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Abstract

We introduce efficient Markov chain Monte Carlo methods for inference and model determination 

in multivariate and matrix-variate Gaussian graphical models. Our framework is based on the G-

Wishart prior for the precision matrix associated with graphs that can be decomposable or non-

decomposable. We extend our sampling algorithms to a novel class of conditionally autoregressive 

models for sparse estimation in multivariate lattice data, with a special emphasis on the analysis of 

spatial data. These models embed a great deal of flexibility in estimating both the correlation 

structure across outcomes and the spatial correlation structure, thereby allowing for adaptive 

smoothing and spatial autocorrelation parameters. Our methods are illustrated using a simulated 

example and a real-world application which concerns cancer mortality surveillance. 

Supplementary materials with computer code and the datasets needed to replicate our numerical 

results together with additional tables of results are available online.
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1. INTRODUCTION

Graphical models (Lauritzen 1996), which encode the conditional independence among 

variables using a graph, have become a popular tool for sparse estimation in both the 

statistics and machine learning literatures (Dobra et al. 2004; Meinshausen and Bühlmann 

2006; Yuan and Lin 2007; Banerjee, El Ghaoui, and D’Aspremont 2008; Drton and Perlman 

2008; Friedman, Hastie, and Tibshirani 2008; Ravikumar, Wainwright, and Lafferty 2010). 

Implementing model selection approaches in the context of graphical models typically 
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allows a dramatic reduction in the number of parameters under consideration, preventing 

overfitting and improving predictive capability. In particular, Bayesian approaches to 

inference in graphical models generate regularized estimators that incorporate model 

structure uncertainty.

The focus of this article is Bayesian inference in Gaussian graphical models (Dempster 

1972) using the G-Wishart prior (Roverato 2002; Atay-Kayis and Massam 2005; Letac and 

Massam 2007). This class of distributions is extremely attractive since it represents the 

conjugate family for the precision matrix whose elements associated with edges not in the 

underlying graph are constrained to be equal to zero. Many recent articles have described 

various stochastic search methods for Gaussian graphical models (GGMs) with the G-

Wishart prior based on marginal likelihoods which, in this case, are given by the ratio of the 

normalizing constants of the posterior and prior G-Wishart distributions—see the works of 

Atay-Kayis and Massam (2005), Jones et al. (2005), Carvalho and Scott (2009), Armstrong 

et al. (2009), Lenkoski and Dobra (2011) and the references therein. Wang and West (2009) 

proposed a MCMC algorithm for model determination and estimation in matrix-variate 

GGMs that also involves marginal likelihoods. Although the computation of marginal 

likelihoods for decomposable graphs is straightforward, similar computations for non-

decomposable graphs or matrix-variate GGMs raise significant numerical challenges. This 

leads to the idea of devising Bayesian model determination methods that avoid the 

computation of marginal likelihoods.

The contributions of this article are threefold. First, we develop a new Metropolis–Hastings 

method for sampling from the G-Wishart distribution associated with an arbitrary graph. We 

discuss our algorithm in the context of the related sampling methods of Wang and Carvalho 

(2010) and Mitsakakis, Massam, and Escobar (2011), and empirically show that it scales 

better to graphs with many vertices. Second, we propose novel reversible jump MCMC 

samplers (Green 1995) for model determination and estimation in multivariate and matrix-

variate GGMs. We contrast our approaches with the algorithms of Wong, Carter, and Kohn 

(2003) and Wang and West (2009) which focus on arbitrary GGMs and matrix-variate 

GGMs, respectively. Third, we devise a new flexible class of conditionally autoregressive 

models (CAR) (Besag 1974) for lattice data that rely on our novel sampling algorithms. The 

link between conditionally autoregressive models and GGMs was originally pointed out by 

Besag and Kooperberg (1995). However, since typical neighborhood graphs are non-

decomposable, fully exploiting this connection within a Bayesian framework requires that 

we are able to estimate Gaussian graphical models based on general graphs. Our main focus 

is on applications to multivariate lattice data, where our approach based on matrix-variate 

GGMs provides a natural approach to create sparse multivariate CAR models.

The organization of the article is as follows. Section 2 formally introduces GGMs and the G-

Wishart distribution, along with a description of our novel sampling algorithm for the G-

Wishart distribution. Section 3 describes our reversible jump MCMC algorithm for GGMs. 

This algorithm represents a generalization of the work of Giudici and Green (1999) and is 

applicable beyond decomposable GGMs. Section 4 discusses inference and model 

determination in matrix-variate GGMs. Unlike the related framework developed by Wang 

and West (2009) which involves exclusively decomposable graphs, our sampler operates on 
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the joint distribution of the row and column precision matrices, the row and column 

conditional independence graphs, and the auxiliary variable that needs to be introduced to 

solve the underlying non-identifiability problem associated with matrix-variate normal 

distributions. Section 5 reviews conditional autoregressive priors for lattice data and their 

connection to GGMs. This section discusses both univariate and multivariate models for 

continuous and discrete data based on generalized linear models. Section 6 presents two 

illustrations of our methodology: a simulation study and a cancer mortality mapping model. 

Finally, Section 7 concludes the article by discussing future directions for our work.

2. GAUSSIAN GRAPHICAL MODELS AND THE G–WISHART DISTRIBUTION

We let X = XVp, Vp = {1, 2, …, p}, be a random vector with a p-dimensional multivariate 

normal distribution Np(0, K−1). We consider a graph G = (Vp, E), where each vertex i ∈ V 

corresponds with a random variable Xi and E ⊂ Vp × Vp are undirected edges. Here 

“undirected” means that (i, j) ∈ E if and only if (j, i) ∈ E. We denote by p the set of all 

2p(p−1)/2 undirected graphs with p vertices. A Gaussian graphical model with conditional 

independence graph G is constructed by constraining to zero the off-diagonal elements of K 
that do not correspond with edges in G (Dempster 1972). If (i, j) ∉ E, Xi and Xj are 

conditionally independent given the remaining variables. The precision matrix K = 

(Kij)1≤i,j≤p is constrained to the cone PG of symmetric positive definite matrices with off-

diagonal entries Kij = 0 for all (i, j) ∉ E.

We consider the G-Wishart distribution WisG(δ, D) with density

(1)

with respect to the Lebesgue measure on PG (Roverato 2002; Atay-Kayis and Massam 2005; 

Letac and Massam 2007). Here 〈A, B〉 = tr(ATB) denotes the trace inner product. The 

normalizing constant IG(δ, D) is finite if δ > 2 and D positive definite (Diaconnis and 

Ylvisaker 1979). If G is the full graph (E = Vp × Vp), WisG(δ, D) is the Wishart distribution 

Wisp(δ, D) (Muirhead 2005).

Since our sampling methods rely on perturbing the Cholesky decompositions of the matrix 

K, we review some key results. We write K ∈ PG as K = QT (ΨTΨ)Q where Q = (Qij)1≤i≤j≤p 

and Ψ = (Ψij)1≤i≤j≤p are upper triangular, while D−1 = QTQ is the Cholesky decomposition 

of D−1. We see that K = ΦTΦ where Φ = ΨQ is the Cholesky decomposition of K. The zero 

constraints on the off-diagonal elements of K associated with G induce well-defined sets of 

free elements Φν(G) = {Φij : (i, j) ∈ ν(G)} and Ψν(G) = {Ψij : (i, j) ∈ ν(G)} of the matrices Φ 

and Ψ—see proposition 2, page 320, and lemma 2, page 326, of the article by Atay-Kayis 

and Massam (2005). Here ν(G) = ν=(G) ∪ ν<(G), ν=(G) = {(i, i) : i ∈ Vp} and ν<(G) = {(i, 

j) : i < j and (i, j) ∈ E}.

