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Abstract

Background—The extent to which clinical breast cancer risk prediction models can be 

improved by including information on known susceptibility single nucleotide polymorphisms 

(SNPs) is not known.

Methods—Using 750 cases and 405 controls from the population-based Australian Breast 

Cancer Family Registry who were younger than 50 years at diagnosis and recruitment, 

respectively, Caucasian and not BRCA1 or BRCA2 mutation carriers, we derived absolute 5-year 

risks of breast cancer using the BOADICEA, BRCAPRO, BCRAT, and IBIS risk prediction 

models and combined these with a risk score based on 77 independent risk-associated SNPs. We 

used logistic regression to estimate the odds ratio per adjusted standard deviation for log-

transformed age-adjusted 5-year risks. Discrimination was assessed by the area under the receiver 

operating characteristic curve (AUC). Calibration was assessed using the Hosmer–Lemeshow 

goodness-of-fit test. We also constructed reclassification tables and calculated the net 

reclassification improvement.

Results—The odds ratios for BOADICEA, BRCAPRO, BCRAT, and IBIS were 1.80, 1.75, 

1.67, and 1.30, respectively. When combined with the SNP-based score, the corresponding odds 
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ratios were 1.96, 1.89, 1.80, and 1.52. The corresponding AUCs were 0.66, 0.65, 0.64, and 0.57 

for the risk prediction models, and 0.70, 0.69, 0.66, and 0.63 when combined with the SNP-based 

score.

Conclusions—By combining a 77 SNP-based score with clinical models, the AUC for 

predicting breast cancer before age 50 years improved by >20%.

Impact—Our estimates of the increased performance of clinical risk prediction models from 

including genetic information could be used to inform targeted screening and prevention.
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Introduction

Information from breast cancer risk prediction models is important at the population level to 

aid decisions on the cost-effective use of limited resources for screening and prevention. It is 

also useful at the individual level to help women make decisions on screening or prevention 

tailored to their specific circumstances (1–3). Commonly used breast cancer risk prediction 

models include: BOADICEA (4, 5) and BRCAPRO (6–8), both of which are based on 

pedigree data for breast and ovarian cancer; BCRAT (9, 10), which is based on established 

risk factors and first-degree family history of breast cancer; and IBIS (11), which is based on 

established risk factors and first-degree and second-degree family history of breast cancer. 

There have been several prospective validation studies of these models across different age 

distributions and geographic locations with varied results (12–16). Risk prediction models 

need to be well calibrated to provide accurate information on the proportion of the 

population that will develop the disease, and they also need sufficient discriminatory 

accuracy to be clinically useful. Reclassification tables can be used to quantify the 

proportion of women that moves into, or out of, clinically important risk categories (17).

Since 2007, genome-wide association studies have identified many single nucleotide 

polymorphisms (SNPs) that are each associated with a small increment in breast cancer risk. 

While no single SNP is causal or informative on its own, considering the combined 

associations of these SNPs has the potential to improve estimates of individual breast cancer 

risk, as has been recently shown by the Breast Cancer Association Consortium (18).

Modelling and empirical studies have quantified how much the area under the receiver 

operating characteristic curve (AUC) for BCRAT can be increased by including 7 SNPs 

(19–21) or 10 SNPs (22). Other analyses have shown how the classification of women into 

high-risk groups is improved by including 7 SNPs (19, 20, 23) or 15 SNPs (24) to BCRAT. 

Analyses of 18 SNPs (25) and simulations of 67 SNPs (25, 26) have demonstrated 

improvement in the ability of IBIS to discriminate women at high risk of breast cancer, 

while the addition of 76 SNPs and a measure of mammographic density has been shown to 

increase the AUC for the Breast Cancer Surveillance consortium risk prediction model (27).

Recently, 77 SNPs have been identified that are independently associated with breast cancer 

and a combined risk score with an AUC of 0.622 (95% CI 0.619, 0.627) and accounts for 
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14% of the familial aggregation of breast cancer (18). This large multi-center study, 

however, did not include information on family history and other risk factors, so the clinical 

utility of the current best SNP-based risk prediction has yet to be formally addressed.

We previously investigated combining the BCRAT risk prediction model with a risk score 

based on 7 SNPs (19). We now investigate the extent to which risk estimates obtained from 

BOADICEA, BRCAPRO, BCRAT, and IBIS can be improved, in terms of their calibration 

and discriminatory accuracy, by combination with a risk score based on the previously 

identified 77 SNPs (18).

