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This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear
models at the first (within-subject) level – e.g., dynamic causal models – and linear models at subsequent
(between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple
models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These
applications of Bayesian model reduction allow one to consider parametric random effects and make inferences
about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical
background to these procedures and illustrate their application using a worked example. This example uses a
simulatedmismatch negativity study of schizophrenia.We illustrate the robustness of Bayesianmodel reduction
to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its
recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we
consider the application of these empirical Bayesian procedures to classification and prediction.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

This paper introduces some potentially useful procedures for the
analysis of data from group studies using nonlinear models; for exam-
ple, dynamic causal models of neurophysiological timeseries. Its key
contribution is to finesse the problems that attend the inversion or
fitting of hierarchical models in a nonlinear setting. This is achieved by
using Bayesian model reduction that allows one to compute posterior
densities over model parameters, under new prior densities, without
explicitly inverting the model again. For example, one can invert a non-
linear (dynamic causal)model for each subject in a group and then eval-
uate the posterior density over group effects, using the posterior
densities over parameters from the single-subject inversions. This
application can be regarded as a generalisation of the standard summa-
ry statistic approach; however, instead of just using point estimators as
summaries of first (within-subject) level effects, one can take the full
posterior density to the second (between-subject) level. Furthermore,
this empirical Bayes procedure can be applied to any model inversion
scheme that furnishes posterior densities, which can be summarised
with a multivariate Gaussian distribution.

Bayesian model reduction refers to the Bayesian inversion and
comparison of models that are reduced (or restricted) forms of a full
for Neuroimaging, Institute of
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(or parent) model. It can be applied whenever models can be specified
in terms of (reduced) prior densities. A common example would be
switching off a parameter in a full model by setting its prior mean and
variance to zero. The important aspect of Bayesian model reduction is
that models differ only in their priors, which means that the posterior
of a reduced model can be derived from the posterior of the full
model. In this paper, we will use Bayesian model reduction to evaluate
empirical priors to provide an empirical Bayesian model reduction
scheme.

Empirical Bayes refers to the Bayesian inversion or fitting of
hierarchical models. In hierarchical models, constraints on the posterior
density over model parameters at any given level are provided by the
level above. These constraints are called empirical priors because they
are informed by empirical data. In this paper, we will consider an
empirical Bayesian approach to any hierarchical model that can be
expressed in terms of an arbitrary (nonlinear) model at the first level
and a standard (parametric) empirical Bayesian (PEB) model at higher
levels (Efron and Morris, 1973; Kass and Steffey, 1989). In other
words, if the parameters of a nonlinear model of subject-specific data
are generated by adding random (Gaussian) effects to group means,
then the procedures of this paper can be applied. Crucially,
these procedures are very efficient because each hierarchical level of
the model requires only the posterior density over the parameters of
the level below. This means, one can invert deep hierarchical
models without having to revisit lower levels. This aspect of the
scheme rests on Bayesian model reduction, a procedure that we have
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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previously described in the context of post hoc model optimisation and
discovery (Friston and Penny, 2011; Friston et al., 2011; Rosa et al.,
2012). Here, it is put to work in the context of empirical Bayes and,
as we will see later, evaluating predictive posterior densities for
classification.

We envisage empirical Bayesian model reduction will be applied
primarily to group Dynamic Causal Modelling (DCM) studies, where
subjects are assigned to groups according to factors such as behaviour,
diagnosis or genetics (e.g. Bernal-Casas et al., 2012). However, the
ideas presented here are not limited to DCM. They can be applied to
any nonlinear model and, interestingly, any inversion scheme at the
first (within-subject) level. This may be particularly important for
harnessing the computational investment of schemes that use
stochastic methods to evaluate first level posteriors (Sengupta et al.,
2016). Bayesianmodel reduction resolves (or at least frames) a number
of issues in the inversion and interpretation of group DCM studies.
Consequently, we will take the opportunity to illustrate some of these
issues using a worked example. These include the problem of local
maxima when evaluating different models for Bayesian model
comparison—and the fundamental distinction between random
(between-subject) effects at the level of models and their parameters.
In contrast to our previous treatment of random model effects at the
between-subject level (Stephan et al., 2009), this paper considers
random parameter effects in the setting of parametric empirical Bayes.
We will also look at the fundamental difference between classical and
Bayesian inference about group effects. Finally, we will briefly consider
Bayesian classification of single subjects and touch on (leave-one-out)
cross validation.

This paper comprises four sections. The first reviews Bayesianmodel
reduction and introduces its application in a hierarchical or empirical
Bayesian setting. This section reviews the basic theory, which general-
ises conventional approaches to random effects modelling. The second
section applies the theory of the first to group studies, providing specific
expressions for the procedures used in subsequent sections. The third
section considers Bayesian model reduction using a worked example
based on a (simulated) DCM study of mismatch negativity. The focus
of this section is the utility of Bayesian model reduction in finessing
(e.g., local maxima) problems that are often encountered when
inverting nonlinear models. We will see that Bayesian model reduction
provides more robust estimates of posterior probabilities than fitting
models to the data separately, because it is less susceptible to violations
of (e.g., Laplace) assumptions. This application of Bayesian model
reduction provides Bayesian model averages that could be used for
classical inference with the standard summary statistic approach,
which we illustrate using canonical covariates analysis. However,
one can go further in terms of model comparison and classification
using empirical Bayesian model reduction. The last section revisits the
worked example to illustrate model comparison and averaging at the
second (between-subject) level. Our focus here is on inference about
group effects and classification using the posterior predictive density
afforded by empirical priors. The worked example was chosen to be
representative of real DCM studies—so that the procedures could be
illustrated in a pragmatic way. We will therefore refer to specific
(Matlab) routines that implement the procedures. These routines are
part of the academic SPM software available from http://www.fil.ion.
ucl.ac.uk/spm.

Methods and theory

Bayesian model reduction

Bayesian model reduction refers to the Bayesian inversion of
reduced models using only the posterior densities of a full model.
Bayesian model reduction provides an efficient way to invert large
numbers of (reduced) models, following the (usually computationally
expensive) inversion of a full model. Consider a generative model that
is specified in terms of its likelihood and priors. For example, models
with additive Gaussian noise have the following form:

lnp y; θjmð Þ ¼ lnp yjθ;mð Þ þ lnp θjmð Þ
p yjθ;mð Þ ¼ N Γ θð Þ;Σ θð Þð Þ

p θjmð Þ ¼ N η;Σð Þ
ð1Þ

Here, Γ(θ) is a possibly nonlinear mapping from the parameters
of a model to the predicted response y. Gaussian assumptions about
observation noise, with a parameterised covariance Σ(θ), define
the likelihood model that, when equipped with (Gaussian) priors,
specifies the generative model. The generative model provides a proba-
bilistic mapping from model parameters to observed data. Inference
corresponds to the inversion of this mapping; from data to parameters.
Usually, this inversion uses some form of approximate Bayesian
inference.

Approximate Bayesian inference can always be cast as maximising
the (negative) variational free energy with respect to the sufficient
statistics ~q of an approximate posterior qðθj~qÞ : see (Roweis and
Ghahramani, 1999; Friston, 2008) for a fuller discussion. In this paper,
a tilde (~) denotes the set of sufficient statistics of the prior ~p and
posterior ~q . Under the Laplace assumption (used throughout this
work), the sufficient statistics correspond to the mean and covariance
of each density. Using ~p ¼ ðη;ΣÞ for the sufficient statistics of the
prior, approximate Bayesian inference therefore corresponds to the
optimisation problem:

~q� ¼ argmaxq F ~p; ~qð Þ
F ~p; ~qð Þ ¼ Eq lnp yjθð Þ½ �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

accuracy

−DKL q θð j~qÞjjp θj~pð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
complexity

ð2Þ

Here, we have expressed the free energy in terms of accuracy (first
term) and complexity (second term), which is the Kullback–Leibler di-
vergence between the (approximate) posterior and prior. Usually, this
optimisation would proceed using a Fisher scoring scheme or related
gradient ascent: see (Friston et al., 2007) and the appendix for details.
After the negative free energy has been maximised the following
approximate equalities provide an estimate of the posterior density
over unknown model parameters and the log evidence or (marginal)
likelihood of the model itself:

q θj~q�� �
≈ p θjy; ~pð Þ

F ~p; ~q�
� �

≈ lnp yj~pð Þ ð3Þ

By expressing the free energy as a function of the sufficient statistics
of the prior and approximate posterior, it can be seen that the free ener-
gy depends on the prior, which in turn, specifies our beliefs about a
model.

