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Abstract

The generalized Born (GB) model of continuum electrostatics is an analytic approximation to the 

Poisson equation useful for predicting the electrostatic component of the solvation free energy for 

solutes ranging in size from small organic molecules to large macromolecular complexes. This 

work presents a new continuum electrostatics model based on Kirkwood’s analytic result for the 

electrostatic component of the solvation free energy for a solute with arbitrary charge 

distribution.1 Unlike GB, which is limited to monopoles, our generalized Kirkwood (GK) model 

can treat solute electrostatics represented by any combination of permanent and induced atomic 

multipole moments of arbitrary degree. Here we apply the GK model to the newly developed 

Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field, 

which includes permanent atomic multipoles through the quadrupole and treats polarization via 

induced dipoles. A derivation of the GK gradient is presented, which enables energy minimization 

or molecular dynamics of an AMOEBA solute within a GK continuum. For a series of 55 proteins, 

GK electrostatic solvation free energies are compared to the Polarizable Multipole Poisson-

Boltzmann (PMPB) model2 and yield a mean unsigned relative difference of 0.9%. Additionally, 

the reaction field of GK compares well to that of the PMPB model, as shown by a mean unsigned 

relative difference of 2.7% in predicting the total solvated dipole moment for each protein in this 

test set. The CPU time needed for GK relative to vacuum AMOEBA calculations is approximately 

a factor of three, making it suitable for applications that require significant sampling of 

configuration space.

1. INTRODUCTION

The solvent environment influences the structure and behavior of solutes within it. For 

example, the scaling of the radius of gyration of a polymer with chain length in dilute 

aqueous solution can be predicted by considering whether solvent molecules prefer 

interactions amongst themselves to those with the polymer.3 This scaling law serves to 
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emphasize that rigorous results can be obtained without treating the solvent in explicit 

atomic detail. Here we present an analytic model of the electrostatic interactions between a 

solute represented by polarizable atomic multipoles and a continuum environment 

characterized by its permittivity, dispensing with the expense of representing explicit solvent 

molecules.

Our approach can be traced to work presented by Born in 1920 to describe the electrostatic 

solvation energy of a charged, spherical ion in terms of macroscopic continuum theory.4 In 

1934, Kirkwood extended this approach to a spherical particle with arbitrary electrostatic 

multipole moments with application to the study of zwitterions, which have a large dipole 

moment.1 More recently, Kong and Ponder revisited Kirkwood’s theory to allow analytic 

treatment of off-center point multipoles.5 For a single spherical particle in isolation, 

therefore, the theoretical foundations to enable use of macroscopic continuum theory have 

already been established.

However, a general analytic solution to the Poisson equation for an arbitrarily spaced 

collection of spherical dielectric particles embedded in solvent is tenable only via 

approximations. For example, the generalization of Born’s method to a collection of 

monopoles began to be considered in the 1990’s by a number of groups including Schaefer 

et al.6,7, Hawkins et al.8,9, Still et al.10,11, Feig et al.12,13 and Onufriev et al.14–18. This 

generalized Born (GB) approach is intended to approximate the numerical solution of the 

Poisson equation for realistic molecular geometries and monopole charge distributions.19–22 

Given highly accurate self-energies, GB has been shown to be remarkably 

quantitative.13,14,16,23,24 The goal of the present work is to extend the ideas underlying GB 

to more accurate charge distributions, specifically to the treatment of polarizable atomic 

multipoles, which might be termed generalized Kirkwood (GK) by analogy.

In order to further motivate the present work, we recall the electrostatic solvation energy is a 

key component of an implicit solvent model, which typically also includes apolar 

contributions due to cavitation and dispersion.11,25,26 Given a solute potential and implicit 

solvent, a broad range of physical properties can be predicted, including conformational 

preferences such as radius of gyration, binding energies and pKas.24 Recent work by a 

number of groups to explicitly include higher order permanent moments and polarization 

within the functional form of empirical force field electrostatics may improve the quality of 

theoretical predictions based on implicit solvent approaches.27–32 However, this step 

forward can only be realized if the improved detail of the molecular mechanics electrostatic 

model is propagated through to the reaction potential.

For an excellent introduction to the fundamentals of GB theory, including treatment of salt 

effects, we recommend the review by Bashford and Case.33 Feig and Brooks present a 

review of recent improvements in GB methodology as well as novel applications.12 

Assuming this level of familiarity, we immediately outline the key components of GB that 

need to be further generalized in order to incorporate polarizable atomic multipoles.
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1.1 Effective radii and the self-energy

Definition of the “perfect” effective radius ai for site i under the GB approximation16 

guarantees an exact self-energy. It is based on the following equality

(1)

where the factor of ½ accounts for the cost of polarizing the continuum, qi is a partial 

charge, εh is the permittivity of a homogeneous reference state and εs is the permittivity of 

the solvent. The self-energy  can be determined to high precision numerically. In 

this manner, the self-energy for each fixed partial charge of a solute is mapped onto the Born 

equation.4 Alternatively, an analytic solution for the self-energy in terms of an energy 

density is possible after making the Coulomb field approximation

(2)

although other methods will be elaborated below. Substituting for  in Eq. (1) with 

 from Eq. (2) and changing the limits of integration for convenience it can be shown 

that each effective Born radius is33

(3)

where the integration over the solute does not include the region within the atomic radius ri. 

