Table 1.
Comparison of inverse covariance matrix estimation errors in there data generating models. The parameter estimation error with regard to the matrix ℓ1, ℓ2, and Frobenius norms (denoted as ℓF here) is provided with standard deviations provided in the brackets. The results are obtained by 1,000 simulations.
KSE | naive | ||||||
Setting 1 | ngrow = ndecay | ℓ1 | ℓ2 | ℓF | ℓ1 | ℓ2 | ℓF |
20 | 3.25(0.232) | 1.53(0.104) | 4.42(0.220) | 5.02(0.287) | 2.68(0.132) | 8.30(0.412) | |
100 | 2.72(0.165) | 1.30(0.088) | 3.78(0.204) | 4.85(0.467) | 2.55(0.117) | 8.13(0.453) | |
Setting 2 | ngrow | ||||||
40 | 3.39(0.553) | 1.56(0.213) | 4.47(0.302) | 5.26(0.740) | 2.73(0.313) | 8.24(0.386) | |
200 | 3.40(0.507) | 1.57(0.147) | 4.33(0.284) | 5.19(0.740) | 2.71(0.280) | 8.34(0.352) | |
Setting 3 | ned | ||||||
50 | 2.21(0.194) | 1.37(0.120) | 3.20(0.104) | 1.60(0.249) | 0.84(0.113) | 3.09(0.185) | |
GGL | Guo | ||||||
Setting 1 | ngrow=ndecay | ℓ1 | ℓ2 | ℓF | ℓ1 | ℓ2 | ℓF |
20 | 3.28(0.298) | 1.45(0.112) | 4.13(0.190) | 3.22(0.418) | 1.42(0.259) | 4.04(0.280) | |
100 | 3.27(0.324) | 1.42(0.100) | 4.18(0.222) | 3.38(0.474) | 1.41(0.169) | 4.31(0.335) | |
Setting 2 | ngrow | ||||||
40 | 3.47(0.580) | 1.47(0.163) | 4.22(0.153) | 3.06(0.417) | 1.40(0.274) | 4.00(0.205) | |
200 | 3.22(0.618) | 1.44(0.198) | 4.08(0.199) | 3.71(0.493) | 1.73(0.264) | 4.46(0.361) | |
Setting 3 | ned | ||||||
50 | 1.52(0.224) | 0.85(0.105) | 2.04(0.104) | 1.48(0.263) | 0.67(0.116) | 1.81(0.150) |