Now, say we wanted to estimate the posterior under a new model
after eliminating some parameters to produce a reduced model. This is
commonplace in classical statistics and corresponds to evaluating the
treatment and residual sum of squares for a new contrast of parameters.
Exactly the same idea can be applied to Bayesian inference. This rests
upon the definition of a reduced model as a likelihood model with re-
duced priors. Consider Bayes rule replicated for reduced and full models
(mR, mF):

p θjy;mRð Þ ¼ p yjθ;mRð Þp θjmRð Þ
p yjmRð Þ

p θjy;mFð Þ ¼ p yjθ;mFð Þp θjmFð Þ
p yjmFð Þ

⇔ p θjy;mRð Þp yjmRð Þ ¼ p yjθ;mRð Þp θjmRð Þ
p θjy;mFð Þp yjmFð Þ¼ p yjθ;mFð Þp θjmFð Þ

ð4Þ
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Crucially, if the models differ only in terms of their priors, then the
likelihoods are identical and Eq. (4) can be simplified:

p yjθ;mRð Þ ¼ p yjθ;mFð Þ⇒
p θjy;mRð Þp yjmRð Þ
p θjy;mFð Þp yjmFð Þ ¼

p θjmRð Þ
p θjmFð Þ

ð5Þ

Here, we have expressed Bayes rule in terms of a posterior
odds ratio, so that the likelihoods cancel. From Eq. (5) we can derive
two quantities of interest: by re-arrangement we get the posterior
distribution over the parameters of the reducedmodel, and by integrat-
ing over the parameters, we get the evidence ratio of the reduced and
full models (where the left hand side of the reduced posterior integrates
to unity):

p θjy;mRð Þ ¼ p θjy;mFð Þ p θjmRð Þ
p θjmFð Þ

p yjmFð Þ
p yjmRð Þ⇒Z

p θjy;mFð Þ p θjmRð Þ
p θjmFð Þ

p yjmFð Þ
p yjmRð Þ dθ ¼ 1⇒

p yjmRð Þ
p yjmFð Þ ¼

Z
p θjy;mFð Þ p θjmRð Þ

p θjmFð Þdθ

ð6Þ

Substituting the approximate values for the model posterior qðθj~q�Þ
and model evidence Fð~p; ~q�Þ from Eq. (3) and replacing models
(mR, mF) with the sufficient statistics of their definitive priors ð~pR; ~pFÞ
we get:

q θj~q�R
� �

≈ q θj~q�F
� � p θj~pRð Þ

p θj~pFð Þ
p yj~pFð Þ
p yj~pRð Þ

F ~pR; ~q
�
R

� �
≈ ln

Z
q θj~q�F
� � p θj~pRð Þ

p θj~pFð Þdθþ F ~pF ; ~q
�
F

� �
¼ F ~pRj~pF ; ~q

�
F

� �
ð7Þ

These (approximate) equalities mean one can evaluate the posterior
and evidence of any reduced model, given the posteriors of the full
model. In other words, Fð~pR; ~q�RÞ ¼ Fð~pRj~pF ; ~q

�
FÞ allows us to skip the

optimization of ~qR and use the optimised posterior of the full model
to compute the evidence (and posterior) of the reduced model
directly. These computations can be performed quickly and efficiently,
using the equalities in the next section (see Eq. (8)). The meaning of
reduced can be seen clearly in the above expressions: a reduced
model is one in which the prior odds ratio is well defined over all
values of the parameters. In other words, we require pðθj~pFÞN0
when pðθj~pRÞN0 but not vice versa. As its name implies, Bayesian
model reduction can only be used to compare models when all models
of interest can be cast as reduced forms of a full model; in other
words, the full model must contain all the parameters of any model
that will be entertained. This means one cannot compare models
that have a completely different form (e.g., conductance and convolu-
tion based neural mass models for electrophysiology). However, in
practice, mostmodel comparisons tend to be framed in terms ofmodels
with and without key (sets of) parameters.

Bayesian model reduction with variational Laplace

Variational Laplace corresponds to approximate Bayesian inference
when assuming the approximate posterior qðθjmFÞ ¼ N ðμ;CÞ is
Gaussian. Under this Laplace assumption, the reduced forms of
the approximate posterior and free energy have simple forms (see
Friston and Penny, 2011):

p θj~pFð Þ ¼ N η F ;ΣF
� �

p θj~pRð Þ ¼ N ηR;ΣR
� �

q θj~pRð Þ ¼ N μR;CRð Þ
PR ¼ P F þΠR−Π F

μR ¼ CR P Fμ F þΠRηR−Π Fη F

� �

F ~pR; ~q
�
R

� � ¼ F ~pRj~pF ; ~q
�
F

� �
¼ 1

2
ln jΠRP FCRΣF j−1

2
μT
FP Fμ F þ ηTRΠRηR−ηTFΠ FηF−μT

RPRμR

� �
þF ~pF ; ~q

�
F

� �

ð8Þ

Here Π and Σ are the prior precision and covariance respectively,
while P and C are the corresponding posterior precision and covariance.
This equation is derived by substitutingGaussian forms for the probabil-
ity density functions into Eq. (7); more details can be found in Friston
and Penny (2011). Note that when a parameter is removed from the
model, by shrinking its prior variance to zero, the prior and posterior
moments become the same and the parameter no longer contributes
to the reduced free-energy. Effectively, Eq. (8) allows us to score any
reducedmodel or prior in terms of a reduced free energy, while directly
evaluating the posterior over its parameters.

Although we have presented Bayesian model reduction in a general
way, we will be applying it in several distinct contexts. The most obvi-
ous and simplest application is Bayesianmodel comparison or selection.
In this instance, the reducedmodels are specified by the user in terms of
(reduced) priors that specify a model or hypothesis space. The second
key application, which we consider next, is empirical Bayesian model
reduction. In this case, a model can be reduced using hierarchical or
empirical Bayesian constraints. Here, the full model has priors without
hierarchical (e.g., between subject) constraints, while the reduced
models have empirical priors. Notice that one can apply empirical
Bayesian model reduction to any model—including models that have
been previously reduced using Bayesian model reduction.

Empirical Bayesian model reduction

Model reduction can be especially useful in hierarchical models,
where the reduced prior is provided by an empirical prior. For example,
consider the empirical Bayes or hierarchical Bayesian model:

ln p y; θ 1ð Þ; θ 2ð Þjm
� �

¼ ln p yjθ 1ð Þ;m
� �

þ ln p θ 1ð Þjθ 2ð Þ;m
� �

þ ln p θ 2ð Þjm
� �

p yjθ 1ð Þ;m
� �

¼ N Γ 1ð Þ θ 1ð Þ
� �

;Σ θ 1ð Þ
� �� �

p θ 1ð Þjθ 2ð Þ;m
� �

¼ N Γ 2ð Þ θ 2ð Þ
� �

;Σ θ 2ð Þ
� �� �

p θ 2ð Þjm
� �

¼ N η;Σð Þ

ð9Þ

where Γ (1) is a possibly nonlinear mapping from first level parameters
to observations and Γ (2) is a possibly nonlinear mapping from second
to first level parameters (e.g., from group means to subject specific
parameters). One can now express the inversion of this model in
terms of free energies at the first and second levels. These free energies
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have exactly the same forms as in Eq. (2) (and can be decomposed in
terms of accuracy and complexity):

~q 1ð Þ
F ¼ argmaxq 1ð Þ F 1ð Þ ~pF ; ~q

1ð Þ� �
~q 1ð Þ
R ¼ argmaxq 1ð Þ F 2ð Þ ~p 2ð Þ

; ~q 1ð Þ
; ~q 2ð Þ� �

~q 2ð Þ ¼ argmaxq 2ð Þ F 2ð Þ ~p 2ð Þ
; ~q 1ð Þ

R ; ~q 2ð Þ� �

F 1ð Þ ~p 1ð Þ
; ~q 1ð Þ� �

¼ Eq 1ð Þ lnp yjθ 1ð Þ;m
� �h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
accuracy

− DKL q θ 1ð Þ
� ���~q 1ð Þ�������p θ 1ð Þj~p 1ð Þ� �h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1st level complexity

F 2ð Þ ~p 2ð Þ
; ~q 1ð Þ

; ~q 2ð Þ� �
¼ E~q 1ð Þ lnp yjθ 1ð Þ;m

� �h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

accuracy

− DKL q θ 1ð Þ
� ���~q 1ð Þ�q θ 2ð Þ

� ���~q 2ð Þ�������p θ 1ð Þjθ 2ð Þ
� �

p θ 2ð Þj~p 2ð Þ
� �h ii

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1st and 2nd evel complexity

¼ Eq 1ð Þ lnp yjθ 1ð Þ;m
� �h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
accuracy

− Eq 2ð Þ ½DKL q θ 1ð Þ
� ���~q 1ð Þ�������p θ 1ð Þj~pR

� �h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1st level complexity

−DKL q θ 2ð Þ
� ���~q 2ð Þ�jjp θ 2ð Þj~p 2ð Þ� �h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2nd level complexity

¼ Eq 2ð Þ F 1ð Þ ~pR; ~q
1ð Þ� �h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
accuracy and 1st level complexity

− DKL q θ 2ð Þ
� ���~q 2ð Þ�jjp θ 2ð Þj~p 2ð Þ� �h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2nd level complexity

~pR ¼ Γ θ 2ð Þ
� �

;Σ θ 2ð Þ
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
empirical prior

F 2ð Þ ~p 2ð Þ
; ~q 1ð Þ

R ; ~q 2ð Þ� �
¼ Eq 2ð Þ F 1ð Þ ~pRj~pF ; ~q

1ð Þ
F

� �h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

accuracy and 1st level complexity

− DKL q θ 2ð Þ
� ���~q 2ð Þ�jjp θ 2ð Þj~p 2ð Þ� �h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2nd level complexity

ð10Þ

This free energy optimisation problem has been written in a way that

clarifies the role of reduced free energy Fð1Þð~pRj~pF ; ~q
ð1Þ
F Þ. Here, the (full)

approximate posterior is evaluated in the usualway using relatively unin-
formative (full) priors. Following this, the approximate posterior over
second level parameters can be computed from a (second level) free en-
ergy that comprises the expected (reduced) free energy from the first
level and the complexity attributable to the posterior over second level
parameters. Crucially, the reduced free energy is a function of the approx-
imate posterior over second level parameters and the (known) approxi-
mate posterior over the first level parameters, under the full model.
Effectively, this means the expected (reduced) free energy is the free en-
ergy that we would get if we replaced the full priors with the empirical
priors afforded by the second level of the model. In short, we never
need to actually optimise the first level posterior, when optimising the
posterior at the second level.