A number of analytic methods have been developed for determining this integral, notably 

the pairwise descreening method of Hawkins, Cramer and Truhlar that we will refer to as 

HCT8,9, a method by Qiu et al. that assumes constant energy density within each 

descreening atom11, and more recently a parameter free approach by Gallicchio et al.34 

Although effective radii determine the reaction potential at atomic centers, we note that the 

electrostatic solvation energy of a polarizable atomic multipole also depends on its higher 

order gradients.

After computing effective radii, the total self-energy of a solute within GB is

(4)

For permanent multipoles, the self-energy of higher order components must be considered. 

Furthermore, if the solute is polarizable, self-consistent induced moments elicit a reaction 

potential that leads to an additional contribution to the electrostatic solvation free energy. 

We will avoid decomposing the polarization energy into self-energy and cross-term 

contributions, since it is inherently many-body and therefore any partitioning is somewhat 

artificial.
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1.2 Cross-term energy

An analytic continuum electrostatics model designed to match results from the Poisson 

equation must also include an estimate of the pairwise cross-term energy between all 

multipole pairs. Given effective radii, the GB cross-term energy for fixed partial charges is 

given by

(5)

where the empirical generalizing function f usually takes the form10

(6)

where rij is the distance between sites i and j and the tuning parameter cf is chosen in the 

range 2–8. As rij goes to zero, the Born formula is recovered, such that the self-energy is 

simply a special case of the cross-term energy. Derivation of a general form for the pairwise 

cross-term energy between two multipole components will be presented, which is similar in 

spirit to GB in that the limiting cases of superimposition and wide separation for a pair of 

solvated multipoles are reproduced. The accuracy of the proposed interpolation at 

intermediate separations will be investigated via a series of tests ranging from simple 

systems consisting of only two sites up to the electrostatic solvation energy and dipole 

moment of proteins.

Our tests of GK rely on the Polarizable Multipole Poisson-Boltzmann (PMPB) model2 as a 

standard of accuracy, which has been implemented for solutes described by the Atomic 

Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force 

field.35–37 In our previous work, excellent agreement was seen in the electrostatic response 

of proteins solvated by the PMPB continuum when compared to ensemble average explicit 

water simulations, indicating that at the length scale of proteins treatment of solvent as a 

continuum is valid. As an alternative to numerical PMPB electrostatics, the analytic GK 

formulation for the AMOEBA force field is orders of magnitude more efficient.

The description of GK will be subdivided into four sections. First, determination of the self-

energy for a permanent multipole will be considered. Second, we will propose a functional 

form for the cross-term energy between arbitrary degree multipole moments. Third, given 

the underlying GK theory, we continue on to the derivation of the electrostatic solvation 

energy and gradient in the specific case of solutes described by the AMOEBA force field. 

Finally, we apply the GK continuum model to a series of proteins and compare their 

electrostatic solvation free energy and total dipole moment to analogous calculations with 

the PMPB continuum.

2 MULTIPOLE SELF-ENERGY

We begin by reiterating that the self-energy of a multipole depends on not only the reaction 

potential at atomic centers, but on the reaction field, the reaction field gradient, and so on. 

Unlike GB, the perfect effective radius is not enough information to guarantee the higher 
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order features of the reaction potential are correct, unless the multipole site happens to be at 

the center of a spherical cavity. Two methods have been investigated to describe the self-

energy of a permanent atomic multipole. The first method reduces to the Coulomb-field 

approximation (CFA) for a monopole and requires knowledge of the analytic solution for the 

field in solvent based on a multipole at the center of a spherical dielectric cavity. We term 

this the solvent field approximation (SFA), as it is consistent with the CFA, but requires 

more information.1 A second approach makes use of Grycuk’s method for determining 

effective radii based on the reaction potential of an off-center charge within a spherical 

solute.38 We refer to this approach as the reaction potential approximation (RPA).

Before detailing the SFA and RPA methods, a brief introduction to the electrostatic energy 

of a dielectric media will be given. The work required to assemble a fixed charge 

distribution in a linearly polarizable medium33,39,40 can be formulated by a volume integral 

of the product of the charge density ρ(r) with the potential ϕ(r) or by the scalar product of 

the electric field E with the electric displacement D

(7)

where the displacement is proportional to the electric field in regions of constant permittivity 

ε

(8)

For our purposes, the system of interest is composed of a solute with a different permittivity 

than the solvent. The electrostatic free energy of this system relative to a homogeneous 

reference state is33,39

(9)

where in the homogeneous case the field is Coulombic and can be defined relative to the 

vacuum field as Eh = Evac/εh using the homogeneous permittivity εh. The homogeneous 

displacement is simply Dh = Evac. A less intuitive, but equivalent definition of the 

electrostatic free energy given in Eq. (9) is33,39

(10)

This expression can be subdivided into integrals over the solute and solvent volumes as

(11)

In both the homogeneous and mixed permittivity states the solute retains the homogeneous 

permittivity. By using the relationships for the homogeneous field and displacement 

described above it can be seen that the integral over the solute vanishes
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(12)

to leave only the integral over the solvent

(13)

Having made no assumptions to this point, the remaining challenge can be simplified to 

defining the field within the solvent Es for the mixed permittivity case. This is the starting 

point for the SFA. In general, the solvent field does not have an exact analytic form for a 

union of spheres. However, many molecular systems of interest are globular, and therefore 

an approximation based on the assumption of a spherical solute is not only qualitatively 

reasonable, but in many cases quantitative.

