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Abstract

Insecticide resistance is a major obstacle to control of Anopheles malaria mosquitoes in sub-

Saharan Africa and requires an improved understanding of the underlying mechanisms. Efforts to 

discover resistance genes and DNA markers have been dominated by candidate gene and 

quantitative trait locus studies of laboratory strains, but with greater availability of genome 

sequences a shift toward field-based agnostic discovery is anticipated. Mechanisms evolve 

continually to produce elevated resistance yielding multiplicative diagnostic markers, co-screening 

of which can give high predictive value. With a shift toward prospective analyses, identification 

and screening of resistance marker panels will boost monitoring and programmatic decision 

making.

Emerging resistance to insecticides: a challenge to malaria control

Malaria remains a dominant cause of morbidity and mortality in many sub-Saharan African 

countries, but over the last decade anti-malaria interventions have achieved major successes 

[1]. These gains are strongly associated with a scale-up in application of neurotoxic 

insecticides via indoor residual spraying (see Glossary- IRS), insecticide treated bednets 

(ITNs) and long-lasting insecticidal nets (LLINs) [1]. Fast-acting insecticides are the 

mainstay of IRS and ITNs/ LLINs and will play a major role in malaria control for the 

foreseeable future. Unfortunately, the potency of such insecticides also represents their 

evolutionary Achilles heel because in large vector populations, strong insecticidal selection 

leads inexorably to insecticide resistance [2]. This situation is becoming acute in Africa with 

widespread resistance to the limited arsenal of available insecticide classes [3–5] (see 

accompanying article by Ranson and Lissenden [6]). However, whilst resistance to some 

compounds, such as dichlorodiphenyltrichloroethane (DDT) and class I pyrethroids, is near-

ubiquitous in Anopheles gambiae and Anopheles funestus, the prevalence and levels of 

resistance to other insecticide classes remain highly variable [4, 5, 7]. Thus there is still an 
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opportunity for malaria control programmes to employ insecticide resistance management 

(IRM) approaches to preserve or recover insecticide efficacy [8]. This is a key goal, equally 

important now and when new insecticide classes become available within the next decade.

In this article we discuss approaches to identify and validate insecticide resistance associated 

markers that we argue will be central to the sustained reduction of malaria transmission 

(Figure 1).

Discovery of insecticide resistance associated variants

Identification of DNA polymorphisms linked to insecticide resistance has taken two 

principal approaches (i) candidate gene studies, in which a specific gene or set of genes are 

targeted based on pre-existing information or hypotheses, and (ii) "hypothesis-free" or 

agnostic genomewide studies, in which no a priori candidate information is used; rather the 

genome or transcriptome is scanned for phenotype-associated variants.

Candidate gene studies

The simplest candidate gene studies involve sequencing the gene encoding the target site of 

an insecticide. Commonly, the next step is to associate DNA polymorphisms with resistance 

using resistant and susceptible mosquitoes selected by insecticide exposure or derived from 

characterized strains. However, given the wealth of data from a variety of taxa and the 

availability of predictive models (e.g. [9, 10]), simply identifying non-synonymous changes, 

novel to the species in question can be an important first step in the discovery process. This 

strategy works well for the loci which encode the proteins targeted by insecticide, because 

they are functionally-essential genes, subject to strong purifying selection and evolutionary 

conservation [9, 11, 12]. This strategy has been less successful for alternative mechanisms 

of resistance, such as cytochrome P450 mediated metabolic detoxification, in which gene 

families may be less highly conserved and closely related taxa may exhibit independent 

evolutionary radiations [13].

From the perspective of resistance marker discovery, if not sustained public health control, 

functional constraint on target loci is beneficial because: (a) variants in the target site 

conferring resistance are typically deleterious in the absence of insecticide [14, 15] and thus 

unlikely to have existed at appreciable frequency before insecticide deployment; (b) capacity 

to survive a generally effective, widely applied insecticide is likely to be a very strongly 

selected trait, even when generated by a mutation with serious side-effects [15]. Together 

these properties combine to generate strong signals of selection within the genome, evident 

as reduced diversity and enhanced linkage disequilibrium (LD), that localizes to target site 

mutations but extends throughout the gene [16] or even far beyond [12].