We denote by Mν(G) the set of incomplete triangular matrices whose elements are indexed 

by ν(G) and whose diagonal elements are strictly positive. Both Φν(G) and Ψν(G) must 

belong to Mν(G). The non-free elements of Ψ are determined through the completion 
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operation (Atay-Kayis and Massam 2005, lemma 2) as a function of the free elements Ψν(G). 

Each element Ψij with i < j and (i, j) ∉ E is a function of the other elements Ψi′j′ that precede 

it in lexicographical order. Roverato (2002) proved that the Jacobian of the transformation 

that maps K ∈ PG to Φν(G) ∈ Mν(G) is , where 

. Here |A| denotes the number of elements of the set A. Atay-

Kayis and Massam (2005) showed that the Jacobian of the transformation that maps Φν(G) to 

Ψν(G) is given by , where . 

We have det  and Φii = ΨiiQii. It follows that the density of Ψν(G) with respect 

to the Lebesgue measure on Mν(G) is

(2)

We note that  represents the number of neighbors of vertex i in the graph G.

2.1 Existing Methods for Sampling From the G-Wishart Distribution

The problem of sampling from the G-Wishart distribution has received considerable 

attention in the recent literature. Piccioni (2000) followed by Asci and Piccioni (2007) 

exploited the theory of regular exponential families with cuts and proposed the block Gibbs 

sampler algorithm. Their iterative method generates one sample from WisG(δ, D) by 

performing sequential adjustments with respect to submatrices associated with each clique 

of G. The adjustment with respect to a clique C involves the inversion of a (p − |C|) × (p − |

C|) matrix. If G has several cliques involving a small number of vertices but has a large 

number of vertices p, repeated inversions of high-dimensional matrices must be performed 

at each iteration. This makes the block Gibbs sampler algorithm impractical for being used 

in the context of large graphs.

Carvalho, Massam, and West (2007) gave a direct sampling method for WisG(δ, D) that 

works well for decomposable graphs. This algorithm was extended by Wang and Carvalho 

(2010) to non-decomposable graphs by introducing an accept– reject step as follows. Based 

on theorem 1, page 328, of the article of Atay-Kayis and Massam (2005), Wang and 

Carvalho (2010) and Mitsakakis, Massam, and Escobar (2011) wrote the density of Ψν(G) 

given in (2) as

(3)

where
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is a function of the non-free elements of Ψ which, in turn, are uniquely determined from the 

free elements in Ψν(G). Furthermore, h(Ψν(G)) is the product of mutually independent chi-

squared and standard normal distributions, that is,  for i ∈ Vp and Ψij ~ N(0, 1) for 

(i, j) ∈ ν<(G). The expectation Eh[f (Ψν(G))] is calculated with respect to h(·). Since f(Ψν(G)) 

≤ 1 for any Ψν(G) ∈ Mν(G), we have

(4)

where . From algorithm A.4 of the book by Robert and Casella 

(2004), an accept–reject method for sampling from WisG(δ, D) proceeds by sampling Ψν(G) 

~ h(·) and U ~ Uni(0, 1) until U ≤ f(Ψν(G)). The probability of acceptance of a random 

sample from h(·) as a random sample from WisG(δ, D) is

(5)

Wang and Carvalho (2010) further decomposed G in its maximal prime subgraphs (Tarjan 

1985), applied the accept–reject method for marginal or conditional distributions of WisG(δ, 

D) corresponding with each maximal prime subgraph, and generated a sample from WisG(δ, 

D) by putting together the resulting lower-dimensional sampled matrices.

Mitsakakis, Massam, and Escobar (2011) proposed a Metropolis–Hastings method for 

sampling from the G-Wishart WisG(δ, D) distribution. We denote by K[s] = QT(Ψ[s])TΨ[s]Q 
the current state of their Markov chain, where (Ψ[s])ν(G) ∈ Mν(G). Mitsakakis, Massam, and 

Escobar (2011) generated a candidate K′ = QT (Ψ′)TΨ′Q for the next state by sampling (Ψ

′)ν(G) ~ h(·) and determining the non-free elements of Ψ′ from the free sampled elements (Ψ

′)ν(G). The chain moves to K′ with probability

(6)

The inequality (4) implies that this independent chain is uniformly ergodic (Mengersen and 

Tweedie 1996) and its expected acceptance probability is greater than or equal to 

Eh[f(Ψν(G))]—see lemma 7.9 in the book by Robert and Casella (2004). Hence, the Markov 

chain of Mitsakakis, Massam, and Escobar (2011) is more efficient than the method of 

Wang and Carvalho (2010) when the latter algorithm is employed without graph 

decompositions or when the graph G has only one maximal prime subgraph. On the other 

hand, the method of Mitsakakis, Massam, and Escobar (2011) involves changing the values 

of all free elements Ψν(G) in a single step. As a result, if their Markov chain is currently in a 
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region of high probability, it could potentially have to generate many candidates from h(·) 

before moving to a new state with comparable or larger probability.

2.2 Our Algorithm for Sampling From the G-Wishart Distribution

We introduce a new Metropolis–Hastings algorithm for sampling from the G-Wishart 

WisG(δ, D) distribution. In contrast to the work of Mitsakakis, Massam, and Escobar (2011), 

our approach makes use of a proposal distribution that depends on the current state of the 

chain and leaves all but one of the free elements in Ψν(G) unchanged. The distance between 

the current and the proposed state is controlled through a Gaussian kernel with a precision 

parameter σm.

We denote by K[s] = QT (Ψ[s])TΨ[s]Q the current state of the chain with (Ψ[s])ν(G) ∈ Mν(G). 

The next state K[s+1] = QT(Ψ[s+1])TΨ[s+1]Q is obtained by sequentially perturbing the free 

elements (Ψ[s])ν(G). A diagonal element  is updated by sampling a value γ from a 

 distribution truncated below at zero. We define the upper triangular matrix Ψ′ 

such that  for (i, j) ∈ ν(G) \ {(i0, i0)} and . The non-free elements of Ψ′ are 

obtained through the completion operation (Atay-Kayis and Massam 2005, lemma 2) from 

(Ψ′)ν(G). The Markov chain moves to K′ = QT(Ψ′)TΨ′Q with probability min{Rm, 1}, where

(7)

Here φ(·) represents the CDF of the standard normal distribution and

(8)

A free off-diagonal element  is updated by sampling a value . We 

define the upper triangular matrix Ψ′ such that  for (i, j) ∈ ν(G) \ {(i0, j0)} and 

. The remaining elements of Ψ′ are determined by the completion operation from 

lemma 2 in the article of Atay-Kayis and Massam (2005) from (Ψ′)ν(G). The proposal 

distribution is symmetric , thus we accept the transition of the 

chain from K[s] to K′ = QT(Ψ′)TΨ′Q with probability , where  is given in 

Equation (7). Since (Ψ[s])ν(G) ∈ Mν(G), we have (Ψ′)ν(G) ∈ Mν(G) which implies K′ ∈ PG. 

We denote by K[s+1] the precision matrix obtained after completing all the updates 

associated with the free elements indexed by ν(G).

A key computational aspect is related to the dependence of Cholesky decompositions on a 

particular ordering of the variables involved. Empirically we noticed that the mixing times 
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of Markov chains that make use of our sampling approach can be improved by changing the 

ordering of the variables in Vp at each iteration. More specifically, a permutation υ is 

uniformly drawn from the set of all possible permutations ϒp of Vp. The row and columns of 

D are reordered according to υ and a new Cholesky decomposition of D−1 is determined. 

The set ν(G) and { : i ∈ V} are recalculated given the ordering of the vertices induced by 

υ. Although the random shuffling of the ordering of the indices worked well for the 

particular applications we have considered in this article, we do not have any theoretical 

justification that explains why it improves the computational efficiency of our sampling 

approaches.