2.1 Solvent field approximation

The SFA is similar to the CFA, but is based on evaluating Eq. (13) using Kirkwood’s 

solution for the field outside a spherical solute with a central multipole moment1,41

(14)

where  is the vacuum field due to all multipole moments of degree l, defined using 

either irregular spherical harmonics or Cartesian tensors. Throughout the current work we 

neglect salt effects, although their addition to a future GK formulation is straightforward. 

This definition of the self-energy is equivalent to the CFA for a monopole and becomes 

approximate for off-center multipole sites or for non-spherical solute geometries.

Under the SFA, the self-energy of a permanent multipole site i is given by

(15)

It is possible to invert the integration domain by adding and subtracting an integral over the 

solute region outside the radius Ri of atom i to Eq. (15) giving

(16)

The first integral is the solvation energy of a lone multipole  and the second represents 

the effect of descreening sites. Substituting  into Eq. (16) gives
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(17)

where

(18)

and

(19)

In Eq. (18) we have assumed the Einstein convention for summation over Greek subscripts 

α and β which can take the value x, y, or z. The descreening integral in Eq. (17), which we 

will refer to as Ii, can be decomposed into a sum of pairwise integrals Iij
8,9

(20)

where ξij is the angle formed between the pairwise axis and any ray that begins at the center 

of atom i and passes through the circle of intersection between the integration shell and atom 

j

(21)

where rij is the distance between atoms i and j, Rj is the radius of atom j and r is the radial 

integration variable. The integration limits for the radial coordinate depend on what extent 

atoms i and j intersect, and therefore the solution to Eq. (20) is presented as an indefinite 

integral that is to be evaluated at limits described below. Typically the radius of the 

descreening atom is scaled down to prevent over counting due to atomic overlap, although 

parameter free approaches are being explored.34 Specifically, Rj is replaced with sRj where 

the HCT scale factor s is a parameter between 0 and 1 fit to reproduce PMPB results (see 

section 2.3 below).

Unlike the field due to a partial charge, the field due to a multipole of arbitrary order has an 

angular dependence. Our approach has been to represent the field using a spherical harmonic 

basis, rather than Cartesian tensors, to determine the analytic solution to Eq. (20) through 

quadrupole order. Additionally, it is assumed that the positive z-axis of the multipole frame 

is directed towards the center of the descreening atom. This imposes symmetry that greatly 

reduces the number of non-vanishing terms in the solution, but requires rotation of multipole 

moments for each pairwise descreening interaction.

A complex definition of spherical harmonics is commonly used in the formulation of 

quantum mechanics, however this work uses the following real form

Schnieders and Ponder Page 7

J Chem Theory Comput. Author manuscript; available in PMC 2016 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(22)

where  is of degree l ≥ 0 and order |m| ≤ l,  are the associated Legendre 

polynomials, the polar angle ranges from 0 ≤ θ ≤ π and the azimuth ranges from 0 ≤ φ ≤ 2π. 

We chose to use the Racah normalization, which has the property that . In 

combination with our choice of phase factors, this ensures formulas for the conversion 

between Cartesian multipole moments and those consistent with this definition of real 

spherical harmonics are identical to the conversions commonly used for complex spherical 

harmonics. The conversion formulas through quadrupole degree are given in Table A-1 of 

the Supporting Information.42

The potential due to a unit magnitude multipole moment  is obtained by 

multiplication of the real spherical harmonics by a radial factor of 1/rl+1 to give

(23)

and are listed in Table A-2 through quadrupole order. The unit field can then be calculated 

as the negative gradient of the unit potential

(24)

The field for 9 multipole components through degree 2, which are listed in Table A-3 of the 

Supporting Information, lead to 36 scalar products that must be integrated via Eq. (20) to 

determine the descreening energy due to atom j. However, due to the symmetry of the 

integration domain only 14 scalar products lead to non-zero integrals, and these are listed in 

Table A-4. The integration results are given in Table 1, showing 11 unique terms and 3 

duplicates. Schaeffer et al. originally presented the same result for a monopole6,7, and the 

higher order formulas are presented here for the first time. If the descreening angle ξij is π as 

a result of atom j completely engulfing atom i, then the indefinite integrals simplify to those 

given in Table 2. This situation can occur for hydrogen atoms bonded to a heavy atom, for 

example, or in more artificial structures where one still wishes to have a continuous 

potential.