A candidate gene study that exploited this expectation of elevated LD around selected 

variants identified a novel mutation in the Anopheles gambiae voltage gated sodium channel 

(Vgsc), the target site of DDT and pyrethroid insecticides (Figure 2). The mutation 

discovered, Vgsc-N1575Y, has a single origin, and always occurs with the well-known 

Vgsc-1014F mutation [17]. Such mutations might compensate for the fitness costs of major 

variants, but both data from natural populations and subsequent functional validation [18] 
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demonstrated the effect of Vgsc-1575Y is synergistic, multiplying the resistance conferred 

by Vgsc-1014F [18, 19].

Beyond target sites: candidates for metabolic resistance

Independent studies, often using quite different designs, have converged upon a relatively 

small number of resistance associated variants which have been validated by several in vitro 

and in vivo models including recombinant protein assays [20] and heterologous expression 

in Drosophila melanogaster [21–23]. Gene expression studies have repeatedly identified 

cytochrome P450s as linked to pyrethroid resistance, especially those from the Cyp6 

subfamily, such as: Cyp6P3, Cyp6M2 and Cyp6Z2 [24, 25] in An. gambiae; Cyp6P4 in 

Anopheles arabiensis [26, 27]; Cyp6P9a,b, Cyp6P4a,b, and Cyp6M7 in An. funestus [22, 28, 

29]. Following identification of phenotypic links in microarray studies, Cyp6P3 [23] and 

Cyp6M2 [21, 23] have also been shown to play a role in resistance to carbamates, and to 

both carbamates and DDT, respectively. Resistance across unrelated insecticide classes 

caused by allelic and expression variation in P450s is extremely problematic for insecticide 

resistance management, limiting options for rotation or combination in a way that is 

currently difficult to predict. Functional involvement of epsilon class glutathione-S-

transferase genes, via metabolism of DDT is well-established [30], with repeated implication 

of glutathione S transferase E2 (GSTe2) as the primary candidate in An. gambiae [31–33] 

and An. funestus [29]. In spite of convergence in identification of key metabolic candidate 

genes, the role of additional genes and gene families should not be discounted, though their 

exact mode of action in producing resistance may not be understood. For example, gene 

expression microarray studies comparing resistant and susceptible (control) mosquito strains 

have detected up-regulation of a range of transporters including aquaporins which regulate 

the flow of water and other small molecules across cellular membranes, and ATP-binding 

cassette (ABC) transporters, which move solutes across lipid membranes [21, 22, 29], with 

ABC transporters linked to both pyrethroid and DDT resistance in An. funestus. Coordinated 

expression of detoxification, sequestration, metabolite-conjugation and transporter genes, 

could form part of an integrated metabolic resistance response, and emphasises the need to 

obtain a more holistic view of resistance mechanisms.

Examples of larger-scale genotyping-based candidate studies in Anopheles are limited, likely 

due to the difficulty in identification of convincing candidates and the high cost of focal 

genotyping at an appropriate scale. Taking inspiration from the Anopheles gambiae ‘detox’ 

gene expression microarray chip [32], which targeted 265 genes primarily from, but not 

limited to, major detoxification gene families (P450s, GSTs, carboxylesterases, etc), we 

designed an Illumina Goldengate 1536 SNP genotyping array [34]. Although relatively well-

powered, and with evidence from a complementary study which showed elevated expression 

of some of the candidate genes [35], the primary discovery was a replicated association of 

Vgsc-1014F with resistance to permethrin an insecticide widely used on ITNs [34]. This 

illustrates both the relative ease with which target site mutations can be identified and the 

greater difficulty in identification of markers associated with polymorphisms altering gene 

expression. This may be due to a combination of weaker selection, trans-regulation [29] or a 

qualitatively different nature of selective sweeps, the reduced variation in DNA 

polymorphisms surrounding a strongly selected locus, on the regulatory variants.
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Agnostic discovery via genomewide studies