Our later developments from Section 4 involve sampling K ~ WisG(δ, D) subject to the 

constraint K11 = 1. We have . We 

subsequently obtain the next state K[s+1] of the Markov chain by perturbing the free 

elements (Ψ[s])ν(G)\{(1,1)}. When defining the triangular matrix Ψ′ we set  which 

implies that the corresponding candidate matrix K′ has . Thus K[s+1] also obeys the 

constraint . The random orderings of the variables need to be drawn from the set 

 of permutations υ ∈ ϒp such that υ(1) = 1. This way the (1, 1) element of K always 

occupies the same position.

2.3 The Scalability of Sampling Methods From the G-Wishart Distribution

Practical applications of our novel framework for analyzing multivariate lattice data from 

Section 5 involve sampling from G-Wishart distributions associated with arbitrary graphs 

with tens or possibly hundreds of vertices—see Section 6.2 as well as relevant examples 

from the works of Elliott et al. (2001), Banerjee, Carlin, and Gelfand (2004), Rue and Held 

(2005), Lawson (2009), Gelfand et al. (2010). We perform a simulation study to empirically 

compare the scalability of our approach (DLR) for simulating from G-Wishart distributions 

with respect to the algorithms of Wang and Carvalho (2010) (WC) and Mitsakakis, Massam, 

and Escobar (2011) (MME).We consider the cycle graph Cp ∈ p with edges {(i, i + 1) : 1 ≤ 

i ≤ p − 1} ∪ {(p, 1)} and the matrix Ap ∈ PCp such that (Ap)ii = 1 (1 ≤ i ≤ p), (Ap)i,i−1 = 

(Ap)i−1,i = 0.5 (2 ≤ i ≤ p), and (Ap)1,p = (Ap)p,1 = 0.4. We chose Cp because it is the sparsest 

graph with p vertices and only one maximal prime subgraph, hence no graph 

decompositions can be performed in the context of the WC algorithm.

We employ the three sampling methods to sample from the G-Wishart WisCp (103, Dp) 

distribution, where  and Ip is the p-dimensional identity matrix. This is 

representative of a G-Wishart posterior distribution corresponding with 100 samples from a 

 and a G-Wishart prior WisCp (3, Ip). The acceptance probability for generating 

one sample with the DLR algorithm is defined as the average acceptance probabilities of the 

updates corresponding with diagonal and off-diagonal free elements in Ψν(G). We calculate 

Monte Carlo estimates and their standard errors of the acceptance probabilities for our 

method by running 100 independent chains of length 2500 for each combination (σm, p) ∈ 

{0.1, 0.5, 1, 2} × {4, 6, …, 20}. The same number of chains of the same length have been 
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run with the MME algorithm for p = 4, 6, …, 20. We calculate Monte Carlo estimates of the 

acceptance probabilities (5) associated with the WC algorithm, that is,

The corresponding standard errors were determined by calculating 100 such estimates for 

each p = 4, 6, …, 20. The results are summarized in Table 1. As we would expect, the 

acceptance rates for the DLR algorithm decrease as σm increases since the proposed jumps 

in PCp become larger. More importantly, for each value of σm, the acceptance rates for the 

DLR algorithm decrease very slowly as the number of vertices p grows. This shows that our 

Metropolis–Hastings method is likely to retain its efficiency for graphs that involve a large 

number of vertices. On the other hand, the acceptance rates for the WC algorithm are 

extremely small even for p = 6 vertices. This implies that a large number of samples from 

the instrumental distribution h(·) would need to be generated before one sample from WisCp 
(103, Dp) is obtained. The MME algorithm gives slightly better acceptance rates, but they 

are still small and are indicative of a simulation method that constantly attempts to make 

large jumps in areas of low probability of WisCp (103,Dp). Therefore the WC and MME 

methods might not scale well despite being perfectly valid in theory, hence they cannot be 

used in the context of the multivariate lattice data models from Section 5. The acceptance 

rates of the DLR algorithm are a function of the precision parameter σm which can be easily 

adjusted to yield jumps that are not too short but also not too long in the target cone of 

matrices. This flexibility is key for successfully employing our algorithm for graphs with 

many vertices.

It may initially appear that failure to handle graphs with a maximal prime subgraph with 20 

vertices is not a major shortcoming of an algorithm that relies on graph decompositions. 

However, the example we consider in Section 6.2 involves a fixed graphical model whose 

underlying graph has a maximal prime subgraph with 36 vertices (see the Supplementary 

Materials). Since this graph is one that is constructed from the neighborhood structure of the 

United States, we can see the importance of the ability to scale when applying the GGM 

framework to spatial statistical problems.

3. REVERSIBLE JUMP MCMC SAMPLERS FOR GGMS

The previous section was concerned with sampling from the G-Wishart distribution when 

the underlying conditional independence graph is fixed. In contrast, this section is concerned 

with performing Bayesian inference in GGMs, which involves determination of the graph G. 

Giudici and Green (1999) proposed a reversible jump Markov chain algorithm that is 

restricted to decomposable graphs and employs a hyper inverse Wishart prior (Dawid and 

Lauritzen 1993) for the covariance matrix Σ = K−1 = (Σij)1≤i,j≤p. The efficiency of their 

approach comes from representing decomposable graphs through their junction trees and 

from a specification of Σ as an incomplete matrix Γ = (Γij)1≤i,j≤p such that Σij = Γij if i = j or 

if (i, j) is an edge in the current graph (i.e., Kij is not constrained to 0); the remaining 

elements of Γ are left unspecified but can be uniquely determined using the iterative 
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proportional scaling algorithm (Dempster 1972; Speed and Kiiveri 1986). Brooks, Giudici, 

and Roberts (2003) presented techniques for calibrating the precision parameter of the 

normal kernel used by Giudici and Green (1999) to sequentially update the elements of Γ 

and the edges of the underlying decomposable graph which lead to improved mixing times 

of the resulting Markov chain. Related work (Scott and Carvalho 2008; Carvalho and Scott 

2009; Armstrong et al. 2009) has also focused on decomposable graphs. Graphs of this type 

have received attention mainly because their special structure is convenient from a 

computational standpoint. However, decomposability is a serious constraint as it drastically 

reduces p to a much smaller subset of graphs: the ratio between the number of 

decomposable graphs and the total number of graphs decreases from 0.95 for p = 4 to 0.12 

for p = 8 (Armstrong 2005).

Roverato (2002), Atay-Kayis and Massam (2005), Jones et al. (2005), Dellaportas, Giudici, 

and Roberts (2003), Moghaddam et al. (2009), Lenkoski and Dobra (2011) explored various 

methods for numerically calculating marginal likelihoods for non-decomposable graphs. 

Besides being computationally expensive, stochastic search algorithms that traverse p 

based on marginal likelihoods output a set of graphs that have the highest posterior 

probabilities from all the graphs that have been visited, but do not produce estimates of the 

precision matrix K unless a direct sampling algorithm from the posterior distribution of K 
given a graph is available. As we have seen in Section 2.3, current direct sampling 

algorithms (e.g., Wang and Carvalho 2010) might not scale well to graphs with many 

vertices. Since our key motivation comes from modeling multivariate lattice data (see 

Section 5), we want to develop a Bayesian method that samples from the joint posterior 

distribution of precision matrices K ∈ PG and graphs G ∈ p, thereby performing inference 

for both K and G. Wong, Carter, and Kohn (2003) developed such a reversible jump 

Metropolis–Hastings algorithm by decomposing K = TΔT, where 

and Δ = (Δij)1≤i,j≤p is a correlation matrix with Δii = 1 and Δij = Kij/(KiiKjj)1/2, for i < j. Their 

prior specification for K involves independent priors for Tii and a joint prior for the off-

diagonal elements of Δ whose normalizing constant is associated with all the graphs with the 

same number of edges.

We propose a new reversible jump Markov chain algorithm that is based on a G-Wishart 

prior for K. While we do not empirically explore the efficiency of our approach with respect 

to the Wong, Carter, and Kohn (2003) algorithm, we state that the key advantage of our 

framework lies in its generalization to matrix-variate data—see Section 4.We are unaware of 

any similar extension of the Wong, Carter, and Kohn (2003) approach. Another benefit of 

our method with respect to that of Wong, Carter, and Kohn (2003) is related to its flexibility 

with respect to prior specifications on p—see the discussion below.