We note that after performing the integral no angular dependence remains. Therefore, 

although the derivation is based on spherical harmonics, our solution is equally useful for 

Cartesian tensors by using the conversion formulas in Table A-1. We can now define the 

pairwise descreening integral for a permanent atomic multipole at site i being descreened by 

site j under the SFA as
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(25)

where  is the magnitude of a spherical harmonic of site i,  is the magnitude of a 

spherical harmonic of site j and D(l, m)i, (l, m)j (rij, Ri, Rj) is given by

(26)

Radial limits are detailed for three cases including engulfment by the descreener, partial 

overlap and no overlap. These limits are applied in conjunction with the indefinite integrals 

D(l, m)i, (l, m)j (rij, Rj) and Dli listed in Table 1 and Table 2, respectively. We note that the 

Kronecker delta functions δ specify that the engulfment integrals between orthogonal 

spherical harmonics vanish. In our implementation of Eq. (25), the magnitudes of the 

spherical harmonic moments are found via conversion from AMOEBA traceless Cartesian 

multipoles.

2.2 Reaction potential approximation

An alternative to the CFA for determining effective radii based on the analytic solution for 

the reaction potential of an off-center charge within a spherical dielectric cavity1,43 has been 

proposed by Grycuk38. We briefly outline this RPA method and its application to the self-

energy of a permanent multipole.

The reaction potential at r due to an off-center charge at r0 inside a spherical dielectric 

cavity of permittivity εh surrounded by solvent with permittivity εs is given by

(27)

where a is the cavity radius, q is the magnitude of the charge and Pl is the Legendre 

polynomial of degree l whose argument is the cosine of the angle θ between r and r0.1,43 

The self-energy of a charge based on Eq. (27) is

(28)
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where d is used to specify the distance between the multipole site and the center of the 

sphere. For d=0, all asymmetric self-interactions vanish, for example the charge with a 

dipole component, but for off-center multipole sites these interactions are generally 

nonzero.5 Noting that Pl (1) = 1 for all l, the summation in Eq. (28) can be reduced to a 

closed form if the factor (l+1) can be canceled by setting lεh in the denominator to (l+1)εh or 

to 0, giving quantities that are more positive W+ (d) or more negative W− (d) than the true 

self-energy, respectively

(29)

Both the upper and lower bound approach the true self-energy if εs □ εh allowing the 

simpler form to be used as an approximation

(30)

As shown by Grycuk, it is possible to calculate the factor ar = a/(a2 − d2), which is 

equivalent to the inverse of an effective radius, as

(31)

This expression can be motivated by the analytic solution for a spherical geometry

(32)

As d approaches zero, the multipole site approaches the center of the dielectric sphere such 

that ar equals the radius of the sphere a. In practice this integral is evaluated using the 

pairwise descreening approach described in the previous section for the SFA and 

elsewhere.8,9,38 After determining effective radii, the self-energy for each permanent atomic 

multipole under the RPA is evaluated via Eq. (18).

2.3 Self-energy accuracy

We now demonstrate that for a series of proteins the RPA is superior to the SFA, which is 

consistent with findings for fixed partial charge models.38,44 The perfect self-energy and 

perfect effective radii for all permanent atomic multipole sites in five proteins structures 

retrieved from the Protein Databank45, including 1CRN46, 1ENH47, 1FSV48, 1PGB49 and 

1VII50, were determined using the PMPB model.2 The grid size for all calculations was 

257×257×257 using a grid spacing of 0.31 Å to give approximately 10 Å of continuum 

solvent between the low dielectric boundary and the grid boundary. The Bondi radii set (H 
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1.2, C 1.7, N 1.55, O 1.52, S 1.8) was used to define a step-function solute-solvent boundary 

with the solute dielectric set to unity and that of the solvent to 78.3.51 Multiple Debye-

Hückel boundary conditions were used to complete the definition of the Dirichlet problem. 

We also tried larger grids, up to 353×353×353, and therefore smaller grid spacing, which 

leads to the PMPB electrostatic solvation energy increasing by less than 2%. We opted for 

efficiency, since the important conclusion of this section, that the RPA is superior to the 

SFA, is not altered.

The SFA was fit using nonlinear optimization to determine one HCT scale factor per atomic 

number that minimized the RMS percent error in the permanent atomic multipole self-

energies against numerical PMPB results for 3,032 data points. As discussed previously, 

these HCT parameters scale down the radius of the descreening atom to prevent over 

counting due to atomic overlap. This lead to a mean unsigned relative difference (MURD) 

between the perfect self-energy for each multipole site and the SFA self-energy of 5.5%. 

However, using only a single scale factor (0.568), rather than one per atomic number, 

increased the MURD by just 0.4 to 5.9%.

Similarly, the RPA was fit using nonlinear optimization to determine a second set of scale 

factors to minimize the RMS percent difference between analytic effective radii and perfect 

effective radii. The achieved MURD in the effective radii was 1.1%. Alternatively, using a 

single scale factor (0.690) increased the MUPD by only 0.2% to 1.3%. Therefore, given the 

negligible improvements of using one HCT parameter per atomic number, we prefer 

implementations of the SFA and RPA that are each based on a single parameter.

The total analytic self-energy for each protein is compared to the total computed by 

summing the numerical permanent multipole self-energies as shown in Table 3. Fitting of a 

single HCT parameter for each method as described above eliminated the systematic error 

for both the SFA and RPA. However, the mean unsigned percent difference of the RPA 

(0.5) is smaller than that of the SFA (0.8). Considering that the RPA is more efficient and 

more accurate than the SFA, it is our preferred method to compute effective radii and 

permanent multipole self-energies.