Materials and Methods

Sample

We studied cases and controls from the population-based component of the Australian site 

of the Breast Cancer Family Registry (ABCFR), which has been described in detail 

previously (28–30). Cases and controls were recruited during 1992 to 1999, and were adult 

women living in metropolitan Sydney or Melbourne. Cases were identified from the 

population-complete cancer registries in New South Wales and Victoria, and included all 

women aged less than 40 years and a random sample of women aged 40 to 59 years at 

diagnosis of a histologically confirmed first primary invasive breast cancer. Controls were 

selected from the electoral roll (to which registration is compulsory for Australian citizens) 

using proportional random sampling based on the expected age distribution of the cases. All 

cases and controls completed an interviewer-administered questionnaire that asked about 

established and putative risk factors for breast cancer and details of cancer diagnoses 

concerning themselves and their first-degree and second-degree adult relatives. Participants 

were also asked to provide a blood sample.

The ABCFR recruited 1,223 cases and 805 controls who were aged under 50 years at 

diagnosis and recruitment, respectively. Of these, 905 (74%) cases and 490 (61%) controls 

provided a blood sample, and genotyping was performed by the Collaborative Oncological 

Gene-Environment Study for the 750 cases and 405 controls who were Caucasian and not 

known to be carriers of mutations in BRCA1 or BCRA2. Estrogen receptor (ER) and 

progesterone receptor (PR) status was available for 416 (55%) of the cases. For BCRAT, 

risk score calculations were limited to the 568 cases and 280 controls aged 35 years or older 

at diagnosis and recruitment, respectively. Genotyping was performed by the Collaborative 

Oncological Gene–Environment Study (www.cogseu.org) using a custom Illumina iSelect 

array (31). The 77 SNPs used in this study were those used by Mavaddat et al. (18).

Ethics approval for the study was granted by the human research ethics committees of the 

University of Melbourne, the Victorian Cancer Council and the New South Wales Cancer 

Council.

Risk Prediction Models

We calculated the 5-year absolute risk of invasive breast cancer at baseline using four risk 

prediction models: BOADICEA (4, 5), BRCAPRO (6–8), BCRAT (9, 10), and IBIS (11). 

For cases, we ignored personal breast cancer diagnosis in the risk calculations. For 
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BOADICEA and BRCAPRO, unknown age at cancer diagnosis for relatives was changed to 

the earliest of either age at last follow-up or 70 years. For BCRAT, we did not have 

information on biopsies or atypical hyperplasia, so these variables were coded as unknown. 

In accordance with BCRAT’s design, its application was restricted to women aged 35 years 

or older (9, 10). For IBIS, we did not have information on hyperplasia or lobular carcinoma 

in situ; these and unknown ages were coded as missing. The risk factors based on these risk 

prediction models were the age-adjusted log 5-year risks.

SNP-Based Risk Score

Using the approach of Mealiffe et al. (20), we calculated a SNP-based (relative) risk score 

using previously published estimates of the odds ratio (OR) per allele and risk allele 

frequency (p) (18) assuming independent and additive risks on the log OR scale. For each 

SNP, we calculated the unscaled population average risk as μ = (1 – p)2 + 2p(1 – p)OR + 

p2OR2. Adjusted risk values (with a population average risk equal to 1) were calculated as 

1/μ, OR/μ and OR2/μ for the three genotypes defined by number of risk alleles (0, 1, or 2). 

The overall SNP-based risk score was then calculated by multiplying the adjusted risk 

values for each of the 77 SNPs (19).

Combined Risk Prediction Model and SNP-Based Risk Scores

For each of BOADICEA, BRCAPRO, BCRAT and IBIS, we calculated a combined risk 

score by multiplying the SNP-based risk score by the model’s predicted 5-year absolute risk 

of breast cancer. As for the risk prediction model scores, the risk factors were the age-

adjusted log 5-year risks.

Statistical Analysis

The model risk scores, the SNP-based score based on the published estimates, and the 

combined risk scores were log transformed for all analyses. We used Pearson correlation to 

test for associations between the model risk scores, the SNP-based score and the combined 

risk scores.

We used logistic regression to fit the individual and combined risk and SNP-based scores – 

adjusted for age using the controls – to estimate risk associations, in terms of the OR per 

standard deviation of the age-adjusted log 5-year predicted risk, while adjusting for age 

group due to the sampling strategy (32). Model calibration was assessed using the Hosmer–

Lemeshow goodness-of-fit test, which compares the expected and observed numbers of 

cases and controls within groups that were defined by deciles of risk. Discrimination 

between cases and controls was measured using the AUCs of the risk scores.