We let = {x(1), …, x(n)} be the observed data of n independent samples from Np(0, K−1). 

Given a graph G ∈ p, we assume a G-Wishart prior WisG(δ0, D0) for the precision matrix 

K ∈ PG. We take δ0 = 3 > 2 and D0 = Ip. With this choice the prior for K is equivalent with 

one observed sample, while the observed variables are assumed to be a priori independent of 

each other. Since the G-Wishart prior for K is conjugate to the likelihood p( | K), the 
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posterior of K given G is WisG(n + δ0, U + D0) where . We also 

assume a prior Pr(G) on p. We develop a MCMC algorithm for sampling from the joint 

posterior distribution

that is well-defined if and only if K ∈ PG. We sequentially update the precision matrix given 

the current graph and the edges of the graph given the current precision matrix—see 

Appendix A. The addition or deletion of an edge involves a change in the dimensionality of 

the parameter space since the corresponding element of K becomes free or constrained to 

zero, hence we make use of the reversible jump MCMC methodology of Green (1995). The 

graph update step also requires the calculation of the normalizing constants of the G-Wishart 

priors corresponding with the current and the candidate graph. To this end, we make use of 

the Monte Carlo method of Atay-Kayis and Massam (2005) which converges very fast when 

computing IG(δ, D) [see Equation (1)] even for large graphs when δ is small and D is set to 

the identity matrix (Lenkoski and Dobra 2011).

Our framework accommodates any prior probabilities Pr(G) on the set of graphs p which is 

a significant advantage with respect to the covariance selection prior from Wong, Carter, 

and Kohn (2003). Indeed, the prior in the work of Wong, Carter, and Kohn (2003) induces 

fixed probabilities for each graph and does not allow the possibility of further modifying 

these probabilities according to prior beliefs. A usual choice is the uniform prior Pr(G) = 

2−m with , but this prior is biased toward middle-size graphs and gives small 

probabilities to sparse graphs and to graphs that are almost complete. Here the size of a 

graph G is defined as the number of edges in G and is denoted by size(G) ∈ {0, 1, …, m}. 

Dobra et al. (2004) and Jones et al. (2005) assumed that the probability of inclusion of any 

edge in G is constant and equal to ψ ∈ (0, 1), which leads to the prior

(9)

Sparser graphs can be favored with prior (9) by choosing a small value for ψ. Since ψ could 

be difficult to elicit in some applications, Carvalho and Scott (2009) integrated out ψ from 

(9) by assuming a conjugate beta distribution Beta(a, b), which leads to the prior

(10)

where B(·, ·) is the beta function. From the work of Scott and Berger (2006) it follows that 

prior (10) has an automatic multiplicity correction for testing the inclusion of spurious 

edges. Armstrong et al. (2009) suggested a hierarchical prior on p (the size-based prior) 

that gives equal probability to the size of a graph and equal probability to graphs of each 

size, that is,
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(11)

which is also obtained by setting a = b = 1 in (10). We note that the expected size of a graph 

under size-based prior is m/2, which is also the expected size of a graph under the uniform 

prior on p.

4. REVERSIBLE JUMP MCMC SAMPLER FOR MATRIX–VARIATE GGMS

We extend our framework to the case when the observed data  = {x(1), …, x(n)} are 

associated with a pR × pC random matrix X = (Xij) that follows a matrix-variate normal 

distribution

with probability distribution function (Gupta and Nagar 2000):

(12)

Here KR is a pR ×pR row precision matrix and KC is a pC × pC column precision matrix. 

Furthermore, we assume that KR ∈ PGR and KC ∈ PGC where GR = (VpR, ER) and GC = 

(VpC, EC) are two graphs with pR and pC vertices, respectively. We consider the rows X1*, 

…, XpR* and the columns X*1, …, X*pC of the random matrix X. From theorem 2.3.12 of 

the book by Gupta and Nagar (2000) we have  and 

. The graphs GR and GC define graphical models for the rows 

and columns of X (Wang and West 2009):

(13)

Any prior specification for KR and KC must take into account the fact that the two precision 

matrices are not uniquely identified from their Kronecker product which means that, for any 

z > 0, (z−1KR) ⊗ (zKC) = KR ⊗ KC represents the same precision matrix for vec(X)—see 

Equation (12). We follow the idea laid out in the article of Wang and West (2009) and 

impose the constraint (KC)11 = 1.We define a prior for KC through parameter expansion by 

assuming a G-Wishart prior WisGC (δC, DC) for the matrix zKC with z > 0, δC > 2, and DC ∈ 
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PGC. It is immediate to see that the Jacobian of the transformation from zKC to (z, KC) is 

J((zKC)→(z, KC)) = z|ν(GC)|−1. It follows that our joint prior for (z, KC) is given by

The elements of KR ∈ PGR are not subject to any additional constraints, hence we assume a 

G-Wishart prior WisGR (δR, DR) for KR. We take δC = δR = 3, DC = IpC, and DR = IpR. We 

complete our prior specification by choosing two priors Pr(GC) and Pr(GR) for the row and 

column graphs, where GR ∈ pR and GC ∈ pC—see our discussion from Section 3.

We perform Bayesian inference for matrix-variate GGMs by developing a MCMC algorithm 

for sampling from the joint posterior distribution of the row and column precision matrices, 

the row and column graphs, and the auxiliary variable z:

(14)

that is defined for KR ∈ PGR, KC ∈ PGC with (KC)11 = 1 and z > 0. Equation (14) is written 

as

(15)

The details of our sampling scheme are presented in Appendix B. Updating the row and 

column precision matrices involves sampling from their corresponding G-Wishart 

conditional distributions using the Metropolis–Hastings approach from Section 2.2, while 

updating z involves sampling from its gamma full conditional. The updates of the row and 

column graphs involve changes in the dimension of the parameter space and require a 

reversible jump step (Green 1995).

It is relevant to discuss how our MCMC sampler from Appendix B is different from the 

methodology proposed by Wang and West (2009). First of all, Wang and West (2009) 

allowed only decomposable row and column graphs which makes their framework 

inappropriate for modeling multivariate lattice data where the graph representing the 

neighborhood structure of the regions involved is typically not decomposable. Second of all, 

they proposed a Markov chain sampler for the marginal distribution associated with (GR, 

GC) of the joint posterior distribution (15):

(16)

which involves the marginal likelihood
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(17)

Wang and West (2009) employed the candidate’s formula (Besag 1989; Chib 1990) to 

approximate the marginal likelihood (17). They sampled from (16) by sequentially updating 

the row and column graphs. The update of the row graph proceeds by sampling a candidate 

 from an instrumental distribution  and accepting it with Metropolis–Hastings 

probability

(18)

The update of the column graph is done in a similar manner. Therefore resampling GR or GC 

requires the computation of a new marginal likelihood (17) which entails a considerable 

computational effort even for graphs with a small number of vertices. We avoid the 

computation of marginal likelihoods by sampling from the joint distribution (15) in which 

the row and column precision matrices have not been integrated out. Sampling from the joint 

marginal distribution (16) seems appealing because it involves the reduced space of row and 

column graphs. However, the numerical difficulties associated with repeated calculations of 

marginal likelihoods (17) outweigh the benefits of working in a smaller space. We 

empirically compare the efficiency of our inference approach for matrix-variate GGMs with 

the work of Wang and West (2009) in Section 6.1.

5. BAYESIAN HIERARCHICAL MODELS FOR MULTIVARIATE LATTICE 

DATA

Conditional autoregressive (CAR) models (Besag 1974; Mardia 1988) are routinely used in 

spatial statistics to model lattice data. In the case of a single observed outcome in each 

region, the data are associated with a vector X = (X1, …, XpR)T where Xi corresponds to 

region i. The zero-centered CAR model is implicitly defined by the set of full conditional 

distributions

(19)

Therefore, CAR models are just two-dimensional Gaussian Markov random fields. 