3 MULTIPOLE CROSS-TERM ENERGY

There are two concepts needed to extend the GB cross-term to the interaction between two 

arbitrary multipole components. First, we describe the simplest possible definition for the 

reaction potential of any multipole component in the presence of a second multipole site, 

where an effective radius characterizes each site. Second, using this auxiliary definition of 

the reaction potential for each site, we formulate the cross-term energy in a consistent 

fashion. The electrostatic solvation free energy for the interaction between multipole 

components will be reproduced in the limiting cases of superimposition and wide separation.

3.1 Generalized Kirkwood auxiliary reaction potential

The generalized Kirkwood auxiliary reaction potential is a building block for defining the 

interaction energy and its gradients for any pair of multipole components. It is motivated by 

noting that the only difference between the analytic solution for the reaction potential inside 
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and outside of a spherical solute with central multipole is exchange of the solute radius a in 

the former case with separation distance rij in the latter, where rij = (xj − xi, yj − yi, zj − 

zi).1,41 For example, substitution for f in Eq. (33) below by a or rij gives the analytic 

formulas for the reaction potential inside and outside of the dielectric boundary, 

respectively.

Rather than using radial factors of  as was done earlier in defining the unit vacuum 

potential in terms of real spherical harmonics, the factor  is used to define the unit 

GK auxiliary reaction potential  for a multipole component of degree l and order m,

(33)

where f is the generalizing function defined in Eq. (6) and cl is a function of the permittivity 

inside and outside the solute defined in Eq. (19). We note that for 

approaches  to give the reaction potential in solvent. When rij = 0 and therefore ai = aj 

= a, then  simplifies to  to give the reaction potential at the center of the 

two concentric atoms. In this case the reaction potential is nonzero only for the monopole.

A definition in terms of Cartesian tensors is possible by first taking successive gradients of 

1/rij and then substituting for factors of rij in the denominator with factors of f. For example, 

neglecting the ij subscript, the vacuum tensors are42

(34)
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where α, β, γ and δ can take the values x, y, or z and the Kronecker delta function is unity if 

its subscripts are equal, but zero otherwise. Applying the substitution gives

(35)

and represent the GK auxiliary reaction potential tensors. We have removed terms that 

require summing over a trace by requiring use of traceless multipoles. Unlike the vacuum 

case, the GK auxiliary reaction potential tensor of degree l is not simply a gradient of a 

degree l−1 tensor.

The total auxiliary reaction potential due to multipole i, up to quadrupole order, at site j is

(36)

where the Einstein convention for repeated summation over Greek subscripts is implied. The 

total auxiliary potential due to multipole j, up to quadrupole order, at site i is given by

(37)

where rji is defined from site j to site i.

3.2 Generalized Kirkwood cross-term

Given the auxiliary reaction potentials, we define the auxiliary cross-term energy using Eq. 

(36) to be

(38)

such that substituting for ϕ(i) gives
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(39)

while the auxiliary cross-term energy using Eq. (37) is

(40)

such that substituting for ϕ(j) gives

(41)

In the case of superimposition, either U(i) or U(j) exactly reproduces the correct self-

energies. In the case of wide separation, both ϕ(i) and ϕ(j) neglect the bending of field lines 

near the spherical dielectric cavity surrounding site j and site i, respectively. The density of 

field lines in the case of wide separation is not an issue for a fixed partial charge interaction, 

although neglect of this effect introduces an error of less than 1% for dipole interactions in 

the case of a solute with unit permittivity in water.

Gradients of the auxiliary reaction potential can easily be obtained, although it is important 

to note that

(42)

Namely, ∇αA includes a factor of  relative to Aα such that equality is 

only achieved for rij equal to zero or infinity. This subtle point implies, not surprisingly, the 

auxiliary reaction potential is too simple for intermediate rij. An important consequence is 

that U(i) ≠ U(j). A consistent model requires that the α-component of the potential gradient at 

site j of a unit charge at site i should equal the potential at site i of the dipole’s unit 

magnitude α-component at site j. This reciprocity condition is a well-known property of 

linear dielectric continuums.40 We note that in practice ∇αA ≈ Aα and therefore we simply 

take the average of the energies to obtain a consistent interaction model.

(43)

The qualitative behavior of the GK cross-term formulation for multipole permutations 

through quadrupole degree is seen in Figure (1). The system is composed of two spheres, 
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each with a radius of 3.0 Å and unit permittivity, in a solvent with permittivity 78.3. The 

total electrostatic solvation energy was evaluated using the PMPB and GK models. In the 

case of superimposition, the GK value is exact. When the two spheres are widely separated, 

GK asymptotes to the PMPB results for all permutations. For intermediate separations, the 

behavior is promising, but not exact.