An alternative perspective on this optimisation is that the reduced free
energy function contains all the information that is necessary to optimise
theparameters at the second level. This inversion scheme is fundamental-
ly different from the standard empirical Bayes because it proceeds one
level at a time. In otherwords, itwould be possible to continue optimising
the parameters at successively higher levels of deep hierarchical models,
without re-estimating the approximate posteriors of lower levels. We
will see examples of this later when we look at second level Bayesian
model reduction and classification.Wewill also see that empirical Bayes-
ian model reduction can be computationally very efficient, particularly
when thefirst level involves the inversion ofmultiple datasets or subjects.
In this setting, the first level contributes the sum of reduced free energy
over subjects, because the posterior distributions are conditionally inde-
pendent. This means one can accumulate evidence over subjects by
inverting subject-specific models and test hypotheses at the between-
subject level later, using the approximate posteriors.

Summary

In summary,with a straightforward application of Bayes rule (Eq. (6)),
one can express the posterior density of any (reduced)model in terms of
the posterior of its parent or full model. This affords an efficient way to
evaluate posterior densities under empirical priors; leading to the notion
of hierarchical or empirical Bayesianmodel reduction. This formof hierar-
chical model inversion and comparison is interesting because it only re-
quires the forward passing of the posterior density, from a lower level
to a higher level, to generalise the standard summary statistical approach.
In this generalisation, all the sufficient statistics of theposterior are passed
to higher levels (as opposed to just passing the maximum likelihood or a
posteriori parameter estimates). If we further assume the posterior at the
lower level can be summarised with a Gaussian density (the Laplace as-
sumption), then we have a very simple form for the reduced energy
(Eq. (8); implemented in spm_log_evidence.m).

Although the treatment of this sectionmay appear abstract, it general-
ises all parametric empirical Bayesian (PEB) approaches and classical ran-
dom (ormixed) effect analyses of covariance. This generalisation is at two
levels. First, by explicitly accommodating priors at each level of the hierar-
chical model we convert a classical random effects model into a PEB
model. Second, because we are using approximate Bayesian inference,
one can now accommodate nonlinear models, provided they are not too
brittle (i.e., weakly non-linear). In other words, provided nonlinearities
donot induce discontinuities in the free energy landscape. The implication
is that when the model at the first level is linear, the approximate (varia-
tional) Bayesian inference scheme above becomes exact and one gets the
same results that would be obtained using PEB, which itself generalises a
classical ANCOVA. A numerical demonstration of this equivalence can be
found in DEMO_BMR_PEB.m. Furthermore, the figures in this paper can
be reproducedwithDEMO_DCM_PEB.m, which canbe regarded as equiv-
alent demonstration for nonlinear models (and as a description of how to
call the routines). In what follows, we examine the particular form of em-
pirical Bayesian model reduction for group studies and then demonstrate
its application to some simulated data in subsequent sections.

Group studies with DCM

For DCM studieswithN subjects andM parameters per DCM,we have
a hierarchical model, where the responses of the i-th subject and the dis-
tribution of the parameters over subjects can be modelled as:

yi ¼ Γ 1ð Þ
i θ 1ð Þ
� �

þ ε 1ð Þ
i

θ 1ð Þ ¼ Γ 2ð Þ θ 2ð Þ
� �

þ ε 2ð Þ

θ 2ð Þ ¼ ηþ ε 3ð Þ

ð11Þ

In this hierarchical form, empirical priors encoding second (between-
subject) level effects place constraints on subject-specific parameters.
The implicit generativemodel is defined in terms of multivariate Gauss-
ian distributions (assuming the data for each subject are conditionally
independent):

lnp y; θ 1ð Þ; θ 2ð Þjm
� �

¼
X

i
lnp yijθ 1ð Þ

� �
þ lnp θ 1ð Þjθ 2ð Þ

� �
þ lnp θ 2ð Þjm

� �
p yijθ 1ð Þ;m
� �

¼ N Γ 1ð Þ
i θ 1ð Þ

� �
;Σ 1ð Þ

i θ 1ð Þ
� �� �

p θ 1ð Þjθ 2ð Þ;m
� �

¼ N Γ 2ð Þ θ 2ð Þ
� �

;Σ 2ð Þ θ 2ð Þ
� �� �

p θ 2ð Þjm
� �

¼ N η;Σð Þ

ð12Þ
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Generally, the second level would be a linear model where the
random effects are parameterised in terms of their precision.

Γ 2ð Þ θ 2ð Þ
� �

¼ X⊗Wð Þβ
Π 2ð Þ θ 2ð Þ

� �
¼ IN⊗ Q0 þ

X
j
e−γ j Q j

� � ð13Þ

Here, β ⊂ θ are group means or effects encoded by a design matrix
with between X ∈ ℝN × B and within-subject W ∈ ℝM × C parts. The
between-subject part encodes differences among subjects or covariates
such as age, while the within-subject part specifies mixtures of param-
eters that show random effects. When every parameter can express dif-
ferent group effects:W = IM. Intuitively, the Kronecker product X ⊗ W
models the fact that one or more parameters can show one or more
group effects.Wewill assume that the first column of the designmatrix
is a constant term,modelling groupmeans and subsequent columns en-
code group differences or covariates such as age. People familiar with
linear models will notice that the model in Eq. (13) is effectively a
(vectorised) multivariate linear model—something we will exploit
later for classification.

The second (between-subject) level precision is parameterised by
log precisions γ ⊂ θ of (positive definite) precision components Q j

that are added to a lower bound on precision Q0. It is these components
that specify whether the parameters are random or fixed effects. For-
mally, the difference between a random and fixed effect rests upon
the prior variance at the second level. Random effects have an informa-
tive prior that shrinks subject-specific estimates towards their (second
level) mean. Conversely, fixed effects have a relatively flat or uninfor-
mative prior Q0 such that they are less influenced by parameter esti-
mates from other subjects. Practically, the difference boils down to
which parameters have nonzero precisions encoded by Qj (in our soft-
ware, random effects are specified in terms of the fields of Matlab pa-
rameter structures). One could estimate the empirical prior precision
for every (random effects) parameter by specifying a large number of
precision components. Alternatively, one can assume that the random
effects are identically and independently distributed. In this paper, we
will assume the latter, with a single precision component for all random
effects.

We now wish to find the approximate posterior over second level
parameters that maximises free energy, where the free energy at the
first level has already been optimised for each subject under full priors.
More precisely, we need the sufficient statistics of the approximate

posterior qðθð2Þj~qð2ÞÞ, given the priors and approximate posteriors for

each subject at the first level: ð~pð1Þi ; ~qð1Þi Þ. From Eq. (10):

~q 2ð Þ ¼ μ 2ð Þ;C 2ð Þ
� �

¼ argmaxq 2ð Þ F 2ð Þ

F 2ð Þ ¼ Eq 2ð Þ
X

i
F 1ð Þ
i

~pi θ 2ð Þ
� ����~p 1ð Þ

i ; ~q 1ð Þ
i

� �h i
−DKL q θ 2ð Þ

� ���~q 2ð Þ�������p θ 2ð Þ
���~p 2ð Þ� �h i

¼
X

i
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i
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i
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þ 1

2
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2
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2
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���
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i θ 2ð Þ
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i θ 2ð Þ

� �� �
ð14Þ

Note again that we only have to optimise the second level parame-
ters, because the approximate posterior over the first level parameters
are the reduced posteriors. At the second level, the conditional precision
that maximises negative free energy is the solution to:

∂C 2ð Þ F 2ð Þ ¼
X

i
1
2
∂2μ 2ð Þ F 1ð Þ

i þ 1
2 P

2ð Þ ¼ 0⇒

P 2ð Þ ¼ −
X

i
∂2μ 2ð Þ F 1ð Þ

i ⇒

F 2ð Þ ¼
X

i
F 1ð Þ
i

~pi; ~q
1ð Þ
i

� �
−1

2
μ 2ð ÞTΠ Fμ 2ð Þ þ 1

2
ln
���Π FC 2ð Þ

���
ð15Þ
In otherwords, the conditional precision is the sumof the (negative)
curvature of the reduced free energy expected under the empirical
priors. The second level free energy has the same form as in Eq. (10)
but expressed in terms of reduced first level free energy summed over
subjects. The second level expectations can nowbe optimised using gra-
dient ascent as described in the Appendix. Note that the overall scheme
can be applied recursively; in otherwords, once the second level param-
eters have been optimised they can be treated as first level parameters
for efficient (recursive) inversion of deep hierarchical models.

In summary, we have an efficient scheme for the Bayesian inversion
of (deep) hierarchical models that accommodate nonlinear and dynam-
ical models at the first level. Note again that the summary statistics
passed from one level to the next include not just the point estimators
or expectations but the full (Gaussian) posterior density over parame-
ters at the lower level.

Bayesian classification

The classification of a new subject, in the context of hierarchical
models, corresponds to evaluating the probability a new subject belongs
to one group or another. Classification of this sort can be implemented
efficiently using the sufficient statistics ð~βT ; ~γT Þ of the empirical priors
from a (training) group as full priors for the new (test) subject. This
simply involves the Bayesian inversion of a hierarchical model of the
new (test) data, in which the empirical priors are parameterised in
terms of expected group effects and between-subject covariance:

Γ 2ð Þ θ 2ð Þ
� �

¼ β⊗Wð Þ~βT

Σ θ 2ð Þ
� �

¼ Q0 þ
X

j
e−γ⌢Tj Q j

ð16Þ

Comparison with Eq. (13) shows that we have effectively swapped
the roles of the explanatory variables in the design matrix and the
model parameters. In other words, we are effectively estimating the
class labels or covariates in the design matrix that best explain the re-
sponse variables of the test subject. Clearly, some of these explanatory
variables will be known; for example, the age of a subject. Similarly, if
the first group effect is a group mean, then we know β1 = 1. Known
values β ∈ ℝ1× B can therefore be fixed using appropriate priors (η, Σ),
leaving unknown explanatory variables to be estimated based upon
the test subject's posterior. This provides a Bayesian estimate of explan-
atory or diagnostic variables (e.g., class labels).