According to Brook’s (1964) theorem, this set of full-conditional distributions implies that 

the joint distribution for X satisfies
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where  and B is a pR × pR matrix such that B = (bij) and bii = 0. In 

order for Λ−1(I−B) to be a symmetric matrix we require that  for i ≠ j; therefore 

the matrix B and vector λ must be carefully chosen. A popular approach is to begin by 

constructing a symmetric proximity matrix W= (wij), and then set bij = wij/wi+ and 

 where wi+ = Σj wij and τ2 > 0. In that case, Λ−1(I − B) = τ−2(EW −W), where 

EW = diag{w1+, …, wpR+}. The proximity matrix W is often constructed by first specifying 

a neighborhood structure for the geographical areas under study; for example, when 

modeling state or county level data it is often assumed that two geographical units are 

neighbors if they share a common border. This neighborhood structure can be summarized 

in a graph GR ∈ pR whose vertices correspond to geographical areas, while its edges are 

associated with areas that are considered neighbors of each other. The proximity matrix W is 

subsequently specified as

(20)

where ∂GR(i) denotes the set of vertices that are linked by an edge in the graph GR with the 

vertex i.

Specifying the joint precision matrix for X using the proximity matrix derived from the 

neighborhood structure is very natural; essentially, it implies that observations collected on 

regions that are not neighbors are conditionally independent from each other given the rest. 

However, note that the specification in (20) implies that (EW − W)1pR = 0 and therefore the 

joint distribution on X is improper. Here 1l is the column vector of length l with all elements 

equal to 1. Proper CAR models (Cressie 1973; Sun et al. 2000; Gelfand and Vounatsou 

2003) can be obtained by including a spatial autocorrelation parameter ρ, so that

(21)

The joint distribution on X is then multivariate normal  where VW(τ−2, 

ρ) = τ−2(EW − ρW) ∈ PGR. This distribution is proper as long as ρ is between the reciprocals 

of the minimum and maximum eigenvalues for W. In particular, note that taking ρ = 0 leads 

to independent random effects.

In the spirit of Besag and Kooperberg (1995), an alternative but related approach to the 

construction of models for lattice data is to let X ~ NpR (0, K−1) and assign K a G-Wishart 

prior WisGR(δR, (δR − 2)DR), where . The mode of WisGR (δR, (δR − 2)DR) 

is the unique matrix K = (Kij) ∈ PGR that satisfies the relations

Dobra et al. Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2016 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(22)

The matrix  verifies the system (22), hence it is the mode of WisGR(δR, 

(δR − 2)DR). As such, the mode of the prior for KR induces the same prior specification for 

X as (21). It is easy to see that, conditional on KR ∈ PGR, we have

(23)

Hence, by modeling X using a Gaussian graphical model and restricting the precision matrix 

K to belong to the cone PGR, we are inducing a mixture of CAR priors on X where the priors 

on

and  [see Equation (19)] are induced by the G-Wishart prior WisGR (δR, (δR − 

2)DR).

The specification of CAR models through G-Wishart priors solves the impropriety problem 

of intrinsic CAR models and preserves the computational advantages derived from standard 

CAR specifications while providing greater flexibility. Indeed, the prior is trivially proper 

because the matrix K ∈ PGR is invertible by construction. The computational advantages are 

preserved because the full conditional distributions for each Xi can be easily computed for 

any matrix K without the need to perform matrix inversion, and they depend only on a small 

subset of neighbors {Xj:j ∈ ∂GR(i)}. Additional flexibility is provided because the weights bij 

for j ∈ ∂GR (i) and smoothing parameters  are being estimated from the data rather than 

being assumed fixed, allowing for adaptive spatial smoothing. Our approach provides what 

can be considered as a nonparametric alternative to the parametric estimates of the proximity 

matrix of Cressie and Chan (1989).

A similar approach can be used to construct proper multivariate conditional autoregressive 

(MCAR) models (Mardia 1988; Gelfand and Vounatsou 2003). In this case, we are 

interested in modeling a pR × pC matrix X = (Xij) where Xij denotes the value of the jth 

outcome in region i. We let X follow a matrix-variate normal distribution with row precision 

matrix KR capturing the spatial structure in the data (which, as in univariate CAR models, is 

restricted to the cone PGR defined by the neighborhood graph GR), and column precision 

matrix KC, which controls the multivariate dependencies across outcomes. It can be easily 

shown that the row vector Xi* of X depends only on the row vectors associated with those 

regions that are neighbors with i—see also Equation (13):
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Given the matrix-variate GGMs framework from Section 4, we can model the conditional 

independence relationships across outcomes through a column graph GC ∈ pC and require 

KC ∈ PGC As opposed to the neighborhood graph GR which is known and considered fixed, 

the graph GC is typically unknown and needs to be inferred from the data.

The matrix-variate GGM formulation for spatial models can also be used as part of more 

complex hierarchical models. Indeed, CAR and MCAR models are most often used as a 

prior for the random effects of a generalized linear model (GLM) to account for residual 

spatial structure not accounted for by covariates. When no covariates are available, the 

model can be interpreted as a spatial smoother where the spatial covariance matrix controls 

the level of spatial smoothing in the underlying (latent) surface. Similarly, MCAR models 

can be used to construct multivariate spatial GLMs. More specifically, consider the pR × pC 

matrix Y = (Yij) of discrete or continuous outcomes, and let Yij ~ hj(·|ηij) where hj is a 

probability mass or probability density function that belongs to the exponential family with 

location parameter ηij. The spatial GLM is then defined through the linear predictor

(24)

where g(·) is the link function, μj is an outcome-specific intercept, Xij is a zero-centered 

spatial random effect associated with location i, Zij is a matrix of observed covariates for 

outcome j at location i, and βj is the vector of fixed effects associated with outcome j. As an 

example, by choosing yij ~ Poi(ηij), g−1(·) = log(·) we obtain a multivariate spatial log-linear 

model for count data, which is often used for disease mapping in epidemiology (see Section 

6.2). We further assign a matrix-variate normal distribution for X with independent G-

Wishart priors for KR and zKC, where z > 0 is an auxiliary variable needed to impose the 

identifiability constraint (KC)11 = 1:

(25)

Prior elicitation for this class of spatial models is relatively straightforward. Indeed, 

elicitation of the matrix DR = (EW − ρW)−1 requires only the elicitation of the neighborhood 

matrix W which also defines the neighborhood graph GR, along with reasonable values for 

the spatial autocorrelation parameter ρ. In particular, in the application we discuss in Section 

6.2 we assume that, a priori, there is a strong degree of positive spatial association, and 

choose a prior for ρ that gives higher probabilities to values close to 1 (Gelfand and 

Vounatsou 2003):

Dobra et al. Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2016 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(26)

In the case of MCAR models, it is common to assume that the prior value for the conditional 

covariance between variables is zero, which leads to choosing DC from the G-Wishart prior 

for zKC to be a diagonal matrix. We note that the scale parameter τ2 is no longer identifiable 

in the context of the joint prior (25), hence it is then sensible to pick DC = IpC .

At this point, a word of caution about the interpretation of the models seems appropriate. 

The graphs GR = (VpR, ER) and GC = (VpC, EC) induce conditional independence 

relationships associated with the rows and columns of the random-effects matrix X—see 

Equation (13). Similar conditional independence relationships hold for the rows and 

columns of the matrix of location parameters η = (ηij), but these extend to the observed 

outcomes Y only if its entries are continuous (for a more thorough discussion, see the 

Supplementary Materials). Hence, the reader must be careful when interpreting the results of 

these models when binary or count data are involved; in these cases, any statement about 

conditional independence needs to be circumscribed to the location parameters η.

