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Abstract

The idea that our cognitive abilities change with age has support from empirical research as well 

as from anecdotal reports. Cognition has many component processes, some of which are impaired 

by normal aging like attention and memory as a result of changes in perceptual systems or speed 

of processing. Other cognitive domains improve in functioning as aging continues such as wisdom 

and some kinds of decision making. Many years of research in the psychology of cognitive aging 

has described patterns of age-related changes in cognitive processes with older adults performing 

worse than younger adults on tests of attention, working memory and episodic memory and better 

on tests of general knowledge. More recent work in task-related functional neuroimaging has 

further elucidated the effects of aging on brain circuitry related to these cognitive processes. 

Generally, studies show that older adults activate regions of the frontal cortex more than younger 

adults while younger adults activate more posterior cortical areas. This paper describes normal 

patterns of cognitive change in healthy aging, describes how some of these processes can be 

explored with functional neuroimaging, and briefly describes the work attempting to describe 

differences between normal and pathological cognitive aging.
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Introduction

As people age, there are declines in cognition that fall short of dementia but still impact 

functional abilities and independence1. The goal of successful aging is to maintain intact 

cognitive functioning all the way until death. Normal cognitive aging is not dementia and 

does not result in the loss of neurons. Rather there are changes in brain functioning that may 

have a financial impact on society. Older adults with normal cognitive changes are more 

susceptible to financial scams and may have difficulty with financial decisions1. Moreover, 
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behaviors which affect health and safety (driving skills, health care decisions, medication 

adherence) also are impacted by normal variations in cognitive aging. First, it is necessary to 

understand how cognition changes in healthy older adults and that is the focus of this 

review. A second step would be to develop interventions that are likely to slow, stop, or 

reverse normal cognitive aging.

Cognitive Aging

The field of cognitive psychology is concerned with discovering the form of mental 

representation and the processes that access them. It is the study of how people perceive, 

learn, remember, and think about information. The study of cognitive aging seeks to 

examine how these processes change over time and between people. Normal aging has been 

defined as aging changes that occur in individuals free of overt diseases of the nervous 

system. Neurological disorders like Alzheimer’s disease (AD) and Parkinson’s disease (PD) 

are not normal manifestations of aging fated for everyone who lives long enough to have 

them. But these diseases do appear in an age-dependent manner and can share some 

cognitive features with normal aging making it difficult to completely distinguish between 

signs and symptoms of overt disease and normal aging. As there are decreases in biological 

functions and mental abilities that are normal and happen with the passage of time, it is 

helpful to understand these changes in order to understand what happens when there is 

disease in addition to the normal changes.

Specifically, studies in healthy older adults show declines in some cognitive domains while 

showing improvements in others. Most commonly, healthy older adults show impairments 

on tasks of attention, working memory, and episodic memory relative to younger adults 

(i.e., 2–4. However, older adults also show improvements on cognitive tasks where they can 

rely on experience to perform well such as tests assessing wisdom and general knowledge4. 

One way to conceptualize how aging affects cognition is through the model described 

below.

Model of Information Processing and Aging

Cowan5,6 proposed a model of information processing that describes the relationships 

between attention, working memory, and long term memory storage. In this model, working 

memory is conceptualized as the activated portion of long-term memory. Working memory 

contains information both inside and outside the focus of attention which has a very 

restricted capacity, limited in some cases to as little as one item (e.g.,7). In the context of the 

Cowan5,6 information processing model, aging may result in difficulties in controlling the 

focus of attention. Attentional control impairments imply that older adults allow both 

relevant and irrelevant information to enter into the focus of attention which will impair 

performance on any kind of task requiring the ability to differentiate relevant from irrelevant 

information. Older adults may also fail to suppress attention to irrelevant information that 

has already entered working memory8. Thus, the effect of aging on the focus of attention 

may be to blur the boundaries or widen the focus of attention such that older adults have less 

control over the content of what is currently within the focus of attention (see Figure 1).
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In the past two decades with the increased access to and availability of MRI scanners, 

studies have focused on the connection between brain functioing and cognitive processing. 

The relationship between brain functioining and cognition across the life span is a dynamic 

one. Understanding how age-related changes in brain functioning affects cognition is 

important for deliniating differences in normal and pathological aging.

Functional Neuroimaging Studies of Attention, Working Memory, and 

Episodic Memory in Healthy Older Adults

Older adults show impairments on tasks of attention, working memory and episodic memory 

relative to younger adults (i.e., 2–4). Age differences in brain activation in functional 

imaging studies during performance of attention, working memory and episodic memory 

tasks have been found in many studies (i.e. 9–11). These studies show similarities in 

activation patterns for older adults relative to younger adults across tasks. Generally, older 

adults show increases in frontal activation (e.g., 9) and decreases in occipitotemporal activity 

(e.g., 12) relative to younger adults. While this activation pattern was first described by 

Grady et al.12, Davis and colleagues 13 labeled the pattern the posterior-anterior shift in 

aging (PASA). PASA patterns have been seen in a number of different cognitive domains 

including tests of attention, working memory and episodic memory. Importantly, successful 

completion of each of these three tasks requires the control of attention. A summary of the 

prior imaging studies of older and younger adults in these cognitive domains is presented 

below.