Quantitative trait locus mapping. Quantitative trait locus (QTL) mapping requires little a 

priori genomic information, and whilst there are now 16 Anopheles genomes sequenced [36] 

there are still numerous regionally important vectors without this resource where QTL 

mapping may remain the preferred approach. The basic QTL design is to cross strains 

differing in phenotype to produce F1 hybrids, which are then backcrossed to parental strains 

or inter-crossed to produce an F2 generation to separate loci generating the phenotype from 

their native genomic background. Ideally alleles at the markers (most commonly 

microsatellites and SNPs) can be traced unambiguously from offspring to both parents 

(fully-informative). The genomes of offspring from separate families are screened and their 

phenotype of interest scored, and the association between marker alleles and phenotype 

determined as a LOD (logarithm of odds) score, which describes the likelihood of co-

inheritance of a marker and the causal genetic factor underpinning the phenotype. 

Genetically differentiated strains are used to increase the likelihood that markers will be 

informative and QTL analyses benefit from use of fully inbred lines of distinct phenotype of 

the kind readily available for laboratory models such as Drosophila melanogaster [37]. 

Unfortunately lines with such levels of inbreeding are extremely difficult to produce in 

Anopheles [38]. Therefore, partially-inbred laboratory colony strains, selected for divergent 

phenotypes, are usually used [39, 40]. However, a potential pitfall is the relevance of 

variants in strains to those circulating in nature [15]. Unfortunately the use of near field-

strains [27] or natural pedigrees [41], whilst more likely to be field-relevant creates 

difficulties in obtaining sufficient family sizes and informative markers [41].

A more pervasive concern is the identification of huge QTL regions, which in F2 designs in 

Anopheles typically exceed 10 Mb [27, 42, 43]. These loci may harbour hundreds to 

thousands of genes, which makes it necessary to focus on known candidate genes within the 

region, with consequent reduction in the objectivity of the study. Production of advanced 

intercross lines (AILs), lines which are interbred for a greater number of generations, helps 

to narrow the QTL region by increasing the number of recombinant events. Wondji et al., 

though working with the marginally tractable species A. funestsus, produced F6 and F8 AIL 

generations, mapping of which halved the size of the original QTL and also identified two 

additional QTL [42]. Segments of the major and one minor QTL [44], as defined by their 

respective LOD scores, were incorporated into bacterial artificial chromosome (BAC) clones 

and sequenced with CYP6 P450 genes discovered therein proving to be strongly and 

repeatedly associated with pyrethroid resistance [22, 29].

To fully exploit the benefits of increased recombination in AIL, designs incorporating larger 

numbers of markers are required than for F2 crossing designs. At this scale microsatellites 

are better replaced by SNPs, although direct genotyping of hundreds of SNPs is expensive. 

Promising alternative approaches are the use of reduced representation sequencing (RAD-

seq) of individuals or whole genome sequencing of pools of individuals representing family 

level phenotypes [45]. At some point in the localization process, however, the balance will 

shift from the advantage of further generations of intercrossing to fine mapping using natural 

Anopheles populations within which there is little linkage disequilibrium [34, 46].
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Association studies in natural populations

The major advantage of association studies is their capacity to screen wild populations in 

which functional variants are segregating and, if conducted at a sufficient scale as 

genomewide association studies (GWAS), yield a truly agnostic discovery pipeline. GWAS 

involves screening large numbers of markers (typically 104–106) to identify those where 

allele or genotype frequencies differ significantly between phenotype groups; whilst 

conceptually straightforward, in practice GWAS suffer from several limitations. Cryptic 

population subdivision, a common observation in Anopheles mosquitoes, can be a major 

source of false positive associations where allele frequency differences primarily reflect 

population subdivision, rather than association with the target phenotype [34]. Especially 

relevant to studies of insecticide resistance, is the instability of the frequencies of causal 

variants for traits under strong selection [47]. Rare variants, i.e. those where the frequency 

of the minor allele is low, are statistically difficult to detect [34]. Given the low background 

