

SAXS intensities expected for each conformation with Nc as the number of conformations 

that a protein in a solution can have, αт is the vector of relative abundances of 

conformations in the mixture model such that 0 ⪯ αт ⪯ 1 and 1TαT = 1, and w(s, q) is 

multiplicative noise for the sth measurement with S as the total number of measurements 

taken for each q. Here ⪯ represents element wise inequality, and 0 and 1 are vectors of zeros 

and ones, respectively.

This assumption on the nature of the noise is based on previous experimental observations 

[17]. Specifically, experimental results show that for the relevant range of q values (q ∈ 

[qmin, qmax]), the standard deviation and mean of the measured intensity are linearly related, 

as illustrated in Figure 2 for a representative scattering pattern from adenylate kinase. We 
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use arbitrary intensity units as intensity units in rest of the manuscript. We further assume 

that w(s, q) is log-normally distributed with mean m and variance , which are constant for 

q ∈ [qmin, qmax] and s = 1, …, S. We obtain the value of  from the slope of the plot in 

Figure 2.

Using our assumptions on w(s, q) and taking the natural logarithm of (6), we have

(7)

where n(s, q) = ln w(s, q).

We also assume that the mean of n(s, q), which we denote μ, is zero for numerical 

convenience.

Then, using our assumptions on the statistics of w(s, q), we can compute that the mean and 

variance of n(s, q)  and , and setting and the assumption 

that μ = 0 we obtain

(8)

Moreover small (deterministic) inaccuracies in the representation of the expected intensities 

of the underlying conformations Ic(q) ∀q ∈ [qmin, qmax] can be modeled as a perturbation in 

the mean of the additive noise in the log intensity. Specifically, assuming that ΔIc(q) is the 

error between ground truth and the one calculated in silico, (7) can be rewritten as

(9)

We then expand (9) using Taylor series as

(10)

If  is sufficiently small, then the second and higher terms can be neglected and 

(10) reduces to

(11)

where ñ(s, q) is Gaussian distributed with mean  and variance .
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IV. Estimation Method

We use maximum likelihood estimation to estimate the mixture coefficients αт for the a 

given set of conformations. Our method differs from standard MLE because αт has 

constraints as explained in Section III. Then, using the assumptions on n(s, q), and defining

we estimate αт by solving the following constrained nonlinear optimization problem

(12)

Note that the cost function is a strictly convex function of αт, and the equality and inequality 

constraints are linear with respect to αт; therefore, (12) is a convex optimization problem, 

which implies that there is a unique global minimum.

A. Sparse Identifiable Subset Selection

As stated in the introduction, functionally distinct protein conformations may produce 

intensity distributions that are quite similar. As a consequence the optimization problem in 

(12) is highly ill-conditioned. Thus we propose to find a reduced, or sparse, set of scattering 

patterns, that is, a subset of the columns of Ic, corresponding to a reduced set of 

conformations, so that these patterns approximately span the measurement space. They will 

therefore provide a code-book on which to base a sparse solution to the estimation of αт.

Our approach has two main stages. In the first stage, using a clustering algorithm, we jointly 

determine both the size of this sparse set, that is, the number of clusters, and which 

scattering patterns are in each cluster. In the second stage we carefully choose which 

scattering pattern we will use to represent each cluster and thus form a sparse basis for 

subsequent estimation of relative abundances. Our method is designed so that the scattering 

patterns we use correspond to known physical conformations rather than abstract patterns 

such as those found by an SVD or constructed with a geometric model.

Our initial assumption is that the full set of Nc conformations which may be in the mixture 

are known, for example from crystallography Scattering patterns calculated from these 

conformations by a suitable algorithm then form the elements of the set of all intensities 

 with cardinality |C| = Nc. Our goal is to partition C such that 

with M as the number of clusters, and then choose a subset B of C such that
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(13)

A sparse intensity basis matrix IB is then formed using the elements of B as the columns and 

used in the estimation algorithm, whether MLE, OLIGOMER, or indeed any other algorithm 

which starts with a fixed set of possible intensity patterns.