6. ILLUSTRATIONS

6.1 Simulation Study

We empirically compare the reversible jump MCMC sampler for matrix-variate GGMs 

proposed in Section 4 (RJ-DLR) with the methodology of Wang and West (2009) (WW). 

We consider the row graph ḠR = (VpR, ĒR) with pR = 5 vertices and with edges ĒR = {(1, i) : 

1 < i ≤ 5} ∪ {(2, 3), (3, 4), (4, 5), (2, 5)}. We take the column graph ḠC to be the cycle 

graph with pC = 10 vertices (see Section 2.3). We note that both the row and column graphs 

are non-decomposable, with ḠR being relatively dense and with ḠC being relatively sparse. 

We define the row and column precision matrices K̄
R ∈ PḠR and K̄

C ∈ PḠC to have 

diagonal elements equal to 1 and nonzero off-diagonal elements equal with 0.4. We generate 

100 datasets each comprising n = 100 observations sampled from the 5 × 10 matrix-variate 

normal distribution p(·|K̄
R, K̄

C)—see Equation (12).

For each dataset we attempted to recover the edges of ḠR and ḠC with the RJ-DLR and the 

WW algorithms. The two MCMC samplers were run for 10,000 iterations with a burn-in of 

1000 iterations. We implemented the RJ-DLR algorithm in R and C++ (code available as 

Supplemental Material). We used the code developed by Wang and West (2009) for their 

method. In the RJ-DLR algorithm we set σm,R = σm,C = σg,R = σg,C = 0.5, which yields 

average rejection rates on Metropolis–Hastings updates of about 0.3 for both K̄
C and K̄

R. 

We assumed independent uniform priors for the row and column graphs.

Tables 2 and 3 show the average posterior edge inclusion probabilities for ḠR and ḠC. Our 

RJ-DLR method recovers the structure of both graphs very well: the edges that belong to 

each graph receive posterior inclusion probabilities of 1, while the edges that are absent 

from each graph receive posterior inclusion probabilities below 0.1. The ability of the RJ-

DLR algorithm to recover the structures of a dense row graph and of a sparse column graph 
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is quite encouraging since the uniform priors for the row and column graphs favored middle-

size graphs.

The WW method shows diminished performance in recovering graphical structures. Edges 

(1, 4), (1, 5), and (2, 5), which are actually in ḠR, are given average inclusion probabilities 

of only 0.7. Edge (1, 3), which is in ḠR, receives a very low inclusion probability, while 

edge (2, 4), which is not in ḠR, is given a high inclusion probability. The WW algorithm 

includes edges that are in the column graph with relatively high probabilities (typically 

above 0.9). However, edges that do not belong to ḠC also appear to be included quite often, 

with an average inclusion probability between 0.3 and 0.4. These tables also show a large 

standard deviation of edge inclusion probabilities across the 100 datasets using the WW 

method. The decreased performance of the WW algorithm versus our own RJ-DLR 

algorithm is likely attributable to the fact that Wang and West (2009) accounted only for 

decomposable graphs in their framework, which may be poor at approximating the non-

decomposable graphs considered in this example.

6.2 Mapping Cancer Mortality in the United States

Accurate and timely counts of cancer mortality are very useful in the cancer surveillance 

community for purposes of efficient resource allocation and planning. Estimation of current 

and future cancer mortality broken down by geographic area (state) and tumor has been 

discussed in a number of recent articles, including those by Tiwari et al. (2004), Ghosh and 

Tiwari (2007), Ghosh et al. (2007), and Ghosh, Ghosh, and Tiwari (2008). This section 

considers a multivariate spatial model on state-level cancer mortality rates in the United 

States for 2000. These mortality data are based on death certificates that are filed by 

certifying physicians. They are collected and maintained by the National Center for Health 

Statistics (http://www.cdc.gov/nchs) as part of the National Vital Statistics System. The data 

are available from the Surveillance, Epidemiology, and End Results (SEER) program of the 

National Cancer Institute (http://seer.cancer.gov/seerstat).

The data we analyze consist of mortality counts for 11 types of tumors recorded in the 48 

continental states plus the District of Columbia. Since mortality counts below 25 are often 

deemed unreliable in the cancer surveillance community, we treated them as missing. Along 

with mortality counts, we obtained population counts in order to model death risk. Figure 1 

shows raw mortality rates for four of the most common types of tumors (colon, lung, breast, 

and prostate). Although the pattern is slightly different for each of these cancers, a number 

of striking similarities are present; for example, Colorado appears to be a state with low 

mortality for all of these common cancers, while West Virginia, Pennsylvania, and Florida 

present relatively high mortality rates.

We consider modeling these data using Poisson multivariate log-linear models with spatial 

random effects. More concretely, we let Yij be the number of deaths in state i = 1, …, pR = 

49 for tumor type j = 1, …, pC = 11. We set

(27)
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Here mi is the population of state i, μj is the intercept for tumor type j, and Xij is a zero-mean 

spatial random effect associated with location i and tumor j. We denote X̃
ij = μj + Xij. We 

further model X̃ = (X̃
ij) with a matrix-variate normal prior:

(28)

where μ = (μ1, …, μpC)T.

We consider four models in total. The first two models we consider (GGM-U and GGM-S) 

are based on the sparse models for multivariate aerial data described in Section 5, and differ 

only in terms of the prior assigned on the space of graphs [GGM-U uses a uniform prior, 

while GGM-S uses the size-based prior from Equation (11)]. Hence, the joint prior for the 

row and column precision matrices is given in (25) for both models. The column graph GC 

is unknown and allowed to vary in 11. The row graph GR is fixed and derived from the 

incidence matrix W corresponding with the neighborhood structure of the U.S. states. More 

explicitly, each state is associated with a vertex in GR. Two states are linked by an edge in 

GR if they share a common border. The Supplementary Materials describe the neighborhood 

structure of GR and provide its decomposition into maximal prime subgraphs. What is 

interesting about the graph GR, and relevant in light of the results of Section 2.3, is that its 

decomposition yields 13 maximal prime subgraphs. Most of these prime components are 

complete and only contain two or three vertices; however, one maximal prime subgraph has 

36 vertices (states), making GR non-decomposable with a sizable maximal prime subgraph. 

The degrees of freedom for the G-Wishart priors are set as δR = δC = 3, while the centering 

matrices are chosen as DC = IpC and DR = (EW − ρW)−1.

The third model, which we call model FULL, is obtained by keeping the column graph GC 

fixed to the full graph. This is equivalent to replacing the G-Wishart prior for (zKC) from 

Equation (25) with a Wishart prior WispC (δC, DC). Finally, model MCAR is obtained from 

model FULL by substituting the G-Wishart prior for KR from Equation (25) with KR = EW 

− ρW. The resulting prior distribution for the spatial random effects X̃ in model MCAR is 

precisely the MCAR(ρ, Σ) prior of Gelfand and Vounatsou (2003). In all cases, we complete 

the model specification by choosing the prior from Equation (26) for the spatial 

autocorrelation parameter ρ and a multivariate normal prior for the mean rates vector μ ~ 

NpC (μ0, Ω−1) where μ0 = μ01pC and Ω = ω−2IpC. We set μ0 to be the median log incidence 

rate across all cancers and regions, and ω to be twice the interquartile range in raw log 

incidence rates.

Posterior inferences for models GGM-U and GGM-S are obtained by extending the 

sampling algorithm from Appendix B; details are presented in the Supplemental Materials. 

MCMC samplers for models FULL and MCAR are similarly derived in a straightforward 

manner. Missing counts were sampled from their corresponding predictive distributions. We 

monitored the chains to ensure convergence for each model. We set σm,R = σg,R = 0.2 and 

σm,C = σg,C = 0.5, which achieved rejection rates of roughly 0.3 when updating elements of 

both KR or KC. Furthermore, the average acceptance rate of a reversible jump move for the 

column graph GC was around 0.22 for both GGM-U and GGM-S.