4 AMOEBA SOLUTES UNDER GENERALIZED KIRKWOOD

4.1 Electrostatic solvation free energy

Derivation of the electrostatic solvation free energy for an AMOEBA solute35–37 within the 

GK continuum resembles the derivation of the PMPB electrostatic solvation free energy.2 

Each permanent atomic multipole site can be considered as a vector of coefficients including 

charge, dipole and quadrupole components

(44)

where the superscript t denotes the transpose. The interaction potential energy between two 

sites i and j separated by the distance rij in a homogeneous permittivity εh can then be 

represented in tensor notation as

(45)

Similarly, the GK energy for two multipoles (self or cross-term) is given by

(46)

where the factor of ½ accounts for the cost of charging the continuum and the GK 

interaction matrix Kij depends on the coordinates of all atoms via the effective radii ai and 

aj. As introduced above, GK requires averaging of the auxiliary reaction potentials and their 

respective gradients to obtain a consistent interaction matrix

(47)
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Each site may also be polarizable, such that an induced dipole is formed in vacuum 

proportional to the strength of the local field

(48)

Here αi is an isotropic atomic polarizability and  is the total vacuum field, which can be 

decomposed into contributions from permanent multipole sites and induced dipoles, and the 

summations run over all multipole sites. The interaction tensors  and  are, 

respectively,

(49)

and

(50)

where the d in  denotes that masking rules for the AMOEBA group-based polarization 

model are applied. Upon adding the GK reaction field due to the permanent multipoles and 

induced dipoles, the self-consistent induced dipoles are proportional to the self-consistent 

reaction field

(51)

where the sums now include self-contributions to the reaction field, but exclude Coulomb 

self-interactions via Kronecker delta functions. The GK interaction matrices  and 

are, respectively,

(52)

where
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(53)

(54)

and

(55)

where averaging cancels for the matrix  that produces the field at site i due to the 

induced dipole at site k as a result of symmetry.

The linear system of equations, both for the vacuum and solvated systems, can be solved via 

a number of approaches, including direct matrix inversion or iterative schemes such as 

successive over-relaxation (SOR). The total vacuum electrostatic energy  includes 

pairwise permanent multipole interactions and many-body polarization

(56)

where the factor of ½ avoids double-counting of permanent multipole interactions in the first 

term and accounts for the cost of polarizing the system in the second term. Furthermore, M 
is a column vector of 13N multipole components

(57)

T is a N × N supermatrix with Tij off-diagonal elements

(58)

μv is a 3N column vector of converged induced dipole components in vacuum
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(59)

and  is a 3N × 13N supermatrix with  as off-diagonal elements

(60)

The subscript p denotes a tensor matrix that operates on the permanent multipoles to 

produce the electric field in which the polarization energy is evaluated, while the subscript d 

is used to specify an analogous tensor matrix that produces the field that induces dipoles. 

The differences between the two are masking rules that leave out 1–2, 1–3, and 1–4 

interactions in the former case and use the AMOEBA group based polarization scheme for 

the later.35

For the solvated system, the total electrostatic energy is similar to the vacuum case

(61)

where the GK matrices are

(62)

and

(63)

The total electrostatic solvation free energy is determined as the difference between the 

vacuum electrostatic energy and total electrostatic energy in solvent as

(64)

where μΔ represents the change in the induced dipoles upon solvation
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(65)

4.2 Permanent multipole energy gradient

The permanent multipole electrostatic solvation energy gradient between sites i and j only 

depends on the gradient of the GK interaction tensor

(66)

and subscript ai and aj denote keeping the effective radii fixed in this case. Generation of the 

GK interaction tensors that make up  and  are 

described in Appendix B of the Supporting Information. The derivatives of the effective 

radii with respect to an atomic displacement follow from the pairwise descreening 

implementation of the RPA and will not be discussed here.8,9,38 We also point out that there 

is a torque on the permanent dipoles due to the permanent reaction field and also on the 

permanent quadrupoles due to the permanent reaction field gradient. All torques, including 

contributions from the polarization energy gradient discussed below, are converted to forces 

on adjacent atoms that define the local coordinate frame of the multipole.

4.3 Polarization energy gradient

The polarization energy gradient when using either the “direct” or “mutual” polarization 

models within the GK continuum will now be derived. The definition of the starting point 

for the iterative convergence of the self-consistent reaction field (SCRF) is the total “direct” 

field Edirect at each polarizable site. This field is the sum of the permanent atomic multipoles 

(PAM) intramolecular field

(67)

where  is analogous to the tensor matrix defined in deriving the AMOEBA vacuum 

energy in Eq. (56), and the PAM GK reaction field

(68)

The product of the direct field Edirect with a vector of atomic polarizabilities determines the 

initial induced dipoles μdirect

(69)

At this point the induced dipoles do not act upon each other nor do they elicit a reaction 

field. This is defined as the direct model of polarization.
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In contrast to the direct polarization model, the total SCRF E has two additional 

contributions due to the induced dipoles and their reaction field,

(70)

for a sum of 4 contributions. The induced dipoles

(71)

can be solved for in an iterative fashion using successive over-relaxation (SOR) to accelerate 

convergence.52 Alternatively, the induced dipoles can be solved for directly as a mechanism 

for deriving the polarization energy gradient with respect to an atomic displacement. 