We employ k-means clustering applied to the columns of Ic [20]. K-means clustering 

requires the knowledge of the number of clusters. There is no clear a priori best number of 

clusters, M. For example, experiments on ADK have shown that while explaining the 

catalytic cycle of this protein, 5 major conformational states are observed [21]: {1} ADK 

with an open conformation, {2} ATP bound with a closed LID domain [22] of ADK, {3} 

ATP and adenosine monophosphate (AMP) bound with a closed conformation of ADK, {4} 

Two adenosine diphosphate (ADP) bound with a closed conformation of adenylate, {5} One 

ADP bound with a closed nucleoside monophosphate (NMP) domain of ADK [23]. This 

suggests choosing M = 5. On the other hand, due to the stereochemistry of ADK, a 

commonly accepted explanation for the catalytic cycle of ADK omits the intermediate steps 

(phosphotransfer of ATP is described without intermediate steps involving phosphoenzyme) 

considering the conformations only in “open” and “close” states [24]. Rather than adopt a 

value of M based on such arguments, we used a model order criterion to study this question. 

We developed a score function based on the total clustering error and used it with the 

Bayesian Information Criterion (BIC) for model order selection [25]. This approach requires 

computing the criterion over a range of numbers of clusters and then evaluating the BIC as a 

function of M.

In addition, to increase generalizability, for each M we applied P-fold cross validation on the 

columns of Ic. That is, we split the columns into P approximately equal-size subsets and use 

P − 1 subsets, in turn, to “train”, that is, to cluster the data and learn the centroids of each 

cluster. We then used the Pth subset as the test set to compute the BIC score. We defined the 

clustering error for each element in this test set as the distance to the closest cluster centroid. 

We then repeat the process P times, using each of the subsets in turn as the test set and 

training on the others. We then compute the average score function as

(14)

where SF(m) is the score function, M is the number of clusters, P is the number of folds used 

in cross validation, Np is the total number of conformations in the test fold, Dj is the distance 

of the jth test intensity from the closest cluster centroid, and d is the dimension of each 

intensity vector. P is a parameter chosen empirically, as discussed in Section V.

Having determined the value of M as well as which intensities belong to each of the M 

clusters, the next step in the subset selection method is to choose the intensity patterns which 

we will use to represent each cluster. Since our goal is to represent effectively the entire set 

of intensities, and not just each cluster by itself, here we would like to choose the set of basis 
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intensities which minimizes the mean square error (MSE) of the estimation error of the 

mixture coefficients. However this is not practical, so as a substitute we use a criterion based 

on the Cramér-Rao bound (CRB), which is a theoretical lower bound on the variance of any 

unbiased estimator, and asymptotically of the MSE. For a multiparameter estimation, the 

CRB is closely tied to the Fischer Information Matrix (FIM); indeed the diagonal elements 

of the FIM give the individual CRBs of each parameter. Thus we use as our criterion the 

trace of the inverse of the FIM. Thus we seek to choose a set of basis intensity vectors which 

collectively will have the lowest sum of estimation error (MSE) bounds. We also note that in 

doing so we hope to ensure the identifiability of the model. In particular, minimizing the 

trace of the inverse is related to improving the condition number of the FIM, that is, 

increasing its distance from singularity. Since the measurement model is Gaussian, from a 

theoretical point of view, if the Fisher information matrix is invertible, then the estimator 

is ”information regular” and the parameters of our measurement model, relative abundance 

parameters, are identifiable [26], [27]. In practice, by improving the condition of the FIM we 

thus also improve identifiability.

Thus we solve

(15)

where tr(·) is the trace operator and  is the FIM calculated at the values of Ib and . 

Given this choice of criterion, we exhaustively test every possible subset Ib that meets the 

conditions of a valid subset according to the conditions in (13). We find an approximate 

minimum by performing a Monte Carlo evaluation for each such subset over NMC randomly 

chosen sets of M “reduced” mixture coefficients ᾱт. Specifically we find each set of ᾱт by 

first drawing a full set of mixture coefficients for all NC intensity patterns, αт and then 

computing the ᾱт coefficients for each cluster by summing αт over each set of cluster 

members. For each set of ᾱт coefficients we then evaluate the criterion above. We average 

these results across the Monte Carlo runs and then choose the Ib which achieves the overall 

minimum value as our basis set IB.

Algorithm 1 summarizes the basis set selection method.

To calculate the elements of FIM, we use

(16)

Algorithm 1

for every Ib that satisfy the conditions in (13) do

 for i:=1 to NMC do
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randomly generate  such that ;

; (reduce the dimension of αт to ᾱT)

calculate 

 end for

calculate  or

end for

 choose 

where the expectation is taken with respect to the conditional distribution 

. This distribution is calculated using the model in (7) 

and the assumptions explained in Section III.

(17)

(18)

We note here that Ib(q) refers to the row of the matrix Ib corresponding to the scattering 

coordinate q.