Summary

In summary, we have a fairly straightforward set of expressions that
enable inference under hierarchical models of (nonlinear) within-
subject effects and (linear) between-subject effects. These can be
applied in a number of different contexts. For example, we could simply
assume that between-subject differences are attributable to random
variations in their parameters and use a simple design matrix with
X = 1 to provide empirical shrinkage priors, which shrink first level
estimates towards the group mean in a Bayes-optimal fashion. We
will consider this application in the next section. However, we can
also considermore elaborate second level models that contain informa-
tion about subjects and the groups fromwhich theywere sampled. This
permits inference about group effects directly at the second or between-
subject level or one can use Bayesian classification to estimate group
membership using the empirical priors from a training group of
subjects. We will consider this application in the last section.

Empirical Bayesian model reduction—first level parameters

In what follows, we provide a worked example of how to apply
Bayesian model reduction. This considers the analysis of a group study
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with DCM. Dynamic causal models are nonlinear state space models
used to infer functional brain architectures and underlying effective
connectivity. The parameters of these models include synaptic time
constants and directed connection strengths. However, the details of
the DCM used below are not important; in principle, the following can
be applied to any DCM for any modality (e.g., functional MRI, EEG,
MEG or local field potentials), or more generally to any nonlinear
model. DCMs are generally nonlinear in two senses: first, the mappings
between parameters and hidden states generating data are themselves
nonlinear (for example, the sigmoid activation function in the DCM for
evoked electromagnetic responses used below). Second, dynamic caus-
al models require the integration of a dynamical system to generate a
timeseries. This integration or solution is itself a nonlinear operation,
introducing a further nonlinearity into the mapping from parameters
to observations that would exist even in the absence of nonlinear
dynamics.

Typically, when analysing groupDCMs studies, people invert a series
of models for each subject separately and then either harvest subject-
wise parameter estimates from a selected model (identified as optimal
at the group level) or use Bayesian model averaging to summarise
each subject in terms of expected model parameters (Trujillo-Barreto
et al., 2004; Penny et al., 2006;Woolrich et al., 2009). Note that the for-
mer is a special case of the latter, when the best model dominates the
Bayesian model average. Generally, the Bayesian model average is pre-
ferred because it automatically accommodates uncertainty about the
underlying model. The resulting subject-wise parameter estimates are
then used as summary statistics for classical inference at the between-
subject level (e.g., ANOVA or canonical variate analysis). In this section,
we will focus on the use of Bayesian model reduction to provide more
robust summary statistics for classical inference at the second level. In
this application, there is no (potentially biassing) information about
Models
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Fig. 1. This figure provides a schematic overview of how various Bayesian procedures can be ca
tions, while filled squares designatemodel structures that have been inverted or fitted to data t
responds to a particular model (with the full or parent model in the first column). Conversely,
estimates are shown in blue and Bayesian model averages in red. This figure illustrates three w
averaging (i.e., accommodating uncertainty aboutwhichmodel generated the data). These three
the SPM software); namely, A. by direct inversion B. by inverting the full model (first column)
using empirical Bayes. CVA denotes canonical covariate analysis, which represents the standa
the form of a design matrix X.
groupdifferences in the second level designmatrix,which consequently
just models the groupmean and any confounding variables, such as age
or medication status. In short, our objective is to find the most efficient
and robustwayof estimatingmodel parameters for subsequent classical
inference.

To help organise the various procedures we have at our disposal, we
will treat Bayesianmodel inversion, Bayesianmodel reduction, Bayesian
parameter averaging, Bayesianmodel averaging and empirical Bayesian
model reduction as operators on an array ofmodel structures. This array
is shown schematically in Fig. 1 as a matrix of unfilled squares that des-
ignate a set of models (in each row) of data from multiple subjects (in
each column). Bayesian model inversion corresponds to evaluating the
posterior density over model parameters (designated by a filled circle).
This inversion can use any scheme, provided it returns the posterior
expectations and covariance. In the SPM code, spm_dcm_fit.m auto-
matically detects the nature of the model and applies the appropriate
inversion scheme. Following inversion, one can then summarise the
posterior density, either by averaging overmodels (in each row) or sub-
jects (in each column). Bayesian model averaging (spm_dcm_bma.m)
entails sampling from a mixture of posterior densities associated with
eachmodel that are, effectively, weighted according to themodel likeli-
hood. This provides a (non Gaussian) posterior density for each subject
averaged over models. Conversely, Bayesian parameter averaging
(spm_dcm_bpa.m) computes a posterior by effectively accumulating
evidence over different subjects for the same model. This provides a
(Gaussian) posterior density for each model averaged over subjects. In
the context of group studies, Bayesian model averaging is generally
used to provide subject-specific summary statistics. Bayesian
model comparison (spm_dcm_bmc.m) assesses the evidence for each
model, which is accumulated by simply summing the free energy over
subjects (in each column). Alternatively, one might assume models
m_bma

cm_bma

cm_bma

=           + e

CVA

Bayesian model averages

X

st as operators on an array of models. The unfilled squares correspond to model specifica-
o evaluate posterior densities over model parameters. Each column of themodel array cor-
each row of the array corresponds to a particular subject or dataset. First level parameter
ays that one could summarise subject-specific parameter estimates using Bayesian model
routes rest on various procedures (denoted here by their correspondingMatlab routine in
and applying Bayesian model reduction or, finally, C. applying empirical shrinkage priors
rd way of making classical inferences about group effects, given a second level model in



419K.J. Friston et al. / NeuroImage 128 (2016) 413–431
are sampled at random, giving a random effects Bayesian model
comparison (and subsequent Bayesian model averages). Wewill return
to random model effects later.

Bayesian model reduction (spm_dcm_bmr.m) can now be consid-
ered as an alternative to Bayesian model inversion, provided the
full model has been inverted. The schematic in Fig. 1 assumes that
the full model occupies the first column. Finally, empirical Bayes
(spm_dcm_peb.m) generates second level posteriors for each model
that generally correspond to the group means and differences. These
constitute empirical priors that shrink subject-wise estimates, thereby
eliminating a degree of between subject variability. The second level
posteriors are shown as green in Fig. 1, to distinguish them from the
first level posteriors in blue.

Equipped with these operators, we can now ask how they could be
best used to generate subject-specific summary statistics for subsequent
(classical) inference. The first (and conventional) procedure would be
to invert all the models for every subject and use Bayesian model aver-
aging to generate parameter estimates for each subject. These Bayesian
model averages have the advantage that they accommodate any uncer-
tainty about themodel. Alternatively, we could just invert the fullmodel
and use Bayesian model reduction, followed by Bayesianmodel averag-
ing to produce summary statistics. Finally, we could apply empirical
shrinkage priors by using empirical Bayes for each reduced model,
under the assumption that each subject's parameters are random varia-
tions about the groupmean. These three alternatives are shown in Fig. 1.
What are the relative merits of these alternative procedures?

At first glance, it might seem that Bayesian model reduction should
provide less robust estimates because it rests on the Laplace approxima-
tion, whichmay not hold for nonlinear models. In fact, based on the re-
sults presented here—and analyses of other data with different imaging
modalities and data features, the opposite seems to be true: Bayesian
model reduction appears to provide better estimators than the inver-
sion of reduced models. This may be because Bayesianmodel reduction
is less subject to the local maxima problem. In other words, inversion of
the full model provides a higher dimensional parameter space that fur-
nishes ‘escape routes’ from local maxima encountered during inversion
in a lowdimensional parameter space. Thiswould clearly dependon the
parameter space under evaluation, and to formally evaluate this conjec-
ture one would need to use an approach that eschews the Laplace
Fig. 2. Thisfigure describes the generativemodel used to simulated data for subsequentmodel i
128 sensors or channels). These sources have intrinsic dynamics, modelled with eight ordinary
enous (subcortical) input and coupled to each other through (effective) connections. Because th
nections as forward or backward. The strengths of these connections correspond to the key m
(based on analysis of grandmean data from normal subjects) are shown alongside their connec
are equippedwith parameters encoding condition-specific effects. The values of the average con
condition-specific differences (within subjects) are labelled in green. Again, these are log scale p
increase in coupling. Right panel: The solid lines denote the condition-specific effectswhich diffe
average condition-specific effect) are restricted to intrinsic connections at the level of A1 and S
assumption, such as sampling (Sengupta et al., 2016). However, irre-
spective of the exact mechanism, Bayesian model reduction can be
regarded as providing estimates of the posterior (and free energy)
that would have been obtained if the Laplace approximation was true
(for example, under linear models—see DEMO_BMR_PEB.m for a nu-
merical illustration). The implicit robustness to violations of the Laplace
assumption suggests that the reduced parameter estimates should be
closer to the true values than the estimates following inversion of re-
duced models. To test this conjecture we simulated data using a fairly
typical nonlinear (dynamic causal) model and compared the results of
Bayesian model reduction to the inversion of reduced models, using
the (true) parameters generating data as a reference.