Moving all terms containing the induced dipoles to the LHS allows their isolation

(72)

For convenience, a matrix C is defined as

(73)

which is substituted into Eq. (72) above to show the induced dipoles are a linear function of 

the PAM M, directly via the intramolecular interaction tensor  that implicitly contains 

the AMOEBA group based polarization scheme, and also through their reaction field

(74)

The polarization energy can now be described in terms the permanent reaction field and 

solute field Ep

(75)

To find the polarization energy gradient, we wish to avoid terms that rely on the change in 

induced dipoles with respect to an atomic displacement. Therefore, the induced dipoles in 

Eq. (75) are substituted for using Eq. (74) to yield

(76)

By the chain rule, the polarization energy gradient is

(77)

For convenience a mathematical quantity ν is defined, which is similar to μ, as
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(78)

We can now greatly simplify Eq. (77) above using Eqs. (74) and (78) along with the identity 

 to give

(79)

Under the direct polarization model, C is an identity matrix whose derivative is zero, and 

therefore Eq. (79) simplifies to

(80)

The first two terms on the RHS appear in the polarization energy gradient even in the 

absence of a continuum reaction field and are described elsewhere.35 The third and fourth 

terms are specific to GK and can be combined. We require the derivative of the GK reaction 

field due to permanent multipoles with respect to movement of any atom

(81)

It is therefore sufficient to describe the gradient of any  sub-matrix of K(1) as

(82)

The tensors that make up  and  are 

described in Appendix B. In this case there is a torque on the permanent dipoles and 

quadrupoles due to the reaction field and reaction field gradient of (μ + ν)/2, respectively.

The full mutual polarization gradient has an additional term compared to the direct 

polarization gradient, in addition to the implicit difference due to the induced dipoles being 

converged self-consistently. Specifically, the derivative of the matrix C leads to two terms

(83)
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The first term on the RHS occurs in vacuum and is described elsewhere35, however, the 

final term is specific to GK. The gradient of one sub-matrix of the  supermatrix is

(84)

The expression for the gradient of  is simpler than those for the other GK interaction 

matrices because it is symmetric.

The veracity of the AMOEBA/GK energy gradients was checked using finite-differences of 

the energy, optimization of proteins to an RMS convergence criterion of 10−4 kcal/mole/Å 

and constant energy molecular dynamics. For example, at a mean temperature of 300 K the 

protein 1ETL showed a mean total energy of −361.20 kcal/mole with a standard deviation of 

just 0.25 kcal/mole over 1 nsec. The simulation started with a total energy of −361.25 and 

finished at −365.28 kcal/mole.

5 VALIDATION AND APPLICATION

GK is an approximation to the Poisson solution that extends GB to arbitrary order 

polarizable atomic multipoles. Here we test GK by comparing to numerical PMPB solutions 

in the limit of using a van der Waals definition of the solute-solvent interface parameterized 

using the Bondi radii set.51 Specifically, the electrostatic solvation free energy and total 

solvated dipole moment for a series of 55 proteins was compared using the PMPB and GK 

continuums. This test set based on PDB entries45 was recently proposed by Tjong and Zhou 

for studying the accuracy of analytic solvation models and is characterized by structures 

with less than 10% sequence identity, resolution better than 1.0 Å and less than 250 

residues.44 Amino acids with missing side-chains were changed to alanine if the Cβ carbon 

was present and glycine if not. The TINKER53 pdbxyz program added missing hydrogen 

atoms. Histidine residues were made neutral with the δ-nitrogren protonated. All structures 

were optimized in vacuum to an RMS gradient of 5.0 kcal/mole/Å, with the goal being to 

remove bad contacts. The average heavy atom RMS distance from the crystal structure was 

0.07 Å after optimization.

5.1 Electrostatic solvation free energy of proteins

Previous studies have shown that given accurate effective radii, GB predicts the electrostatic 

solvation energy of proteins to a mean unsigned relative difference of approximately 1% 

relative to numerical Poisson calculations.16 In this section we investigate whether it is 

reasonable to expect similar performance from GK by comparing the electrostatic solvation 

free energy for a series of folded proteins to values computed using the PMPB model.

The PMPB calculations used a grid spacing of 0.31 Å and at least 10 Å between the edge of 

the solute-solvent boundary and the grid boundary. A finer grid spacing of 0.23 Å was also 

tried, which lowered the PMPB energy by approximately 2%, but did not change the quality 

of the agreement between the two models. The interior of the protein was assigned a 
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permittivity of 1.0 while the solvent was set to 78.3. The induced dipoles were deemed to 

have converged at a tolerance of 0.01 RMS Debye. Converging to a tighter tolerance of 10−6 

RMS Debye only changed the electrostatic solvation free energy by 0.1% relative to the 

loser criteria, and was therefore deemed unnecessary. The constant in generalizing function 

cf was optimized by hand to eliminate systematic error, which was found to occur at a value 

of 2.455.

The results are shown in Table 4. The mean signed relative difference is 0.0% a result of 

tuning the cross-term parameter. The mean unsigned relative difference is 0.9%, which is 

comparable to the most accurate GB methods.13,15,17,34,44,54 We anticipate using a different 

cross-term parameter when optimizing GK to reproduce PMPB calculations based on a 

molecular surface definition.