V. Numerical Results

We demonstrate the performance of the proposed constrained maximum likelihood 

estimation method with numerical examples using Monte Carlo (MC) simulations. We 

chose to use adenylate kinase (ADK) from E. coli as an example. ADK is a crucial 

housekeeping enzyme that catalyzes the transfer of a phosphate from adenosine triphosphate 

(ATP) to adenosine monophosphate (AMP), generating two adenosine diphosphate (ADP) 

molecules. ADK is a highly characterized model protein and in this work we use 45 

conformations generated either through crystallography or homology modeling [28]. These 

conformations reside along the catalytic cycle and represent the transition of states between 

open and closed conformations. In the calculations presented in this article, we calculated 

SAXS intensities from these atomic coordinate sets using the default parameters of 

CRYSOL including electron density of the solvent, contrast of the hydration shell, average 

atomic radius, and the excluded volume.
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We evaluate the intensities using [qmin, qmax] = [2.34 × 10−4,0.6]Å−1 with an interval of q = 

2.34 × 10−4 Å−1. CRYSOL implements the hydration shell by adding a layer of uniform 

(excess) electron density around the surface of the protein. In reality the hydration shell is 

nonuniform, with successive layers of positive and negative deviations from the bulk density 

[29]. In the context of our simulations here, we use CRYSOL both to generate data which 

we use as a target for our estimation procedures, and to generate the scattering patterns that 

form the basis set for our estimates, providing a logically complete and self-consistent test of 

the approach. Application of this approach to actual SAXS/WAXS data will require more 

accurate approaches to calculation of the scattering from an atomic coordinate set [30] as 

will be demonstrated in a forthcoming publication. We return to this question below in 

Section VI. For ADK, we observe that the variance of the multiplicative noise w(s, q) is 

 which is calculated from Figure 2, and for the additive noise n(s, q) we calculate 

the variance  using (8).

We design two sets of experiments to test our method. In the first set, we demonstrate the 

performance of the method when the model uses exact basis intensities for all 45 

conformations in the measured mixture as reported in Section V-A and Figure 3. The second 

set is designed to show how a reduced set of intensity bases can be used to obtain a sparse 

relative abundance estimate using the method described in Section IV-A. Additionally, this 

second set includes a performance comparison with a competing method OLIGOMER. The 

results of the set of experiments with reduced number of basis vectors are reported in 

Section V-B and Figures 4-13j.

A. Experiments with Full Set of Basis Vectors

In the first numerical experiment, Nc = 45 is the number of all possible conformations of 

ADK and we solve (12) repeatedly in Monte Carlo simulations. Note that αT is a 45 

dimensional vector in this scenario. We plot the square root of mean squared error (RMSE) 

in mixture coefficient estimation and CRB on the error of estimating αT as a function of the 

total number of measurements, S in Figure 3. For illustration purposes, the RMSE and CRB 

values are averaged across different elements of αT. We observe that under the assumption 

of the knowledge of all the possible conformations of a protein, the experimental RMSE is 

below the CRB curve, which means that the solution to the constrained MLE results in a 

biased mixture coefficient estimation and thus that the CRB is not the correct lower bound 

for this estimator. In fact the constraints we set on αT introduce bias into the MLE results. 

Because the estimator is biased, it is possible for RMSE to be smaller than the CRB for 

unbiased estimators, as is the case here.1 Despite this discrepancy, we utilize the CRB in 

Algorithm 1 to choose the sparse basis set to represent the clusters as described in Section 

IV-A because it leads to a tractable criterion that also achieves our goal of enhanced 

identifiability. In particular we observed with 45 parameters to be estimated (the number of 

elements in αT), the Fisher information matrix starts to suffer from ill-conditioning, which 

then results in an increase in the CRB on the variance of the estimation error for the 

elements of αT. An ill-conditioned Fisher information matrix means an identifiability issue 

1We note that there is a version of the CRB for biased estimators; however it is not computationally tractable because it requires 
advance knowledge of the bias and its derivative.
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in the relative abundance estimation. In fact the gap between the RMSE and CRB in Figure 

3 results from both the bias in estimation and the ill-conditioning of the Fisher information 

matrix. Motivated by this observation, in the next set of experiments we choose an 

identifiable set of basis vectors that reduce the estimation error.