Functional imaging studies of age differences in tasks requiring control of attentional 

resources show that older adults activate more regions of frontal cortex than younger adults 

(e.g., 10,14–16). In a study of age differences in Stroop interference, older and younger adults 

activated similar brain regions during the interference task, but older adults were slower to 

perform the task and showed more activation in regions of the frontal cortex relative to 

younger adults10. Older adults have also shown more frontal activation in tests of sustained, 

selective, and cross modal shifting attention (from auditory to visual;16). Thus, across a 

broad range of attention tasks, age differences in attentional control resulted in differences in 

brain activation such that older adults required increased frontal cortical activation.

Functional neuroimaging studies of working memory have shown that the age difference in 

working memory performance may be related to the ability to recruit frontal brain regions to 

compensate for poor performance. Increases in prefrontal activation for older adults relative 

to younger adults appear to depend upon successful task performance and suggest a 

compensatory process is involved in increased activation for older adults 17,18. Three 

examples across different tasks involving working memory processes support this proposal. 

First, Rypma and D’Esposito11 found that faster performing younger adults showed less 

dorsolateral prefrontal cortex activation relative to slower younger adults. However, faster 

performing older adults showed increased activation relative to slower older adults. Second, 

Mattay et al. 19 found that older adults who performed as well as younger adults on the 1-

back condition of an N-back working memory task activated more prefrontal cortex 

bilaterally. However, on the higher working memory load conditions of 2-back and 3-back, 

older adults performed worse and had less frontal activation than younger adults. Finally, 
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Grossman et al.20 found that on a sentence comprehension task with a high working memory 

component, older adults with equivalent comprehension scores as younger adults activated 

more premotor and inferior frontal cortices. Thus, although older adults performed similarly 

to younger adults in some working memory tasks, they required more frontal activation to 

do so.

Research on episodic memory shows that during encoding older adults activated more 

bilateral frontal areas compared to younger adults. Cabeza and colleagues9 have proposed 

the hemispheric asymmetry reduction for older adults (HAROLD) model of age differences 

in frontal cortex activation during memory tasks. This is an age-related modification of the 

hemispheric encoding/retrieval asymmetry (HERA; 21) pattern of brain activation often seen 

in younger adults where encoding processes activate left prefrontal cortex while retrieval 

processes activate right prefrontal cortex. Older adults showed a reduction in this asymmetry 

such that there was more bilateral activation in both encoding and retrieval tasks. Morcom et 

al.22 found encoding-related activity was left lateralized in younger adults as predicted by 

HERA and bilateral in older adults as predicted by HAROLD. Dennis et al.23 showed that 

older adults had increased left prefrontal cortex activity compared to younger adults for 

words that were successfully encoded relative to words that were forgotten. However, 

conflicting data have been found by Daselaar et al.24. They found that poor performing older 

adults had increased overall brain activity during episodic memory encoding relative to 

younger adults and a group of older adults who performed at the level of younger adults on 

an episodic memory task. Thus, the relationship between increased activation during 

episodic encoding and age remains to be further elucidated.

Work by Cabeza and colleagues 25 emphasized the similarities between age differences in 

brain activation seen across tests of visual attention, working memory, and episodic memory 

tasks in one study with the same group of subjects. Older adults showed increased activation 

in the prefrontal cortex and decreased occipital activations during all three task types. 

Cabeza et al. interpreted these findings as evidence that there are task-independent age-

related changes in brain activity representing sensory decline often seen in older adults, in 

addition to functional compensation for these sensory changes with recruitment of additional 

frontal cortical areas during these three tasks. Davis et al.13 further explored the PASA 

effect to examine whether this pattern resulted as an effect of task difficulty, whether it was 

related to compensation, and whether it generalized to activations on visual perception and 

episodic retrieval tasks. To investigate the difficulty explanation, Davis et al. 13 matched 

older and younger adults on task performance and the PASA pattern was still seen. Frontal 

increases were positively correlated with improved performance while occipital decreases 

were negatively correlated with performance thus providing evidence that the additional 

frontal activation is the result of neural compensation26. Finally, the deactivation pattern 

mirrored the activation pattern showing more deactivation in frontal regions and less 

deactivation in posterior cortex. Thus overall, these data patterns support the proposal that 

the PASA effect reflects age-related neural compensation to maintain adequate task 

performance.

To summarize the data from functional imaging studies of attention, working memory and 

episodic memory, age differences in brain activation were found across all tasks such that 
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older adults recruited more frontal cortical areas to perform at the same accuracy level as 

younger adults, supporting the proposal that the additional activation is the result of neural 

compensation17. Additionally, decreases in posterior cortical areas were seen, potentially 

indicating a shift toward a frontal cortex-dominated pattern of brain activation. In terms of 

the Cowan model, older adults may have difficulty controlling the focus of attention8,27. 