Dobra et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2016 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To assess the out-of-sample predictive performance of the four models, we performed a 10-

fold cross-validation exercise. The exercise was run by randomly dividing the non-missing 

counts (those above 25) in ten bins. For each bin j, we used the samples from the other nine 

bins as data and treated the samples from bin j as missing. In this comparison, the MCMC 

sampler for each of the four models was run ten times for 160,000 iterations and the first 

half of the run was discarded as burn-in. In the sequel, we denote the predicted counts for 

model ℳ ∈ {GGM-U, GGM-S, FULL, MCAR} by . We employ the goodness-of-

fit (mean squared error of the posterior predictive mean or MSE) and the variability/penalty 

(mean predictive error or VAR) terms of Gelfand and Ghosh (1998), that is,

to compare the predictive mean and variance of the four models. We also calculated the 

ranked probability score (RPS) (discussed by Czado, Gneiting, and Held 2009 in the context 

of count data), which measures the accuracy of the entire predictive distribution. The results, 

which are summarized in Table 4, reveal an interesting progression in the out-of-sample 

predictive performance of the four methods. Under either the MSE, VAR, or the RPS 

criteria, model MCAR performs considerably worse than model FULL, which in turn is 

outperformed by both models GGM-U and GGM-S. Also, the effect of the choice of prior 

on the column graph space appears negligible as GGM-U and GGM-S have roughly the 

same predictive performance. It is noteworthy to mention that the improvement in the RPS 

in the sequence of models MCAR, FULL, GGM-U, and GGM-S comes both because of a 

better prediction of the means as well as because the predictive distributions become sharper

—see the article by Gneiting and Raftery (2007) for a discussion of the trade-off between 

sharpness and calibration in the formation of predictive distributions. The dramatic 

improvement in predictive performance that results from moving from model MCAR to 

model FULL is the result of using the G-Wishart distribution to allow greater flexibility in 

the spatial interactions over the CAR specification suggested by Gelfand and Vounatsou 

(2003). On the other hand, the additional gain yielded by the use of models GGM-U or 

GGM-S versus model FULL would seem to come from the increased parsimony of the 

GGM models.

We also conducted an in-sample comparison of the four models. For each model, we ran ten 

Markov chains for 160,000 iterations and discarded the first half as burn-in based; Figure 2 

is indicative of the performance of the MCMC sampler we employed. These runs used the 

entire dataset (with the exception of counts below 25, which are still treated as missing), 

rather than the cross-validation datasets. The Supplemental Materials give detailed tables of 

fitted values and 95% credible intervals for all counts in the dataset obtained using each of 

the four models. Table 5 summarizes these results by presenting the empirical coverage rates 

and the average lengths of these in-sample 95% credible intervals for each of the four 

models. We see that the methods based on the G-Wishart priors for the spatial component 

(GGM-U, GGM-S, FULL) have very similar coverage probabilities that are close to the 

Dobra et al. Page 20

J Am Stat Assoc. Author manuscript; available in PMC 2016 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nominal 95%. These three models also tend to have relatively short credible intervals, with 

GGM-U and GGM-S presenting the smallest (and almost identical) values. In contrast, 

model MCAR returns credible intervals that are too wide, containing 99% of all observed 

values. As with the out-of-sample exercise, these results suggest that both the additional 

flexibility in modeling the spatial dependence and the sharper estimates of the dependence 

across cancer types provided by the matrix-variate GGMs are key to prevent overfitting.

Finally, we compare the estimates of the column graph GC under GGM-U and GGM-S to 

assess the sensitivity of the model to the prior on graph space. Figure 3 shows a heatmap of 

the posterior edge inclusion probabilities in the column graph GC, with the lower triangle 

corresponding to GGM-U and the upper triangle to GGM-S. Overall there is substantial 

coherence in terms of the effects of the uniform and size-based priors on 11 on the 

frequency on which edges are added or deleted from the column graph. From the left panel 

of Figure 2 we see that the average size of the column graph GC in GGM-U is 24.8 edges 

while the right panel shows that the average graph size in model GGM-S is 22.5 edges. Both 

of these numbers are quite close to 27.5—the average graph size under the uniform prior and 

the size-based prior on 11. This suggests that there is little sensitivity to the prior in terms 

of graph selection.

7. DISCUSSION

In this article we have developed and illustrated a surprisingly powerful computational 

approach for multivariate and matrix-variate GGMs that scales well to problems with a 

moderate number of variables. Convergence seems to be achieved quickly (usually within 

the first 5000 iterations) and acceptance rates are within reasonable ranges and can be easily 

controlled. In the context of the sparse multivariate models for aerial data discussed in 

Section 5 the running times, although longer than for conventional MCAR models, are still 

short enough to make routine implementation feasible (e.g., in the cancer surveillance 

example from Section 6.2, about 22 hours on a dual-core 2.8 GHz computer running Linux). 

However, computations can still be quite challenging when the number of units in the lattice 

is very high. We plan to explore more efficient implementations that exploit the sparse 

structure of the Cholesky decompositions of precision matrices induced by GGMs.

We believe that our application to the construction of spatial models for lattice data makes 

for particularly appealing illustrations. On one hand, the U.S. cancer mortality example we 

have considered suggests that the additional flexibility in the spatial correlation structure 

provided by our approach is necessary to accurately model some spatial datasets. Indeed, our 

approach allows for “nonstationary” CAR models, where the spatial autocorrelation and 

spatial smoothing parameters vary spatially. On the other hand, to the best of our 

knowledge, we are unaware of any approach in the literature to construct and estimate 

potentially sparse MCAR, particularly under a Bayesian approach. In addition to providing 

insights into the mechanisms underlying the data generation process, the model offers 

drastically improved predictive performance and sharper estimation of model parameters.
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SUPPLEMENTARY MATERIALS

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: DETAILS OF THE REVERSIBLE JUMP MCMC SAMPLER FOR 

GGMS

The MCMC algorithm from Section 3 sequentially updates the elements of the precision 

matrix and the edges of the underlying graph as follows. We denote the current state of the 

chain by (K[s], G[s]), K[s] ∈ PG[s]. Its next state (K[s+1], G[s+1]), K[s+1] ∈ PG[s+1], is 

generated by sequentially performing the following two steps. We make use of two strictly 

positive precision parameters σm and σg that remain fixed at some suitable small values. We 

assume that the ordering of the variables has been changed according to a permutation υ 

selected at random from the uniform distribution on ϒp. We denote by (U + D0)−1 = 

(Q*)TQ* the Cholesky decomposition of (U + D0)−1, where the rows and columns of this 

matrix have been permuted according to υ.
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We denote by  the graphs that can be obtained by adding an edge to a graph G ∈ p 

and by  the graphs that are obtained by deleting an edge from G. We call the one-

edge-way set of graphs  the neighborhood of G in p. These 

neighborhoods connect any two graphs in p through a sequence of graphs such that two 

consecutive graphs in this sequence are each others’ neighbors.

Step 1: Resample the graph

We sample a candidate graph G′ ∈ nbdp(G[s]) from the proposal

(A.1)

where Uni(A) represents the uniform distribution on the discrete set A. The distribution (A.1) 

gives an equal probability of proposing to delete an edge from the current graph and of 

proposing to add an edge to the current graph. We favor (A.1) over the more usual proposal 

distribution Uni(nbdp(G[s])) that is employed, for example, by Madigan and York (1995). If 

G[s] contains a very large or a very small number of edges, the probability of proposing a 

move that adds or, respectively, deletes an edge from G[s] is extremely small when sampling 

from Uni(nbdp(G[s])), which could lead to poor mixing in the resulting Markov chain.