B. Experiments with Reduced Set of Basis Vectors

As described, to obtain a reduced set of basis vectors (intensity patterns), we start with k-

means clustering with model order selection applied to all Nc = 45 different intensity 

vectors. We illustrate the resulting score function from (14), as a function o number of 

clusters, in Figure 4, utilizing P = 3 fold cross validation. The curve is quite flat after M = 5 

clusters are created, confirming the argument reported above that there seem to be 5 

groupings of conformations that are distinguishable in the scattering data. We repeated the 

calculation of the score function with P = 6 and P = 10, and in both cases again the score 

function was constant after M = 5. We report both MLE and OLIGOMER results with M = 5 

clusters in Section V-B1, in Figures 5 to 6. We then compare estimation performance of 

OLIGOMER and MLE in Figures 7, 8, and 9. To study the effect of using only open and 

closed basis pattersns, we present M = 2 cluster results in Section V-B2 with Figures 10, 11a 

and 11b.

1) M = 5 Cluster Case—We set NMC = 25, sampled αт from a Dirichlet distribution, and 

reduced αт to ᾱT as explained in Section IV-A. We present the intensities for all 5 clusters 

in Figure 5a-e. Using the proposed basis vector selection scheme, we choose one vector 

from each cluster as the basis vector. The selected intensities for IB are illustrated in Figure 

5f. The noise parameters were set to {μ̃, σ̃} = {0, 0.01}. After selecting this IB, we ran 500 

Monte Carlo simulations to investigate the performance of the proposed mixture coefficient 

estimation method and find the estimates for the reduced dimension mixture coefficients ᾱE, 

with S = 200 measurements. Each mixture coefficient estimation took around 0.07 seconds 

in MATLAB on a conventional contemporary desktop machine. Pooling all Monte Carlo 

simulation results, we plot the combined distributions of the estimation errors for individual 

elements of mixture coefficient vector ᾱт in Figure 6a.

We repeated the Monte Carlo simulations for OLIGOMER utilizing the same basis vectors 

selected for MLE in SectionV-B1 and the same noise parameters. The estimation error 

histogram for OLIGOMER is presented in Figure 6b. More detailed comparatvie results are 

available in the Appendix, where we report the best and worst mixture coefficient and 

intensity estimation results across all Monte Carlo simulations for both the MLE and 

OLIGOMER methods, in Figures 12 and 13.

To test the comparative noise sensitivity of the MLE and OLIGOMER approaches, we ran 

Monte Carlo simulations over a range of additive noise variances in σn = [10−4, 101], using 

NMC = 12, S = 50 and MC = 500. Using all these results, we calculated the probability of 

true estimation of the mixture coefficients lying below absolute error 

plot it as a function of γ in Figure 7a for MLE and Figure 7b for OLIGOMER. For example, 

from Figure 7a we observe that the proposed MLE based model estimates the relative 

abundances in a heterogeneous mixture with a probability better than 92% within 0.08 
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absolute error accuracy. Comparison between Figure 7a and 7b shows that the MLE method 

has a higher probability of correctly estimating the mixture coefficients. In order to 

investigate the sensitivity of the proposed method to possible errors in the assumptions of 

the noise variance, we also compute the probability of the estimate of the mixture 

coefficients being within absolute error  as a function of σn for different γ 

values in Figure 8a and 8b for MLE and OLIGOMER, respectively. As seen in Figure 8, the 

MLE method is more robust to changes in noise variance compared to OLIGOMER. 

Specifically, MLE shows acceptable performance with noise standard deviations up to σn = 

1; while OLIGOMER's peformance deteriorates after σn = 3 × 10−2. To further study the 

robustness of MLE and OLIGOMER, we compare the square-root mean of sum of errors of 

all clusters in different noise standard deviations in Figure 9. This figure also confirms the 

robustness of the estimation performance of the proposed MLE based method.

2) M = 2 Cluster Case—Given our discussion above about alternative modeling of ADK 

as either closed or open, in this experiment, we present the mixture coefficient estimation 

results of the constrained MLE with M = 2 basis vectors which are selected from the “open” 

and “close” clusters again using the same basis vector selection scheme. Clustering results 

are shown in Figure 10a-b, using NMC = 25 runs. The selected intensities for IB are 

illustrated in Figure 10c. Using these basis vectors, we applied the constrained MLE for 

mixture coefficient estimation, using MC = 500 and S = 200 measurements. The combined 

estimation error histogram for M = 2 is presented in Figure 11a, and the probability of true 

estimate of the mixture coefficients being within absolute error γ, , is 

again plotted as a function of γ, in Figure 11b. Among all the Monte Carlo simulations, the 

best and worst mixture coefficient and intensity estimation results for the proposed MLE 

based method with M = 2 are also presented the Appendix in Figure 12 and 13. When we 

compare the results in Figure 7a with Figure 11b we observe that while we obtain an 

estimation accuracy of 92% within 0.08 absolute error for M = 5 case, for the same absolute 

error the estimation accuracy for M = 2 case is below 20%. This shows that for M = 2 

clusters the method cannot achieve sufficient estimation accuracy. As we explain in Section 