The simulated dataset

We chose a fairly complicated simulation setup to reproduce the
sorts of data and questions typically encountered in DCMstudies of clin-
ical cohorts. We simulated two groups of eight subjects that can be
regarded as normal and schizophrenic groups. We based the simula-
tions on a previously reported EEG study of the mismatch negativity
(Garrido et al., 2007)—a paradigm that has been modelled extensively
using DCM in both normal subjects and schizophrenia (Garrido et al.,
2009a,b; Fogelson et al., 2014). In brief, subjects are presented with
streams of auditory tones, whose frequency is changed sporadically
and unexpectedly. These correspond to standard and oddball stimuli,
which evoke responses that can be recorded electromagnetically (here
with EEG) as event related potentials. Previous studies have established
a minimal network of five cortical sources that are sufficient to explain
the form of these evoked responses, where differences between stan-
dard and oddball stimuli can be accounted for by differences in connec-
tivity both within (intrinsic) and between (extrinsic) sources (Garrido
et al., 2009a). See Fig. 2.

We generated data for each of the 16 subjects using the locations of
five sources (right and left auditory sources, right and left superior
temporal sources and a right prefrontal source) and the (connectivity)
parameters estimated from a previously reported DCM study of the
grand mean (Garrido et al., 2007). The grand mean estimates were
used as group mean values, to which random Gaussian variates were
added to produce subject-specific parameters. These random effects
nversion and reduction. The circles represent electromagnetic sources of data (recorded by
differential equations per source. The dynamics are perturbed with a parameterised exog-
e sources are organised hierarchically, one can refer to (between-source or extrinsic) con-
odel parameters with random effects. Left panel: The group average connection strengths
tion: red connections do not changewith experimental condition,while green connections
nectivity over conditions are shown as log scale parameters. Middle panel: The strength of
arameters, where a value of 0.1 corresponds roughly to a scaling of exp(0.1)= 1.1 or 10%
r between the twogroups of eight subjects. These differences (plus orminus 20% about the
T. A1—primary auditory source; ST—superior temporal source; PF—prefrontal source.
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were sampled from the prior distribution over model parameters, de-
scribed in Garrido et al. (2009a). More precisely, we fixed the
between-subject parametric variability to be a sixteenth of the usual
prior variances used in this sort of DCM. The usual prior variances
now play the role of full priors on the second level parameters (the
equivalent prior variance for second level precisions was set to unity
and the prior expectations for both parameters and precisions was set
to zero). In other words, we assumed that between-subject variability
was smaller than our prior uncertainty about each parameter. This
model has 158 neuronal parameters and 40 spatial parameters for
each subject. Of these, wewere particularly interested in 16 parameters
encoding the strength of hierarchical connections between sources and
how they changed with experimental condition (see Fig. 2).

We generated event related potentials using the lead field employed
in the empirical study but with random (dipole orientation and ampli-
tude) parameters sampled from their prior distribution. This introduced
considerable variations in the evoked responses across subjects, in addi-
tion to between subject variability introduced by observation noise (see
below). Crucially, we introduced systematic group differences in a sub-
set of connections mediating differences in responses to standard and
oddball stimuli; i.e., themismatch negativity per se. In DCM, parameters
modelling condition specific effects are generally encoded in a ‘B’ field,
while an ‘A’ field encodes the (average) connectivity among the nodes
of a network.

We inverted the grand mean data under a single knownmodel that
allowed for hierarchical connectivity among the five sources but re-
stricted (within-subject) condition-specific effects generating the mis-
match negativity to intrinsic and forward connections from the
auditory and superior temporal sources. Crucially, between-subject dif-
ferences were further restricted to changes in intrinsic connectivity
(Kiebel et al., 2007; Fogelson et al., 2014). In otherwords,we are dealing
with both within and between-subject differences in (nested) subsets
of connections—subsets that we hoped to recover.

The values of condition-specific means and group-specific differ-
ences are provided in Fig. 2. The differenceswere chosen to be two stan-
dard deviations of the between-subject variance and modelled a
systematic reduction in condition-specific effects in the second (schizo-
phrenic) group. In other words, we simulated a failure or attenuation of
the mismatch negativity in the last eight subjects that was restricted to
intrinsic (within-source) connectivity changes in the auditory and tem-
poral sources (these intrinsic connections generally involve inhibition
of superficial pyramidal cells, which are the primary sources of observ-
able signals). The values (between 0.1 and 0.4) of the condition-specific
effects and group differences are moderate in quantitative terms. These
values correspond to log scale parameters, in other words, a value of 0.1
corresponds roughly to a 10% increase.

Fig. 3 shows an example of the data simulated over 128 channels.
The upper left panel shows the simulated sensor data with and without
simulated observation noise. Observation or sensor noise was created
by convolving Gaussian noise with a smoothing kernel of eight (4 ms)
timebins. The observation noisewas scaled to have a standard deviation
that was eight times smaller than the standard deviation of the simulat-
ed signal. This signal-to-noise ratio corresponds roughly to the levels
that one would expect after averaging 64 trials, when the amplitudes
of single-trial signal and noise are equivalent. The middle panels show
the between-subject variance in terms of the response of the first prin-
cipal component (of the prior covariance) over channel space; for the
two conditions (left panel) and the condition-specific differences or
mismatch negativity (right panel). These simulated responses illustrate
the marked heterogeneity over subjects, largely induced by using ran-
dom lead fields that map from neuronal responses to observed sensor
data. Having said this, the effects of attenuating condition-specific
changes in connectivity in the schizophrenic group are clearly visible
in terms of impoverished mismatch negativities (blue traces), in rela-
tion to the normal group (red traces). The parameters generating
these differences are shown in the lower panel and correspond to the
subject-specific values of parameters encoding mismatch effects. In
summary, we now have simulated data from two groups of subjects;
where group differences lie not in connectivity per se but in the changes
in (intrinsic) connectivity mediating condition-specific effects.

To illustrate the issues that attend Bayesian model comparison and
averaging, we considered (first level) models that allowed condition-
specific differences in forward connections, backward connections or
intrinsic connections. All combinations of these three model factors
create a space of eight models (Table 1). The condition-specific effects
common to all subjects were generated under model three (forward
and intrinsic changes), while the group differences corresponded to
model four (intrinsic changes only). These differences are fairly subtle
but not untypical and present a difficult inference problem, especially
in the context of nonlinear modelling.

Finally, because we will be dealing with empirical Bayesian models,
we also need to specify the second level model in terms of a design ma-
trix. This comprised a constant term (first column) modelling a mean
common to all subjects. The second column contained plus ones and
minus ones, modelling a group effect between the first eight (normal)
and second eight (schizophrenic) subjects. The final column of the de-
sign matrix contained random Gaussian variates and can be considered
as modelling a confounding effect of age. We now use these data (and
models) to illustrate the various approaches one can use to identify
and quantify group differences.

Bayesian model inversion, reduction or empirical Bayes?

We inverted the data from each subject using conventional
Bayesian model inversion (Fig. 1A; spm_dcm_fit.m), Bayesian model
reduction after inverting the full model without empirical reduction
(Fig. 1B; spm_dcm_bmr.m) and with empirical reduction (Fig. 1C;
spm_dcm_peb.m). The empirical Bayesian reduction assumed random
effects on all the neuronal parameters and treated the measurement
(lead field) parameters as fixed effects. In other words, we only applied
shrinkage priors to the parameters of the presumed neuronal architec-
ture generating data, allowing each subject to have different and uncon-
strained dipole orientations andmagnitudes. Note that the second level
model (design matrix) contained only a constant term to preclude any
bias in subsequent tests for group differences.

Our first question was whether the quality of the parameter esti-
mates, assessed with their correlation with true values, improved with
Bayesian model reduction and subsequent shrinkage using empirical
priors. If we had been dealing with linear models, the parameter esti-
mates (expectations) following model reduction would not change.
However, Fig. 4 shows marked differences between the estimates of
the parameters under the true model using Bayesian model inversion
and inversion of the reduced model. As intimated above, Bayesian
model reduction provides better estimates in the sense that the correla-
tion with the true values increases relative to the inversion of the true
model (model three). Furthermore, the correlation increases again
whenwe apply empirical Bayes. This provides a numerical confirmation
of the conjecture that Bayesianmodel reduction is more robust to viola-
tions of the Laplace assumption. However, the robustness of Bayesian
model reduction becomes even more important when considering
Bayesian model averages.

Bayesian model averaging

Bayesian model reduction also provides a reduced free energy that
enables Bayesian model comparison and averaging. Using the eight
models above, we computed the Bayesian model averages, weighting
each model by its marginal likelihood pooled over subjects, for the
three inversion schemes. In this case, the progressive improvement in
the correlationwith the true parameters is moremarked. A fixed effects
pooling of the free energy over subjects, under the standard inversion,
incorrectly selects model two (Fig. 5, top row), presumably due to a



Table 1
First-levelmodel space.Models vary inwhether their connections aremod-
ulated in the forward/bottom-up direction (forward), backward/top-down
direction (backward) or in the self-connections (intrinsic).