LD in Anopheles, the cost of genotyping the hundreds or even thousands of samples required 

at sufficient markers to approach true genomewide coverage has precluded individual-based 

approaches. However GWAS studies of insecticide resistance using pooling of samples 

genotyped by whole genome sequencing are currently ongoing in Anopheles. Analogous 

studies in Drosophila have provided highly accurate estimates of allele frequencies and have 

good statistical power at moderate cost [48]. The principal limitation of the pooling 

approach is that with large pool sizes, recovery of haplotype information is very difficult, 

making a replication stage with individual mosquitoes especially important. Individual based 

GWAS are becoming feasible as sequencing costs continue to fall.

Validation of resistance associated variants

Once a candidate gene has been identified, either in vitro or in vivo experiments can be 

performed to provide a functional explanation for the association with insecticide resistance 

(Figure 3. If the candidate gene encodes an enzyme thought to metabolize an insecticide, 

recombinant expression in E. coli followed by an enzymatic assay can be used to measure 

activity. Expression in Drosophila melanogaster followed by insecticide bioassays can be an 

efficient method to screen several candidates in vivo [22]. An analogous approach using 

Xenopus eggs is available for some membrane transporters [49] and ion channels [18] but 

there are many candidates for which there is no heterologous expression-based, functional 

validation platform. Candidate gene expression in A. gambiae can be time-consuming, but 

offers the opportunity to characterize the pleiotropic functions of a gene i.e. for both general 

mosquito physiological processes and insecticide resistance phenotype. For example, RNAi-

mediated gene silencing can be used to transiently suppress candidate gene expression in 

mosquitoes prior to insecticide exposure. An additional tool for manipulating gene 

expression is the Gal4-UAS transgenic system, which may be used to direct ubiquitous or 

tissue-specific transgene expression in A. gambiae (Figure 3) [50]. Lastly, a genome-

engineering tool which shows great promise for studies of gene function is the CRISPR-

Cas9 system (Figure 3) [51]. A recent study detailed the function of CRISPR-Cas9 in the 

mosquito Aedes aegypti, and provided a practical guide which could be adapted for use in A. 

gambiae [52]. Once the expression of a candidate gene has been altered, its impact upon 

fitness parameters such as development, reproduction, aging, and insecticide resistance can 
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be tested. Functional validation can elucidate the mechanism underlying insecticide 

resistance and thereby yield new strategies for combating the spread of resistance genes.

Opportunities and challenges to the application of markers for resistance 

monitoring and diagnosis

Despite major advances in identification and characterization of resistance mechanisms [17, 

21, 23, 33] and the availability of resistance DNA diagnostics [17, 33, 53], positive impacts 

on disease control programmes to date have primarily been limited to retrospective analyses 

of changes in insecticide application [54, 55]. A change toward prospective analyses which 

directly guide management strategies is urgently required; this will need geographically 

tailored data not only on the presence of resistance mechanisms in Anopheles populations, 

but on their quantitative predictive value for phenotypic resistance. Although a variety of 

phenotypic resistance ‘diagnostics’ exist (see accompanying article by Ranson and 

Lissenden [6]), DNA markers offer ready calibration for predictive value, sensitivity and 

specificity and can be highly diagnostic.

Not surprisingly, the power to detect significant association, and thus the direct utility of 

DNA markers as diagnostics for resistance depends strongly on effect size. This effect size 

may be consistently strong for markers at the acetylcholinesterase (Ace-1) target site, but 

can be much more variable for some Vgsc mutations (Table 1). However, whether a marker 

is intended for use as a diagnostic or monitoring tool or is in the process of post-discovery 

replication validation, study sample sizes must be considered carefully to avoid false 

rejection of association due to lack of statistical power. Moreover, variability in effect sizes 

among studies (Table 1), which may be in part methodological but probably also reflects 

true geographical variation, argues against any strict threshold of epidemiological 

significance at present. Consequently we suggest to retain markers demonstrated as 

significantly associated as part of screening panels, with integrated analyses applied (e.g. 

stepwise logistic regression or haplotype association testing) to avoid the statistical penalty 

of multiple testing and estimate their relative importance. Efforts are underway to associate 

resistance diagnostics with epidemiological impacts [56] or transmission proxies such as 

sporozoite rates, which may aid development of epidemiological thresholds for significance.