5.2 Dipole moment of solvated proteins

The change in dipole moment as a function of environment for a polarizable solute is a 

relevant observable in terms of validating GK because it indicates whether or not the 

reaction field strength is consistent. The PMPB calculations are exactly equivalent to those 

described in the previous section. Furthermore, the same constant was used in the GK cross-

term. In Table 5 it is observed that the total dipole moment of proteins within the GK 

continuum achieve a mean signed relative difference of −2.7% and a mean unsigned percent 

difference of 2.7%. This indicates a small, but systematic underestimation of the reaction 

field. In all cases, for both PMPB and GK models, the reaction field factor was greater than 

one, except for 1P9G. In this case, the vacuum dipole moment decreased from 18 to 15 and 

13 Debye in the PMPB and GK models, respectively. Overall, the mean reaction field factor 

for the 55 proteins was 1.28 in the PMPB model and 1.24 in GK.

6 CONCLUSIONS

Over the course of the past several years GB has been shown to be capable of capturing the 

electrostatic response of the solvent environment to solutes. It has been successfully applied 

to molecular dynamics simulations, scoring protein conformations and the prediction of 

binding affinities.24 However, GB models are generally limited to use with fixed atomic 

partial charge electrostatic representations. Applications of recent interest, including high-

resolution homology modeling, design of protein-protein interactions and design of proteins 

with enzymatic activity may require improved accuracy in force field electrostatics.28,29,55 

We suggest that the AMOEBA force field coupled with the GK continuum model is a 

promising improvement.

There are two main differences between GB and GK. First, the GK self-energy of a 

permanent multipole site depends on Kirkwood’s solution for the electrostatic solvation 

energy of a spherical particle with arbitrary charge distribution, which is reduced to Born’s 

formula in the case of a monopole. Second, the GK cross-term is formulated by averaging a 

simple auxiliary potential for each multipole site, which reduces to the GB cross-term for 

monopole interactions.
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We have implemented GK for the AMOEBA force field, including energy gradients, within 

the TINKER package.53 The model was tested against numerical PMPB calculations of the 

electrostatic solvation free energy for a series of 55 diverse proteins and showed a mean 

unsigned relative difference of 0.9%. The fidelity of the reaction field of GK relative to 

PMPB can be inferred from the total solvated dipole moment of each protein, which showed 

GK to have a mean unsigned relative difference of 2.7%.

The next step in the implementation of GK for AMOEBA solutes will be parameterization 

of a complete implicit solvent model by addition of an apolar term.26 The overall model will 

be parameterized against small molecules solvation free energies, which has been a 

successful approach in the past.9,10,25,56,57 Alternatively, the electrostatic, dispersion and 

cavitation components of solvation can be matched to explicit solvent free energy 

perturbation results.58–61

GK may be useful for developing new continuum models based on electron densities 

derived from electronic structure calculations. For example, Cramer and Truhlar have 

successfully employed GB in their SMX series of solvation models.8,9,62,63 GK would also 

offer an analytic alternative to the numerical distributed multipole solvation model of 

Rinaldi et al.64,65

Further improvements in both the PMPB and GK continuum electrostatics models may 

depend on reconciling deficiencies that emerge in treating local, specific molecular 

interactions. For example, both the Clausius-Mossotti40 and Onsager66 theories for the 

permittivity of a liquid break down for substances that “associate”, such as water. Here 

association is defined as short range ordering that leads to correlations in the orientations 

and positions of neighboring groups, such as hydrogen bonding pairs. Formalisms 

introduced by Kirkwood67 and Fröhlich68 include a correction factor to explicitly account 

for this deviation from continuum behavior. More recently, Rick and Berne showed that no 

parameterization of the dielectric boundary for a water molecule in liquid water could 

simultaneously fit the electrostatic free energy and reaction potential to within 20%, mainly 

due to nonlinear electrostriction.69 This effect, inherent in both numerical and analytic 

continuum electrostatic models, may be a limiting factor in the accuracy of current implicit 

solvation models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The solvation energy for a system composed two spheres, each with a radius of 3 Å and 

permittivity of 1, and a variety of multipole combinations are computed as a function of 

separation along the x-axis using numerical Poisson solutions (solid lines) and generalized 

Kirkwood (dashed lines). The solvent permittivity was 78.3. The limiting cases of wide 

separation and superimposition are reproduced in all cases, while intermediate separations 

are seen to be a reasonable approximation.
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Table 1

Indefinite integrals for pairwise descreening of multipoles through quadrupole

(l, m)1 (l, m)2 D(l, m)i, (l, m)i (rij, Rj)

(0, 0) (0, 0)

(1, 0)

(2, 0)

(1, 0) (1, 0)

(2, 0)

(1, 1)
(1, −1)

(1, 1)
(1, −1)

(2, 1)
(2, −1)

(2, 0) (2, 0)

(2, 1)
(2, −1)

(2, 1)
(2, −1)

(2, 2)
(2, −2)

(2, 2)
(2, −1)
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Table 2

Indefinite integrals for pairwise descreening of multipoles through quadrupole when ξij = π.

li Dli

0

1

2
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