We assume that the candidate G′ sampled from (A.1) is obtained by adding the edge (i0, j0), 

i0 < j0, to G[s]. Since  we have . We consider the 

decomposition of the current precision matrix K[s] = (Q*)T ((Ψ[s])T Ψ[s])Q* with (Ψ[s])ν(G[s]) 

∈ Mν(G[s])
. Since the vertex i0 has one additional neighbor in G′, we have 

, and ν(G′) = ν(G[s]) ∪ {(i0, j0)}. We 

define an upper triangular matrix Ψ′ such that  for (i, j) ∈ ν(G[s]). We sample 

 and set . The rest of the elements of Ψ′ are determined from (Ψ

′)ν(G′) through the completion operation. The value of the free element  was set by 

perturbing the non-free element . The other free elements of Ψ′ and Ψ[s] coincide.

We take K′ = (Q*)T ((Ψ′)T Ψ′)Q*. Since (Ψ′)ν(G′) ∈ Mν(G′), we have K′ ∈ PG′. The 

dimensionality of the parameter space increases by 1 as we move from (K[s], G[s]) to (K′, G

′). Since (Ψ′)ν(G[s]) = (Ψ[s])ν(G[s]), the Jacobian of the transformation from ((Ψ[s])ν(G[s]), γ) to 

(Ψ′)ν(G′) is equal to 1. Moreover, Ψ[s] and Ψ′ have the same diagonal elements, hence 

. The Markov chain moves to (K′, G′) with probability 

 where  is given by Green (1995)

(A.

2)

Dobra et al. Page 25

J Am Stat Assoc. Author manuscript; available in PMC 2016 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Otherwise the chain stays at (K[s], G[s]).

Next we assume that the candidate G′ is obtained by deleting the edge (i0, j0) from G[s]. We 

have , and ν(G′) = ν(G[s])\{(i0, j0)}. We 

define an upper triangular matrix Ψ′ such that  for (i, j) ∈ ν(G′). The rest of the 

elements of Ψ′ are determined through completion. The free element  becomes non-free 

in Ψ′, hence the parameter space decreases by 1 as we move from (Ψ[s])ν(G[s]) to (Ψ′)ν(G′) ∈ 

Mν(G′). As before, we take K′= (Q*)T ((Ψ′)T Ψ′)Q*. The acceptance probability of the 

transition from (K[s], G[s]) to (K′, G′) is  where

(A.3)

We denote by (K[s+1/2], G[s+1]), K[s+1/2] ∈ G[s+1], the state of the chain at the end of this 

step.

Step 2: Resample the precision matrix

Given the updated graph G[s+1], we update the precision matrix K[s+1/2] = (Q*)T × (Ψs+1/2)T 

Ψs+1/2Q* by sequentially perturbing the free elements (Ψ[s+1/2])ν(G[s+1]). For each such 

element, we perform one iteration of the Metropolis–Hastings algorithm from Section 2.2 

with δ = n + δ0, D = U + D0, and Q = Q*. The standard deviation of the normal proposals is 

σm. We denote by K[s+1] ∈ PG[s+1] the precision matrix obtained after all the updates have 

been performed.

APPENDIX B: DETAILS OF THE REVERSIBLE JUMP MCMC SAMPLER FOR 

MATRIX-VARIATE GGMS

Our sampling scheme from the joint posterior distribution (15) is composed of the following 

five steps that explain the transition of the Markov chain from its current state 

( , z[s]) to its next state ( , z[s+1]). We use four strictly 

positive precision parameters σm,R, σm,C, σg,R, and σg,C.

Step 1: Resample the row graph

We denote  and . We generate a random permutation υR 

∈ ϒpR of the row indices VpR and reorder the row and columns of the matrix 

according to υR. We determine the Cholesky decomposition . We 

proceed as described in Step 1 of Appendix A. Given the notations from Appendix A, we 
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take p = pR, , δ0 = δR, D0 = DR, and σg = σg,R. We denote the updated row 

precision matrix and graph by .

Step 2: Resample the row precision matrix

We denote  and . We determine the Cholesky 

decomposition  after permuting the row and columns of 

according to a random ordering in ϒpR.. The conditional distribution of  is G-

Wishart . We make the transition from  to 

 using Metropolis–Hastings updates described in Section 2.2. Given the 

notations we used in that section, we take p = pR, , and σm 

= σm,R.

Step 3: Resample the column graph

We denote  and . We sample a candidate column 

graph  from the proposal

(B.

1)

where 1A is equal to 1 if A is true and is 0 otherwise. The proposal (B.1) gives an equal 

probability that the candidate graph is obtained by adding or deleting an edge from the 

current graph.

We assume that  is obtained by adding the edge (i0, j0) to . We generate a random 

permutation  of the row indices VpC and reorder the row and columns of the 

matrix  according to υC. The permutation υC is such that υC(1) = 1, hence the 

(1, 1) element of  remains in the same position. We determine the Cholesky 

decomposition  of . We consider the 

decomposition of the column precision matrix  with 

. We define an upper triangular matrix  such that 

for . We sample  and set . The rest of the 

elements of  are determined from  through the completion operation (Atay-

Kayis and Massam 2005, lemma 2). We consider the candidate column precision matrix
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(B.2)

We know that  must satisfy . The last equality implies 

, hence . Therefore we have  and 

.

We make the transition from ( ) to ( ) with probability  where

(B.3)

Next we assume that  is obtained by deleting the edge (i0, j0) from . We define an 

upper triangular matrix  such that  for . The candidate 

is obtained from  as in Equation (B.2). We make the transition from ( ) to 

( ) with probability  where

(B.4)

We denote the updated column precision matrix and graph by ( ).

Step 4: Resample the column precision matrix

We denote  and . We determine the Cholesky 

decomposition  after permuting the row and columns of 

 according to a random ordering in . The conditional distribution of 

 with (KC)11 = 1 is G-Wishart . We make the 
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transition from  to  using the Metropolis–Hastings updates from 

Section 2.2. Given the notations we used in that section, we take p = pC, 

, and σm = σm,C. The constraint (KC)11 = 1 is 

accommodated as described at the end of Section 2.2.

Step 5: Resample the auxiliary variable

The conditional distribution of z > 0 is

(B.5)

Here Gamma(α, β) has density f(x|α, β) ∝ βαxα−1 exp(−βx). We sample z[s+1] from (B.5).
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Figure 1. 
Mortality rates (per 10,000 habitants) in the 48 continental states and the D.C. area 

corresponding to four common cancers during 2000.
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Figure 2. 
Convergence plot of the average size of the column graph GC by log iteration for model 

GGM-U (left panel) and model GGM-S (right panel).
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Figure 3. 
Edge inclusion probabilities for model GGM-U (lower triangle) and model GGM-S (upper 

triangle) in the U.S. cancer mortality example. The acronyms used are explained in the 

Supplementary Materials.
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Table 2

Average estimates (left panel) and their standard errors (right panel) of posterior edge inclusion probabilities 

for the row graph ḠR obtained using the RJ-DLR algorithm (below diagonal) and the WW algorithm (above 

diagonal). The boxes identify the edges that are in ḠR
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Table 3

Average estimates (upper panel) and their standard errors (lower panel) of posterior edge inclusion 

probabilities for the column graph ḠC obtained using the RJ-DLR algorithm (below diagonal) and the WW 

algorithm (above diagonal). The boxes identify the edges that are in ḠC
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Table 4

Ten-fold cross-validation predictive scores in the U.S. cancer mortality example. Model GGM-S is best with 

respect to fit (MSE) and ranked probability score (RPS), while model GGM-U is best with respect to 

variability (VAR) of the out-of-sample predicted counts

Model MSE VAR RPS

GGM-U 17,379.9 23,685.2 62.1

GGM-S 16,979.8 24,361.1 61.8

FULL 18,959.6 24,530.4 63.2

MCAR 19,211.1 47,568.7 76.7
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Table 5

Nominal coverage rates and mean length of the in-sample 95% credible intervals for the U.S. cancer mortality 

example obtained using the four Poisson multivariate log-linear models

Model Coverage rate Mean length

GGM-U 0.960 65.464

GGM-S 0.964 65.474

FULL 0.964 65.885

MCAR 0.990 69.239
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