In the absence of geographically relevant data, marker application tends to be limited to 

research groups documenting changes in resistance allele frequencies as they accelerate 

towards fixation [16], at which point they may attract attention of programmatic decision 

makers [54]. One of the unfortunate impacts of this delayed knowledge transfer is that once 

a resistance marker approaches fixation in a population, the power to detect a significant 

association with resistance phenotype declines, although the marker can retain its predictive 

power at an inter-population level [47]. Under strong selection, resistance will continue to 

evolve, for example via synergistic mutations or copy number variation (Figure 2), and our 

capacity to track such temporal changes must follow suit.

Whilst there exists a number of markers which are reliably associated with a resistance 

phenotype, a substantial proportion of variance in susceptibility remains unexplained. For 

example, in a recent study of A. gambiae from West Africa three DNA markers were only 
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able to explain approximately 50% of the variance in DDT susceptibility [33]. A 

combination of environmental variation [56], interactions between resistance markers [7, 

23], and expression-based resistance mechanisms [21, 23] may account for the remaining 

variation in susceptibility. This highlights the need for markers for regulators of the key 

metabolic resistance genes discussed above. Fortunately, novel metabolic and target-site 

resistance associated variants are likely to emerge from the Anopheles gambiae 1000 

Genomes (Ag1000G) project (http://www.malariagen.net/projects/vector/ag1000g). To date 

this project has whole-genome sequenced over 1600 samples from 13 countries with an aim 

of producing a comprehensive reference database of genetic variation in A. gambiae from 

sub-Saharan Africa. Data have already been released in advance of publication as a service 

to the community (http://www.malariagen.net/data/ag1000g-phase1-preview), and plans for 

developing similar resources for other vector species are well advanced. The challenge will 

then be to work with intervention programmes to use these diagnostics predictively and at 

the fine temporal and spatial scales that IRM requires.

Concluding Remarks and Future Directions

While insecticide resistance is viewed as a threat to the efficacy of LLIN and IRS 

interventions, its effects on entomological outcomes and disease transmission have proven 

difficult to quantify [57, 58]. It cannot be assumed that a resistant mosquito will exacerbate 

malaria transmission, as the genetic variants which confer resistance may also alter mosquito 

survival and vectorial capacity. While there are few studies of the life history traits of 

resistant Anopheles mosquitoes, target site mutations have been associated with a fitness 

burden, reducing reproductive competitiveness and the survival of pupae [59, 60]. Another 

factor that may influence the vectorial capacity of resistant mosquitoes is the developmental 

regulation of resistance gene expression [61]. For instance, a resistance gene whose 

expression decreases with increasing age may enable a young mosquito to survive 

insecticide exposure, yet offer no protection for older, potentially infective females. Finally, 

resistance genes may alter mosquito physiology in a way which directly or indirectly affects 

parasite development. A study of mosquitoes bearing the Ace1-119S or kdr mutations 

revealed a higher prevalence of P. falciparum infection in the resistant strains [62].