IV, in the clustering step, M = 5 basis vectors represent the distribution and characteristics of 

the intensities better than M = 2 basis vectors in terms of the score function (a function based 

on clustering error and model order selection) as described in (14), see also Figure 4. This 

difference is consistent with the changes in the performance of the mixture coefficient 

estimation.

VI. Discussion and Conclusion

In this paper, we proposed an MLE based method for estimating the relative abundances of 

proteins in a mixture model, utilizing the SAXS intensities of known conformations of 

proteins which were observed through crystallography. We first demonstrated that the MLE 

based estimation of mixture coefficients can be cast as a constrained convex optimization 

problem. With Monte Carlo simulations, using the known conformations of ADK as an 

example in two different numerical experiments, we analyzed the estimation performance of 

the constrained MLE approach. In the first experiment, assuming that the conformations of 

ADK that are identifiable by crystallography are all possible conformations that ADK can 
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have, and using the SAXS intensities of these conformations as the basis vectors, we solved 

the MLE for mixture coefficient estimation. The results showed that the constraints on 

mixture coefficients introduced bias in the estimation together with an ill-conditioned Fisher 

information matrix because of the identifiability issue in the relative abundance estimation 

with the full set of basis vectors. Motivated by these observations, we proposed to choose an 

identifiable subset of intensity vectors that also minimize the error in relative abundance 

estimation. Specifically, we computed a subset of intensities of known conformations of 

ADK based on k-means clustering and Cramér-Rao bound on mixture coefficient estimation 

error. With these subset of intensities we ran a second set of experiments in which we also 

compared the proposed MLE method with OLIGOMER. We showed that the proposed MLE 

method typically outperforms OLIGOMER in estimation of relative abundances.

Moreover, although both MIXTURE and OLIGOMER are publicly available for use by the 

community, and thus provide a great benefit to other investigators, neither is open source. 

This means that other investigators can neither see exactly how the calculations are carried 

out nor experiment with changing specific components or parameters of the method. Our 

belief is that it will be a significant service to the community to make available a truly open 

source collection of software modules to solve the SAXS mixture problem.

We noted earlier that CRYSOL has significant limitations in its ability to provide accurate 

scattering intensities. We considered using the more accurate program XS [30] in this work, 

but since the purpose of this paper is to establish the methodology itself in the context of 

known solutions, we chose to use CRYSOL as the basis of the examples since it is the most 

widely known of the methods of calculating scattering intensity from atomic coordinate sets, 

and has significant computational advantages. Our methodology, when used in a simulation 

scenario, is indifferent to the method used to compute the intensities as long as noise model 

is followed, and results from XS, for example, could certainly be applied. However we 

believe that the true test of the relevance of the method will come in follow-on testing with 

actual SAXS measurements. Because of the need for some level of ground truth about 

mixture coefficients, this requires a complex set of experiments with carefully controlled 

parameters, which we are currently in the process of designing and carrying out. However 

neither the effort in doing so, nor even the effort in creating a simulation scenario with XS, 

would be worthwhile without first testing the method in a simplified simulation scenario 

such as the one reported here using CRYSOL. One advantage of the MLE methodology is 

that it opens up the door to a direct expansion into a posterior density based estimation, in 

which we replace the constraints used here, and presumably the bias they introduce, with the 

application of a prior probability distribution on the mixture coefficients. However the 

development of a prior model that effectively captures enough of the relevant biophysics and 

basic thermodynamic principles to be both meaningful and useful is a highly non-trivial 

task, one in which we are currently actively engaged.
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Appendix

For M = 5 and M = 2 cases, among all the Monte Carlo simulations, the best and worst 

mixture coefficient estimation results for the proposed MLE based and OLIGOMER 

methods are presented in Figures 12 for σ = 0.01 and σ = 1 noise variance values. 

Additionally intensity fitting results according to coefficient estimation results for the 

proposed MLE based and OLIGOMER methods are presented in Figures 13. Comparison 

among the results of Figures 7, 8, 9, 12, and 13 shows that MLE typically outperforms 

OLIGOMER under high noise variance conditions on both estimation of mixture 

coefficients and intensity.