This difficulty may be reflected by an increased need to recruit frontal brain regions25 as 

well as lessen the ability to suppress activation of irrelevant information28.

Normal versus Pathological Aging: Functional Imaging Evidence

The studies reviewed above detailed differences in brain activation between younger adults 

and healthy older adults from cross sectional studies. However, understanding how normal 

aging develops into pathological aging requires additional examination of longitudinal 

studies as well as cross sectional studies comparing younger adults, healthy older adults, 

adults with mild cognitive impairment (MCI), and patients with Alzheimer’s disease (AD). 

Sperling and colleagues have conducted a number of studies examining normal aging in 

cross sectional studies29,30, longitudinal studies31, and in comparison to patients with age-

related pathologies30,32. These studies examined associative encoding during a face-name 

encoding task in healthy younger and older adults as well as in adults with MCI and AD to 

examine the age and disease effects on episodic encoding and related brain functioning 

during the this task30,33,34. The task activates an episodic encoding network that includes the 

hippocampus, dorsolateral prefrontal cortex, fusiform cortex, and the pulvinar nucleus of the 

thalamus; decreased activation was found in the posterior cingulate cortex35. One study 

directly comparing healthy younger and older adults found similar hippocampal activation 

but different activation patterns in the frontal and parietal cortices34. Both older and younger 

adults showed increased hippocampal activation during successful encoding of face-name 

pairs that were successfully remembered33. When healthy older adults were followed 

longitudinally and performed the fMRI face-name encoding task two years after a baseline 

assessment, decreased hippocampal activation was associated with clinical decline31, 

implying that decreased hippocampal activation in healthy older adults may be a biomarker 

for pathological aging.

To describe differences between normal and pathological cognitive aging, it is necessary to 

examine differences between those with normal cognition and those with MCI and AD. 

Cross sectional studies of healthy older adults and those with MCI showed mixed results 

with some studies showing hyperactivation for the MCI group32,36 while other showed 

hypoactivation for the MCI group37,38 compared to the healthy older adults on tests of 

episodic memory. When task-related activation of those with AD was compared to healthy 

older adults, generally decreases in task-related activation have been seen in medial 

temporal regions (i.e., 30,36). However, hypoactivation has also been observed in frontal 

regions and is interpreted as a compensation response to the inability to engage medial 

temporal regions30.

Overall, task-based fMRI data showed mixed results for discriminating normal aging from 

MCI and AD. It appears to depend on the progression of MCI or AD30. Additional 

information is needed to interpret the fMRI task-based differences between normal and 
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pathological aging. More recent studies are examining how genetic risk for AD, APOE 

genotype in particular, and amyloid load contribute to differentiating between normal and 

pathological cognitive aging39–42. These studies generally show that between 20 – 30% of 

older adults who show no clinical evidence of cognitive decline have significant amyloid 

burden. In addition, studies have shown that amyloid plaques have been seen approximately 

20–30 years prior to the development of cognitive decline43. As the access to amyloid 

imaging becomes more widely available, studies are following adults at younger ages before 

disease begins to fully understand how amyloid and APOE genotype affect the trajectory of 

the development of pathological cognitive aging. How these processes relate to cognitive 

performance and affect brain functioning continues to be examined.

Summary

Research on cognitive aging has flourished in recent years detailing how cognitive processes 

change with increasing age. In addition neuroimaging studies examining the effects of aging 

on brain circuitry show consistent patterns across a number of cognitive tasks. Recent work 

is being done to examine biomarkers that differentiate normal and pathological cognitive 

processes and studies in the near future will be able to describe how these biomarkers relate 

to patterns of normal cognitive aging shown during fMRI. At this time the data appear to be 

mixed in terms of the consistent patterns for discriminating normal and pathological aging 

using taskrelated fMRI alone. However, the examination of amyloid load and APOE 

genotype is providing more context with which to interpret the task-based fMRI data. 

Continued efforts in identifying and defining normal aging and the development of methods 

to slow or reverse it will be useful in continuing to differentiate normal from pathological 

cognitive processes.
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Figure 1. Model of Cognition and Aging
Figure 1 diagrams a model of age-related changes in cognition based on the model of 

Cowan5,6 and includes patterns of brain activation as measured by fMRI. Dotted and grayed 

lines indicate impairments. When younger adults (left panel) perform attention and memory 

tests they show brain activation patterns that are balanced between occipital and frontal 

regions or even have a shift towards greater posterior activation. Normal cognitive aging 

(middle panel) may degrade the control processes of the focus of attention (FOA) thereby 

affecting working memory and long-term memory. The functional activation patterns show 

increased in frontal activation relative to posterior regions. Lifestyle modifications may be 

effective in slowing or reversing some of the aspects of cognitive aging. Cognitive 

dysfunction seen in pathological cognitive aging may affect all aspects of cognition. The 

activation patterns will show decreases in frontal and occipital regions.
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