In summary, insecticide resistance may impact mosquito lifespan, vary with mosquito age, 

and perturb parasite development—all factors which confound the measurement of its 

impact upon malaria transmission. Use of diagnostic markers to relate such variables to 

specific mechanisms, rather than general phenotypic resistance should provide more precise 

quantification (Outstanding questions box). Improved standardization of assays is required 

to elucidate marker effect sizes, however, some degree of geographical variation clearly 

exists and needs to be taken into account to optimize marker application in monitoring 

programs. It is essential that the development and implementation of diagnostics keeps pace 

with the ineluctable evolution of resistance and expands to encompass both well-

characterized and novel mechanisms such as copy number variations, epigenetic 

modifications and microRNAs. Finally, once new insecticides become available for disease 

vector control it is crucial that we adopt a pre-emptive framework to identify resistance and 

resistance mechanism before they become important in natural populations.
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Glossary

Acetylcholinesterase 1 A catalytic enzyme involved in neurotransmission, and the 

target of carbamate-class insecticides.

Effect size A measurement of the size of the difference between two 

groups. One measurement of effect size, an odds ratio, 

compares the odds that a treatment will produce an outcome 

relative to a control group.

Genomewide association 
studies

A method which detects associations between genetic 

variants, such as single-nucleotide polymorphisms, and an 

observed phenotype.

Indoor residual spraying Coating the indoor wall surfaces of a house with an 

insecticide, such as DDT or bendiocarb, for the purpose of 

killing mosquitoes that rest upon these surfaces after feeding.

Insecticide treated 
bednets

Pyrethroid-treated nets that form a protective barrier against 

mosquitoes when suspended over a sleeping person.

Insecticide resistance 
management

The global plan for insecticide resistance management in 

malaria vectors, as defined by the World Health 

Organization, is a strategy which includes goals such as 

slowing the spread of resistance, improving understanding of 

insecticide resistance, and developing new vector control 

tools.

Linkage disequilibrium The non-random association of alleles at different loci. It 

determines power of association mapping in a species.

Long-lasting insecticidal 
nets

A class of pyrethroid-treated bednet that is designed to resist 

wear and tear for multi-year use without insecticide 

retreatment.

Quantitative trait locus 
mapping

A method in which strains, differing in phenotype, are 

crossed to separate loci generating the phenotype from their 

native genomic background. Markers such as microsatellites 

and SNPs can be traced from offspring to parents, permitting 

identification of the genomic region associated with the 

phenotype.

Voltage gated sodium 
channel

Transmembrane proteins that transmit electrical signals in 

excitable cells, and the target of both DDT and pyrethroid 

insecticides.
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Trends box

• Insecticide resistance in African Anopheles malaria vectors is a growing 

problem. Diagnosis and monitoring for insecticide resistance management 

would be aided by wider application of DNA markers.

• Protein altering mutations in the conserved genes encoding insecticide target 

sites are often associated with insecticide resistance and are readily diagnosed. 

Emerging studies suggest that mutations accumulate in these genes and can act 

synergistically.

• Convergent results identify cytochrome P450s as crucial in metabolic resistance. 

Some of these genes confer resistance across multiple insecticides but few DNA 

markers are available.

• New genomic resources and functional validation approaches will shortly yield 

additional resistance associated variants for monitoring and evaluation.
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Outstanding Questions Box

• How important are individual metabolic resistance genes for resistance in the 

field? Target site resistance is clear and readily quantifiable, but current paucity 

of markers for metabolic resistance genes limits predictions to correlations and 

laboratory predictions.

• How many resistance markers are required for an informative diagnostic panel? 

Some existing markers such as Ace1 G119S are highly predictive, but will be 

decreased by increasing population frequency and evolution of additional 

resistance mechanisms. The answer to this question is likely to change over time 

and it is crucial that marker discovery pipelines keep pace with vector evolution.

• Will resistance mutations drop in frequency once insecticides are withdrawn? 

This question has proved difficult to answer to date owing to limitations in 

insecticide replacement, markers for metabolic resistance and knowledge of 

mutation fitness costs, but is crucial for insecticide resistance management.

• On what geographic scale do insecticide resistance mechanisms vary? 

Regionally or between adjacent villages? Variation in the type and frequency of 

resistance mechanisms, especially target site, is well known in East vs. West 

African comparisons, recent studies suggest more fine-scale heterogeneities but 

more studies are urgently required.