Model Condition-specific modulation

1 Intrinsic + forward + backward
2 Intrinsic + backward
3 Intrinsic + forward
4 Intrinsic
5 Forward + backward
6 Backward
7 Forward
8 None
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Fig. 3. Simulated data. The upper panel shows channel data from a single subject as a function of peristimulus time in (4ms) time bins. The solid lines (upper left) correspond to the sim-
ulated signal, while the dotted lines correspond to signal plus noise. For comparison, the observation noise is shown on the upper right. Themiddle panels show simulated responses over
subjects in terms of a mixture of sensor data based upon the first principal component of the prior predictive covariance. The solid lines (middle left) correspond to the first (standard)
condition, while the dotted lines report the second (oddball) condition for the first group of normal subjects (red lines) and second group of schizophrenics (blue lines). The middle
right panel shows the condition-specific effects in terms of the waveform differences between the two conditions; namely, the mismatch negativity. It can be seen that this is markedly
attenuated in the schizophrenic group. This attenuation ismediated by a reduction in the intrinsic connectivity enumerated in thepreviousfigure. To illustrate thedifferences, in relation to
between subject random effects, the lower panels plot the value of left and right intrinsic connection strengths for the first level of the auditory hierarchy (lower left) and the second level
(lower right). It can be seen that these differences represent a fairly substantial effect size that we hoped to identify using Bayesian model reduction and empirical Bayes.
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violation of the Laplace assumption (e.g., local maxima). Whereas, the
reduced free energy (Fig. 5, middle row) and the free energy under em-
pirical Bayesianmodel reduction (Fig. 5, bottom row) correctly identify
the thirdmodel. Model two has condition-specificmodulation of the in-
trinsic connections, as permodel three, but hasmodulation of top-down
rather than bottom-up connections from superior temporal to primary
auditory cortex. This means that the Bayesian model averages under
the conventional scheme incorrectly assign (near) zero values to
parameters that have nonzero values and vice versa. This is reflected
in the vertical and horizontal rows of dots in the upper left panel of
Fig. 5. Results of this sort suggest that it is important to use a robust
scheme when using Bayesian model averages as summary statistics
for subsequent inference about group effects.
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these estimates further improve when applying empirical shrinkage priors.
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The panels of Fig. 6 show the accumulated free energies over the
eight models under fixed effects assumptions. These are the sum of
the free energies for each model over subjects, shown in Fig. 6 for the
conventional inversion (left panels) andmodel reduction (right panels).
The corresponding model likelihoods are shown in the lower panels
(these correspond to posterior model probabilities under flat priors on
models and are effectively a softmax function of the free energies).
There are two key differences between the subject-specific free energies
under conventional inversion and Bayesian model reduction: first, the
differences under the conventional scheme are much greater than
under Bayesian model reduction (note that we have used Ockham's
windows of 512 and 128 when displaying the respective free
energies—see the figure legend). Second, not only are the reduced free
energies more stable over models, they have identified the correct
model. It is also evident that changes in the intrinsic connections (first
four models) are important explanations for the observed data. So
does this mean that Bayesian model reduction provides a consistent
profile of model evidence over subjects?

Contribution of individuals to group effects

Fig. 7 shows the same (reduced) free energies (upper left) as in the
previous figure (using anOckham's window of 128 to reveal greater de-
tail) and the associated posterior probabilities for each subject (upper
right). At first glance, these results are unsettling, because they show
no consistent pattern: only three of the 16 subjects have the greatest
evidence for the correct model. So what has gone wrong? In fact, noth-
ing has gone wrong—the data from some subjects are better explained
by a parsimonious model in which condition-specific effects cannot be
detected in some connections. This is entirely expected given subject-
specific differences in the way that data were generated; here, differ-
ences in the lead field mapping neuronal activity to sensory data.
Heuristically, we are looking at the same responses but from different
perspectives—the data from some subjects inform parameters of inter-
est, while data from others do not. To emphasise this point, Fig. 7
provides the posterior estimates of the condition-specific changes for
the subjects that have the greatest (lower left panels) and least (lower
right panels) evidence for the full model. By coincidence, these were
the first and last subjects, respectively. The key thing to note is that
the first subject has posterior expectations of the parameters (defining
the differences between models) that are clearly different from zero,
whereas the last subject does not (the 90% Bayesian confidence inter-
vals include the prior expectations of zero). This means the data from
the last subject can bemost parsimoniously explainedwith just changes
in one or more forward connections (model seven). From the perspec-
tive of this subject there is no evidence for the correct model. The re-
maining parameters (which actually changed) are not sufficiently
informed by this subject's data to justify the evidence for more complex
models.

This example provides an unusual but tenable perspective onmulti-
subject studies usingmodalities like EEG. Effectively, we are hoping that
one or more subjects disclose interesting parameters through the con-
figuration of their cortical (electromagnetic) sources and sensor arrays;
however, we fully anticipate that some subjects will not provide infor-
mative data for all parameters. Only when we tell the model that all
the subjects were sampled from the same population and, implicitly,
generate data under the samemodel, do we recover the global perspec-
tive inherent in studies of multiple subjects. Statistically, this requires a
hierarchical or empirical Bayesian model. The shrinkage of parameter
estimates for any given subject will be in proportion to how confident
we are in the parameter estimates. In other words, subjects with unin-
formative data will be informed by subjects with informative data.
This provides a heuristic explanation for the improvement in the quality
of the parameter estimates (in relation to the true values) furnished by
empirical Bayes.

Random parameter or model effects?

Unlike a conventional fixed effects model comparison, the underly-
ing free energy of hierarchical models pertains to all the data from all
subjects. In other words, there is only one (second level) free energy
for each model. This can be compared with the free energy derived
under random effects assumptions about models, as is commonly
used for group DCM studies (Stephan et al., 2009). Fig. 8 shows the
results of Bayesian model comparison in terms of model likelihoods,
assuming random parametric effects (left panel) and random model
effects (right panel). In this case, the correct random effects assump-
tions are parametric and, unlike the random model effect comparison,
have identified (with more than 90% confidence) the correct model. Al-
though the random model effects comparison identified the wrong
model, the selected model only differs from the correct model by two
connections—and is nearly right in a conservative direction. Indeed,
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Fig. 5. This figure (left panels) shows the improvement in the correlation between the estimates of connectivity (cyan dots) and their condition-specific changes (blue dots)with their true
values, over all subjects. The right panels show the associated Bayesian model comparison in terms of model likelihoods over the eight (first level) models considered. The top row cor-
responds to a conventional inversion of the eight models (FFX). The middle row shows the equivalent results using Bayesian model reduction of the full model (BMR) and the last row
shows the effects of applying empirical shrinkage priors with empirical Bayes (PEB). One can see the improvement in the correlations (the correlation coefficient is provided for each in-
version scheme)—and the improvement in Bayesianmodel comparison: a standard scheme selects the wrongmodel (model two), whereas Bayesianmodel reduction correctly identifies
the third model (red arrow), with increasing confidence (to over 90%) after empirical Bayes.
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this conservatismwas one of the principle motivations for its introduc-
tion (Stephan et al., 2009).

With random parametric effects, we assume that between-subject
differences are modelled in terms of random variations in the parame-
ters under the same architecture or model, as opposed to random dele-
tions or insertions of parameters (e.g., connections) implicit in random
model effects. In the absence of (structural or pharmacological) lesions,
the parametric random effects assumption, afforded by empirical Bayes
is clearly more tenable. However, to disambiguate formally between
random effects at the levels of parameters and models, one could use
Bayesian model comparison—something we are currently working on.
The summary statistic approach

Having estimated the posterior densities over model parameters, one
can nowuse their expectations as summary statistics for classical random
effectsmodelling. In this example, our effects aremultivariate and the ap-
propriate (linear) inference scheme is a canonical variates analysis (aka
multivariate linear regression, canonical correlation analysis, multivariate
analysis of variance, Fisher discriminant analysis and, in limiting cases,
Hotelling's T-square test). Subject-specific expectations of the average
and condition-specific (connectivity) parameters were subject to canoni-
cal variates analysis testing specifically for group differences (asmodelled



model

su
bj

ec
t

Free energy (FFX)

2 4 6 8

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

0

100

200

300

400

500

model

F
re

e 
en

er
gy

Free energy (FFX)

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

100%

model

pr
ob

ab
ili

ty

Posterior (FFX)

model

su
bj

ec
t

Free energy (BMR)

2 4 6 8

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

0

20

40

60

80

100

120

model

F
re

e 
en

er
gy

Free energy (BMR)

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

84%

model

pr
ob

ab
ili

ty

Posterior (BMR)

Fig. 6. This figure illustrates the difference between inversion of reduced models and Bayesian model reduction on the (free energy) approximations to log model evidence—and ensuing
model comparison. The left panels show the results for conventional inversion (FFX) and the right panels for Bayesian model reduction (BMR). The top row shows the free energies for
every subject (rows) andmodel (columns). Here, we have used in Ockham's window of 512. In other words, we add a constant to the free energies so that themaximum is 512 (and then
ignore free energies that are less than zero). Although the overall pattern of free energy is similar, the free energies under Bayesian model reduction are more stable (shown with an
Ockham'swindowof 128 to highlight differences). Themiddle row shows the sumof free energies over subjects, while the lower row shows the correspondingmodel likelihoods, follow-
ing an application of the softmax function to the free energies. Crucially, the correct model (red arrow) is only selected following Bayesian model reduction.
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in the between-subject design matrix). Fig. 9 shows the results of this
analysis (spm_cva.m) in terms of the principal canonical vector (weights
over parameters) and variate (weights over subjects). The canonical vec-
tor provides the weights of a mixture of parameters that shows the
greatest correlation with a mixture of explanatory variables (i.e. group
differences). Formally, this is equivalent to Hotelling's T-square test, hav-
ing partialled out the constant term and age covariate (because there is
only one remaining explanatory variable of interest). The result of this
test was, as expected, exceedingly significant (p b 0.001).

More interestingly, the canonical variate does appear to reflect the
group effect reliably (with the exception of the fourth subject). Further-
more, large canonicalweights havebeen recovered for the four parameters
(representing changes in intrinsic connectivity) that characterise group
differences. At this point, one could report the results in terms of a clas-
sical p-value from the canonical covariates analysis and characterise the
group effects quantitatively, in termsof the canonical vectors. Thiswould
have correctly identified the fact that the largest group effects are
expressed in terms of attenuated intrinsic connectivity changes, under-
lying impoverished mismatch negativity responses in schizophrenia.

