Skip to main content
. Author manuscript; available in PMC: 2016 Jun 1.
Published in final edited form as: J R Stat Soc Series B Stat Methodol. 2015 Jul 6;78(2):487–504. doi: 10.1111/rssb.12123

Table 1.

Comparison of inverse covariance matrix estimation errors in there data generating models. The parameter estimation error with regard to the matrix ℓ1, ℓ2, and Frobenius norms (denoted as ℓF here) is provided with standard deviations provided in the brackets. The results are obtained by 1,000 simulations.

KSE naive


Setting 1 ngrow = ndecay 1 2 F 1 2 F
20 3.25(0.232) 1.53(0.104) 4.42(0.220) 5.02(0.287) 2.68(0.132) 8.30(0.412)
100 2.72(0.165) 1.30(0.088) 3.78(0.204) 4.85(0.467) 2.55(0.117) 8.13(0.453)

Setting 2 ngrow
40 3.39(0.553) 1.56(0.213) 4.47(0.302) 5.26(0.740) 2.73(0.313) 8.24(0.386)
200 3.40(0.507) 1.57(0.147) 4.33(0.284) 5.19(0.740) 2.71(0.280) 8.34(0.352)

Setting 3 ned
50 2.21(0.194) 1.37(0.120) 3.20(0.104) 1.60(0.249) 0.84(0.113) 3.09(0.185)

GGL Guo


Setting 1 ngrow=ndecay 1 2 F 1 2 F
20 3.28(0.298) 1.45(0.112) 4.13(0.190) 3.22(0.418) 1.42(0.259) 4.04(0.280)
100 3.27(0.324) 1.42(0.100) 4.18(0.222) 3.38(0.474) 1.41(0.169) 4.31(0.335)

Setting 2 ngrow
40 3.47(0.580) 1.47(0.163) 4.22(0.153) 3.06(0.417) 1.40(0.274) 4.00(0.205)
200 3.22(0.618) 1.44(0.198) 4.08(0.199) 3.71(0.493) 1.73(0.264) 4.46(0.361)

Setting 3 ned
50 1.52(0.224) 0.85(0.105) 2.04(0.104) 1.48(0.263) 0.67(0.116) 1.81(0.150)