Similarly, for M = 2 case we present the best and worst mixture coefficient and intensity 

estimation results for the proposed MLE based method in Figure 12i, 12j, 13i, 13j. From 

these, we observe that two basis vectors are not sufficient to interpret an experimental 

intensity especially for the worst case.
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Fig. 1. 
SAXS experiments are, in principle, very simple: A monochromatic x-ray beam is incident 

on a solution containing proteins that may take on multiple conformations. X-ray scattering 

is collected on a two-dimensional detector and those intensities are circularly averaged and 

scaled taking into account the geometry of the experiment, in particular, the sample to 

detector distance and wavelength of the incident x-rays.
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Fig. 2. 
Typical behavior of the standard deviation of SAXS intensities plotted as a function of 

SAXS intensity. These were observed in scattering from a solution of adenylate kinase 

(experimental details can be found in [17]).

Onuk et al. Page 21

IEEE Trans Signal Process. Author manuscript; available in PMC 2016 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Averaged square-root of the mean square error (RMSE) and corresponding averaged 

Cramér-Rao bound (CRB) as a function of the number of different measurements (S values), 

from a sample with 45 components of αT.
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Fig. 4. 
Score function as a function of number of clusters using 3-fold cross validation. In order to 

demonstrate decay and level-off properties of the score function better, we clip the value of 

score function from M = 1.
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Fig. 5. 
(a)-(e) Intensity vectors for different conformations distributed into 5 clusters. (f) Selected 

intensity vectors for IB.
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Fig. 6. 
(a) Histogram of mixture coefficient estimations error corresponding to combined 

components of ᾱт utilizing MLE in MC = 500 simulations. (b) Histogram of mixture 

coefficient estimations error corresponding to combined components of ᾱт utilizing 

OLIGOMER in MC = 500 simulations.
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Fig. 7. 

Probability of true estimation of ᾱт within absolute error  as a function 

of absolute error (γ) for (a) MLE and (b) OLIGOMER for various noise standard deviation 

values.
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Fig. 8. 

Probability of true estimation of ᾱт within absolute error  as a function 

of assumed to true noise variance ration σn for (a) MLE and (b) OLIGOMER for different 

values of absolute error γ.
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Fig. 9. 
Square-root of the mean square error (RMSE) of MLE and OLIGOMER versus standard 

deviation of noise σ are done on same ᾱт values.
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Fig. 10. 
(a)-(b) Intensity vectors for different conformations distributed into 2 clusters. (c) Selected 

intensity vectors for IB.
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Fig. 11. 
(a) Histogram of mixture coefficient estimations error corresponding to combined 

components of ᾱт. utilizing MLE in MC = 500 simulations for two clusters. (b) Probability 

of true estimation of ᾱт within absolute error  as a function of absolute 

error (γ) for MLE with M = 2 for noise standard deviation value σ = 10−2.
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Fig. 12. 
The best (a), (e), (i) and the worst (b), (f), (j) relative abundance estimates of MLE method 

using {MC, μ̃} = {500, 0} (other parameters are indicated inside each subfigure) simulations 

with the selected sparse intensity set as the representation set for the measurement space. 

Among the same simulations, the best (c), (g) and worst (d), (h) relative abundance 

estimates of OLIGOMER method with the selected sparse intensity set as the representation 

set for the measurement space. The subfigures in the left column are the best estimates and 

on the right column are the worst estimates among the simulation. The subfigures in the first 

four rows belong to the estimates with five basis vectors (M = 5) and the figures in the last 

row represent the estimates with two basis vectors (M = 2). The subfigures in the first, 

second and fifth rows are for σ = 0.01 and third and forth rows are for σ = 1 noise variance 

value.
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Fig. 13. 
Intensities of the best (a), (e), (i) and the worst (b), (f), (j) relative abundance estimates of 

MLE method using {MC, μ̃} = {500, 0} (other parameters are indicated inside each 

subfigure) simulations with the selected sparse intensity set as the representation set for the 

measurement space. Among the same simulations, intensities of the best (c), (g) and worst 

(d), (h) relative abundance estimates of OLIGOMER method with the selected sparse 

intensity set as the representation set for the measurement space. The layout of the 

intensities in this figure is same as Figure 12. We show confidence bound of σ = 0.01 with 

the 3σ-confidence bound for the low noise variance case (σ = 0.01). We also show the σ-

confidence bound for σ = 1 case.
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