Summary

This section has provided heuristics and numerical illustrations sug-
gesting that Bayesianmodel reductionmay bemore robust to violations
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Bayesian model reduction) in Fig. 6. The corresponding model likelihoods for each subject are shown on the upper right. This illustrates a marked inconsistency in model selection over
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tinguish different models; namely, changes in connectivity. These densities are shown in terms of posterior means (grey bars) and 90% confidence intervals (pink bars) in the lower row.
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of the Laplace assumption during the inversion of nonlinear models.
Furthermore, equipping models with hierarchical priors (empirical
Bayes) optimally shrinks parameter estimates to a common mean;
thereby providing more accurate estimates for subsequent analysis. In
this section, we have illustrated the use of canonical variates analysis
using the summary statistics afforded by Bayesian model reduction
and empirical Bayesian inversion of (reduced) models. The opportunity
to perform empirical Bayes with nonlinear models is potentially impor-
tant because it allows us to consider random effects on parameters, as
opposed to models. In the final section, we will see how much further
we can take the empirical Bayesian approach in characterising group
characteristics—and classifying new subjects.
Empirical Bayesian model reduction—group effects

In the world of empirical Bayes, there are models at each level of the
hierarchy; here, first level models distinguish between different archi-
tectures at the level where data are generated and second level models
contain explanatory variables at the between-subject level. This means
that there is an implicit model space over the first and second levels. In
turn, this affords the opportunity to perform Bayesian model compari-
son and averaging over the ensuing joint model space. In other words,
for any given model at the first level there is a family of models at the
second level that comprises all combinations of the explanatory vari-
ables (in the columns of the design matrix). We can now use empirical
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Bayesian reduction to score these models by using different combina-
tions of explanatory variables for every first level model. The resulting
free energies are nowdirectly comparable because they are all functions
of the same data. Practically, this entails a series of empirical Bayesian
model reductions for each column of the reduced model array
(spm_dcm_bmc_peb.m). See Fig. 10 for a schematic illustration. The
results of this search of joint model space are shown in Fig. 11. In this
section, we will restrict our analyses to the extrinsic connections that
are common to all subjects and the condition-specific changes in
(extrinsic and intrinsic) connectivity. In other words, we will treat the
spatial parameters (and neuronal parameters that do not encode
connectivity) as fixed effects.

Fig. 11a shows the design and results of this analysis. Second level ef-
fects (middle right panel) consisted of a constant term, group member-
ship and age. These were combined into four models (lower right
panel): model 1 included group and age, model 2 included group only,
model 3 included age only and model 4 included neither group nor
age. The marginal probabilities over first and second models are
shown in the upper panels, demonstrating we can be 98% certain that
the third (true) architecture generated our within-subjects data—and
almost 100% certain that model 2 best explained group differences,
correctly dispensing with the age covariate. For completeness, the
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Classical and Bayesian inference of the group level

To illustrate the fundamental difference between classical and
Bayesian inference at the between-subject level, we then repeated the
above procedure but randomly permuted the explanatory variables
encoding diagnostic class. The results of this null analysis (Fig. 11b)
indicate that we can be almost certain that the only between subject
effect is a common mean. In other words, we can positively infer
that there are no group effects. This inference would not be possible
with classical inference. For example, had we failed to demonstrate a
significant effect in the canonical covariates analysis above, we would
only be able to say we had failed to reject the null hypothesis. This
absence of evidence would not be evidence for the absence of group
differences; simply that we had insufficient evidence. Conversely,
with Bayesian inference we can accept the null hypothesis of no group
differences provided our data are sufficiently informative. This is
fundamentally different from saying we are not confident about
the presence of group effects. If the data were extremely noisy or
uninformative, then the model likelihoods would be uniformly
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distributed over all four second level models. In this case, we would
have to think carefully about the quality of our data or experimental
design. In this example, our data are sufficiently precise to preclude
group effects, when the diagnostic labels have been deliberately
randomised.

Bayesian model comparison and averaging at the second level

So far, we know that there are group effects and these are expressed
within a particularfirst levelmodel; however,we donot knowprecisely
which first level parameters (i.e. connections) subtend the group effect.
This question calls for Bayesian model comparison and averaging at the
second level (under the best model at the first level). The possible
model space here can be quite complicated because (in the current
setup) we have a second level parameter estimate for each second
level explanatory variable. In other words, there is a pattern of parame-
ters that encode different between subject effects such as group differ-
ences or age. In this worked example, we will take an exhaustive
approach and simply score every possible combination of second level
parameters, thereby considering all possible combinations of connec-
tions that show all possible combinations of group effects. This exhaus-
tive search represents a third application of Bayesianmodel reduction in
this paper. Here, we applied Bayesianmodel reduction to models at the
first level (spm_dcm_bmr.m).We then applied the same technology to
perform empirical Bayesian model reduction, considering every first
level model (using spm_dcm_bmc_peb.m); although, one could also
just estimate the second level effects under the full model using
(spm_dcm_peb.m). In either case, one can now apply Bayesian model
reduction to the posterior densities over the second level parameters
(spm_dcm_peb_bmc.m) to find outwhere the key between-subject ef-
fects are expressed; in otherwords, identify theβ parameters in Eq. (13)
that mediate group effects.

Fig. 12 shows the results of this second level Bayesian model com-
parison in terms of Bayesianmodel averages of the second level param-
eters. The upper panels show the posterior estimates before Bayesian
model reduction and the lower panels after reduction. The key thing
to observe is that some parameters have been removed. This automatic
pruning of redundant parameters is the empirical Bayes equivalent of
automatic relevance determination (Tipping, 2001). In this example,
we see that all four changes in intrinsic connectivity – that characterise
group differences – have been correctly identified (in the sense that the
90% Bayesian confidence intervals include, almost, the true values). Fur-
thermore, Bayesian model reduction has correctly eliminated all but
three parameters that showedno group differences. Although not a per-
fect result, it is comforting to note that the three parameters that should
have been removed have the greatest posterior covariance (and two of
them include the prior expectation within their 90% confidence inter-
val). Before closing, we turn to another potentially useful application
of empirical Bayes; namely, the prediction of class labels such as
diagnostic categories.

Bayesian classification and cross validation

We have portrayed empirical Bayes as supplying optimal shrinkage
priors in the context of hierarchical model inversion. However, one
can also treat the empirical priors as full priors when inverting a
model of a new subject. In other words, one can use estimates of second
level parameters (and between-subject precisions) from a group of
training subjects to estimate unknown explanatory variables as de-
scribed above. In our case, the interesting explanatory variable or class
label is diagnostic (minus one for normal subjects and plus one for
schizophrenics). Using Eq. (14), we can now evaluate the posterior
beliefs about this explanatory variable for a test subject. To illustrate
this procedure, we used a leave-one-out procedure. This involved
empirical Bayesian model reduction of 15 subjects to compute the
expected second level parameters (and precisions). These were then
used to estimate the second explanatory (diagnostic) variable of the
remaining subject, with tight priors on the first explanatory variable
(i.e., constant term) and covariate (i.e., age).

Fig. 13 shows the resulting predictive posterior densities over the di-
agnostic variable for every subject (using spm_dcm_ppd.m). Thisfigure
shows an almost complete separation of the 90% Bayesian confidence
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Fig. 11. Thisfigure illustrates the application of empirical Bayes to select the bestmodel over the joint space ofmodels at thefirst and second levels. (a) Results for theoriginal setup. (b) The
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(left panels) and second level (right panels). Empirical Bayesian model reduction has correctly identified the third model at the first level and the second model at the second level. The
latter model comprises the constant term and between-group differences and correctly discounts the covariate effect. These effects are encoded in the designmatrices in themiddle row,
where different second levelmodels correspond to different combinations of these effects (lower right panel). Theunderlyingmodel likelihoods over the jointmodel space (and associated
free energies) are shown in the lower left panels. Note that when we randomise diagnostic labels, empirical Bayesian model reduction (correctly) selects the model with no group
differences (see red arrows).
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intervals with a reasonably accurate prediction of the true explanatory
variable. This posterior density would be appropriate for continuous
variables; however, our diagnostic variable is categorical. We can now
appeal to Bayesian model reduction yet again to evaluate the evidence
for models in which the diagnostic variable is exactly plus one, relative
tomodelswhere it is exactlyminus one. This simply involves setting the
reduced expectation to the appropriate categorical value and the re-
duced covariance to zero. The reduced free energies then provide the
probabilities of the categorical hypotheses (i.e. classifications). These
categorical probabilities are shown in the right panel of Fig. 13 and illus-
trate that – with these data – we could predict the correct diagnosis
with (almost) 100% confidence in all subjects. This is not terribly
surprising given the large (unstandardised) effect sizes we used. What
is remarkable is that we have been able to identify the informative
parameters that enable us to use estimates of these effect sizes to
perform classification.

The particular leave-one-out scheme used here (spm_dcm_loo.m)
automatically performs Bayesian model reduction over a set of simple
models (with point prior masses over unique values of the explanatory
variable). This application of Bayesian model reduction to test simple
hypotheses is formally equivalent to the Savage–Dickey ratio test
(Savage, 1954). When there are more than two (simple) models, the
resulting profile of model probabilities constitutes a (posterior predic-
tive) probability distribution over the explanatory variable in question:
e.g., over a discrete set of ages.

Clearly, one could use the probability of getting this sort of classifica-
tion performance by chance as a cross validation of Bayesian inference
based on the entire group. This is because the posterior predictive
densities in Fig. 13 (left panel) are based upon parameters optimised
on independent training data. However, in this example, such cross-
validation would be redundant.