• How will currently unknown resistance mechanisms be discovered and 

validated? This will require a shift to truly agnostic studies with sufficient 

statistical power and replication for confident identification of genes and 

mutations, coupled with increased application of promising but largely untested 

methods for gain and loss of function validation approaches.

• What pre-existing mechanisms may impact novel insecticides? The answer to 

this will hopefully be none, but it is essential that novel compounds are screened 

for interactions with known resistance mechanisms prior to wide-scale field 

implementation.
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Figure 1. DNA-based resistance marker discovery pipeline
The discovery pipeline begins with an observation of a decreased insecticide sensitivity 

phenotype in one or more Anopheles populations. Possible options for discovery then 

diverge. On the left hand side mosquitoes are tested for insecticide resistance (typically 

using bioassays) from within a single population, yielding resistant and susceptible 

mosquitoes for whole genome genotyping. On the right hand side mosquitoes from separate 

populations of known phenotype are compared (the samples themselves may or may not be 

phenotyped) by whole genome genotyping. The former lessens the risk of false positives but 

at a possible cost of reduced sensitivity. In both cases, the next step involves comparison of 

allele frequencies between the groups of different resistance status, though the exact 

analyses and metrics may be different for within and among population analyses. Collection-

appropriate population genetic analyses are conducted to localise signatures of selection and 

inter-population divergence to genomic regions, and representative markers from these 
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regions are used for replication of genotype:phenotype associations in independent samples. 

Figures 2 illustrates a different, but overlapping approach for discovery from a known 

candidate gene, whereas Figure 3 illustrates the alternative functional validation pathway.
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Figure 2. Discovery, assessment and validation of a novel target site mutation
(A) Sequencing of the insecticide target site gene, Vgsc, detected a non-synonymous 

polymorphism, N1575Y. Genotyping of resistance-phenotyped mosquitoes from Burkina 

Faso revealed that for dichlorodiphenyltrichloroethane (DDT) and two pyrethroid 

insecticides (average odds ratios, (OR) across insecticides are shown) 1575Y significantly 

added to the resistance conferred by 1014F, in both Anopheles gambiae (OR inside triangle) 

and Anopheles coluzzii (OR outside triangle) [17]. (B) Functional validation of the 

synergistic effect of 1014F and 1575Y on pyrethroid resistance was provided via expression 

in Xenopus oocytes which demonstrated that 1575Y alone conferred no resistance. 
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Quantitatively, the y-axis shows the concentration of insecticide required to activate 20% of 

sodium channels on a linear scale of 0–10µM [18]. (C) Vgsc-1575Y is widespread across 

West and West-Central Africa (pie chart colours correspond to haplotype colours in A) but 

not in East Africa to date (data from [17] and http://www.malariagen.net/projects/vector/

ag1000g).
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Figure 3. Strategies for functional validation of novel resistance-associated candidate genes or 
allelic variants
Validation of a resistance candidate is often performed using multiple in vitro and in vivo 

strategies, however the choice of organism may depend upon cost, timescale, and the 

availability of insect culturing facilities. Two transformation systems that have the potential 

for high-throughput screening of candidates are Gal4-UAS and CRISPR-Cas9 [50, 51]. 

Gal4-UAS allows for conditional transgene expression, as your gene of interest is under the 

transcriptional control of Gal4 binding sites. The Gal4 yeast transactivator is encoded by a 

separate transgene containing user-selected regulatory sequences. Your gene of interest is 

expressed only when these two transgenes are joined in a single organism through genetic 

crosses. Alternatively, the CRISPR-Cas9 transformation system can be used if the desired 

outcome is a site-specific mutation or transgene insertion. When provided either in vivo or 

in vitro, the Cas9 nuclease creates double-stranded breaks in genomic DNA sequences 

complementary to a single guide RNA. These breaks are most commonly repaired through 

non-homologous end joining, which results in short insertions and deletions. If a plasmid 
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DNA donor containing regions of homology is provided, homology-directed repair can 

result in insertion of donor sequence.
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