Summary

In summary, this section has illustrated the use of Bayesian model
reduction in scoring model spaces; both in the joint space of first and
second level models and in the space induced by considering all combi-
nations of parameters at the second level. Note that the second level pa-
rameters encode parametric effects for every between-subject effect,
enabling us to find the best combination of parameters explaining com-
monalities and differences. At this point, one can now report the results
using the posterior probability of group effects in the joint space of first
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Fig. 12. Bayesian model averages – under the best model identified in the previous figure – before (upper panels) and after (lower panels) Bayesian model reduction at the second level.
These averages are shown using the same format as in previous figures, with the posterior means in grey and the 90% confidence intervals in pink. Black bars are the true values. Posterior
densities are shown separately for the constant term or groupmeans (left panels) and group differences (right panels). The connectivity parameters per se have pink confidence intervals,
while the condition-specific changes (mismatch negativity effects) are shownwith red confidence intervals. Note how Bayesian model reduction eliminates redundant parameters at the
second level and has (largely correctly) identified the key group differences.
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and second level models—or bymarginalising over all first level models
(as shown in Fig. 11). Having established the significance of group
effects, the underlying effect sizes can then be quantified in terms of
posterior densities with, or without, searching over different combina-
tions (as shown in Fig. 12). Finally, empirical Bayesian estimators of
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Fig. 13. This figure shows the results of a leave-one-out analysis to illustrate Bayesian classifica
diagnostic variable for each subject, based upon the second level parameter estimates obtained
or classification probability (usingBayesianmodel reduction) to provide theprobability that eac
subject has been correctly classified; furthermore, this classification could be made with a post
the sort considered in this section can be used for Bayesian classifica-
tion, allowing a probabilistic statement about unknown explanatory
or diagnostic variables, given a new subject. This may be particularly
useful in establishing the predictive validity of dynamic causal models
in a clinical setting.
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Relation to established procedures

This paper has introduced a general empirical Bayesian framework
to model comparison at the group-level which differs from previous
group-level Bayesian model selection approaches (Stephan et al.,
2009; Penny et al., 2010; Rigoux et al., 2014) in a number of ways. The
current approach benefits from the computational efficiency (and ro-
bustness) of Bayesianmodel reduction; allowing for an efficient scoring
and averaging of large sets of nested models. Its empirical Bayesian na-
ture exploits group-level information for regularising subject-specific
parameter estimates and allows for model-based classification of indi-
vidual subjects. These are potentiallymajor advances, andwe anticipate
that for standard DCM studies these procedures will become the meth-
od of choice. Empirical Bayesian model reduction may also provide a
more efficient form of generative embedding, in which parameter esti-
mates from a generative model are used as features for discriminant
classifiers (Brodersen et al., 2011; Raman et al., under review).

Having said this, there are several reasons why the standard
approach of inverting each model separately and using the resulting
model evidence for fixed or random effects Bayesian model selection
may continue to play an important role in certain applications. First,
Bayesian model reduction is restricted to comparing nested models;
this prohibits a comparison of models which differ in the functional
form of the likelihood; for example, comparisons of bilinear versus non-
linear DCMs for fMRI (Stephan et al., 2008), neural mass versus mean
field models of electrophysiological data (Marreiros et al., 2010), or
models of behavioural data that derive from formally distinct computa-
tional theories. Second, while the present analyses suggest a pleasing
robustness of Bayesian model reduction to local extrema encountered
during model inversion, it remains to be seen whether this will suffice
for highly nonlinear models, such as conductance-based DCMs
(Marreiros et al., 2010). In this instance, it will be useful to compare
empirical Bayesian approaches based on posteriors estimated under
the Laplace assumption and those based upon sampling schemes.

Conclusion

In conclusion, this technical note has considered the use of Bayesian
model reduction as an efficient way to explore model spaces at the
within-subject level—and to finesse the computational burden of
inverting hierarchical (empirical) Bayesianmodels of multiple subjects.
We have touched upon a number of generic issues in Bayesian model
comparison and random effects analyses; starting with the robustness
of Bayesianmodel reduction when applying the Laplace approximation
to nonlinear models and ending with the application of these proce-
dures to Bayesian classification.

Based upon the heuristics and numerical behaviour of the Bayesian
schemes we have considered, the following ‘standard practice’ for
group DCM studies can be summarised as follows (see Fig. 10):
first, specify a plausible (first level) model space, invert the full
or parent model (spm_dcm_fit.m) and use Bayesian model reduc-
tion (spm_dcm_bmr.m). Then apply empirical shrinkage priors
to the reduced models, using empirical Bayesian model reduction
and a (second level) design matrix that precludes group differ-
ences (spm_dcm_peb.m). The ensuing Bayesian model averages
(spm_dcm_bma.m) can then be used for classical inference with a de-
sign matrix that includes group effects (spm_cva.m).

Alternatively, one can pursue an empirical Bayesian analysis by
using a design matrix with group effects. This begins, as above, with
inverting the full model (spm_dcm_fit.m) and using Bayesian model
reduction (spm_dcm_bmr.m). Then, the significance of the group
effects (or their absence) can be established using Bayesian model
reduction over the joint space of first and second level models
(spm_dcm_bmc_peb.m). Finally, the Bayesian model averages of the
second level parameters can be used to quantify and characterise
group effects (with or without an exhaustive search over combinations
of second level parameters, spm_dcm_peb_bmc.m). Although these
procedures have yet to the applied extensively to real data, it will be
interesting to see if they prove useful in a practical setting.
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Appendix

The expectations of second level parameters in hierarchical models
can be optimised using gradient ascent, where the gradients of (second
level) variational free energy, with respect to the expected parameters
at the second level μð2Þ ¼ ðβ⌢;γ⌢Þ, are:

∂β F 2ð Þ ¼
X

i
∂β Fi−Πββ̃

∂ββ F 2ð Þ¼
X

i
∂ββ Fi−Πβ

∂β F
2ð Þ
i ¼ XT

i ΠRε

∂ββ F
2ð Þ
i ¼ XT

i ΠRCRΠR−ΠRð ÞXi

Xi ¼ Xi�⊗W

ε ¼ μR−ηR

ηR ¼ Γ i μ 2ð Þ
� �

¼ Xiβ̃

ΠR ¼ Πi μ 2ð Þ
� �

¼ Q0 þ
X

j
eγ j Q j

μR ¼ CR Piμ
1ð Þ
i þΠRηR−Π 1ð Þ

i η 1ð Þ
i

� �
PR ¼ P 1ð Þ

i þΠR−Π 1ð Þ
i

ðA:1Þ

These gradients are functions of the first level expectations and
precisions of the i-th subject. Here, the sufficient statistics from the
first level play the role of full priors (ηi(1), Πi

(1)) and posteriors
(μi(1), Pi(1)), while the sufficient statistics from second level specify
empirical priors (ηR, ΠR) that play the role of reduced priors. These
empirical priors enable us to compute empirical Bayesian posteriors
(μR, PR) over parameters at the first level (see Eq. (8)). Note that the
free energy gradient is zero when the average of the differences
between the posterior expectations and the (empirical) prior is zero.
The equivalent gradient and curvatures of the parameters of the empir-
ical prior covariance are:

∂γ F 2ð Þ ¼
X

i
∂γ Fi−Πγγ

⌢

∂γγ F 2ð Þ ¼
X

i
∂γγ Fi−Πγ

∂γ j
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i ¼ eγ
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j 1
2 tr ΣRQ j−CRQ j

� �
−εTQ jε

� �
∂γ jγk
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i ¼ j ¼ k½ � � ∂γ j

F

−eγ
⌢

jþγ⌢k

1
2
tr ΣRQkΣRQ j−CRQkCRQ j
� �

−εTQkCRQ jε
� �

ðA:2Þ

The Iversen brackets [ j= k] return one when expression is true and
zero otherwise. Note that the gradients depend upon theweighted sum
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of squared differences between the first level expectations and their
empirical prior (c.f., the sample covariance subject-specific parameters).
The second order derivatives with respect to parameters and precisions
follow from the above:

∂βγ F 2ð Þ ¼
X

i
∂βγ Fi

∂βγ j
F 2ð Þ
i ¼ eγ j Xi−CRΠRXið ÞTQ jε:

ðA:3Þ

Finally, equipped with these gradients and curvatures we can now
optimise the second level parameters using a regularised gradient as-
cent in the usual way (Ozaki, 1992):

Until convergence

μ 2ð Þ ¼ μ 2ð Þ þ Δμ 2ð Þ

Δμ 2ð Þ ¼ Δβ⌢

Δγ⌢
� 	

¼ exp τ � ∂2 F 2ð Þ
� �

−I
� �

∂2 F 2ð Þ
� �−1

� ∂β F 2ð Þ

∂γ F 2ð Þ

" #

∂2 F 2ð Þ ¼ ∂ββ F 2ð Þ ∂βγ F 2ð Þ

∂γβ F 2ð Þ ∂γγ F 2ð Þ

" #

q μ 2ð Þ
� �

¼ N μ 2ð Þ;− ∂2 F 2ð Þ
� �−1


 �
ðA:4Þ

Here, τ is a regularisation parameter, which produces a conventional
Newton scheme when large: note that the curvature of free energy
∂2F(2) is negative, which means that the exponential term becomes an
identity matrix when τ → ∞, in which case exp(τ ⋅ ∂2F (2)) → 0. These
equations follow standard results using Variational Laplace; i.e., a gradi-
ent ascent on the variational free energy under the Laplace assumption.
For full derivations please see (Friston et al., 2007).
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