As in Mealiffe et al. (20), we categorized 5-year absolute risks as low risk (<1.5%), 

intermediate risk (≥1.5% and <2.0%) and high risk (≥2.0%) and constructed reclassification 

tables for each of the risk prediction models as a cross-tabulation of the classification of the 

risk score from the original model with the risk score from the combined model. The net 

reclassification improvement statistic was calculated as P(up|case) – P(down|case) + 

P(down|control) – P(up|control), where up refers to moving to a higher risk category and 

down refers to moving to a lower risk category.
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Stata Release 13 (33) was used for all statistical analyses; all statistical tests were two sided, 

and P values less than 0.05 were considered nominally statistically significant.

Results

Table 1 shows the characteristics of the study participants. For cases, the mean 5-year risk of 

breast cancer was 1.04% (SD 1.73%) from BOADICEA, 1.10% (SD 1.93%) from 

BRCAPRO, and 1.19% (SD 2.51%) from IBIS. For controls, the mean 5-year risk of breast 

cancer was 0.52% (SD 0.51%) from BOADICEA, 0.55% (SD 0.69%) from BRCAPRO, and 

0.62% (SD 0.67%) from IBIS. BCRAT is only applicable to women aged 35 years or older, 

and for these women, the mean BCRAT 5-year risk of breast cancer was 0.76% (SD 0.34%) 

for cases and 0.66% (SD 0.31%) for controls The mean SNP-based score was 1.30 (SD 

0.61) for cases and 1.08 (SD 0.50) for controls. Supplementary Table 1 shows the genotype 

distributions and the minor allele frequencies for cases and controls for each of the 77 SNPs 

as well as the OR per allele (adjusted for age group).

The SNP-based score was not correlated with the risk scores of any of the risk prediction 

models: BOADICEA (r = 0.01; 95% CI −0.05, 0.07; P = 0.7), BRCAPRO (r = −0.02; 95% 

CI −0.08, 0.04; P = 0.5), BCRAT (r = 0.01; 95% CI −0.06, 0.08; P = 0.8), and IBIS (r = 

0.02; 95% CI −0.04, 0.07; P = 0.6). For women aged 35 years or older, the BCRAT risk 

score was modestly correlated with the risk scores for BOADICEA (r = 0.32; 95% CI 0.25, 

0.38; P < 0.001), BRCAPRO (r = 0.21; 95% CI 0.14, 0.27; P < 0.001), and IBIS (r = 0.29; 

95% CI 0.23, 0.35; P < 0.001). For all women, there were strong correlations between the 

risk scores for BOADICEA and BRCAPRO (r = 0.93; 95% CI 0.92, 0.94; P < 0.001), 

BOADICEA and IBIS (r = 0.94; 95% CI 0.93, 0.95; P < 0.001), and BRCAPRO and IBIS (r 

= 0.86; 95% CI 0.84, 0.87; P < 0.001).

The 5-year risk predictions were all correlated with age: BOADICEA (r = 0.17; 95% CI 

0.11, 0.22; P < 0.001), BRCAPRO (r = 0.16; 95% CI 0.10, 0.21; P < 0.001), BCRAT (r = 

0.68; 95% CI 0.64, 0.71; P < 0.001), and IBIS (r = 0.14; 95% CI 0.08, 0.19; P < 0.001). The 

risk prediction models combined with the SNP-based score were all correlated with age: 

BOADICEA (r = 0.14; 95% CI 0.08, 0.19; P < 0.001), BRCAPRO (r = 0.14; 95% CI 0.09, 

0.20; P < 0.001), BCRAT (r = 0.43; 95% CI 0.38, 0.49; P < 0.001), and IBIS (r = 0.10; 95% 

CI 0.04, 0.16; P < 0.001). The SNP-based score was not correlated with age (r = 0.02; 95% 

CI −0.036, 0.079; P = 0.5).

Table 2 shows the OR per age-adjusted standard deviation of the risk factors, 95% CI, and 

chi-square statistic for the Hosmer–Lemeshow goodness-of-fit test for each of the log-

transformed risk scores, SNP-based risk score and combined risk scores. The OR for each 

combined risk score was higher than both the SNP-based score and the model risk score 

alone. The OR was greatest for the combined BOADICEA and SNP-based score, followed 

by the combined BRCAPRO and SNP-based score. The OR was least for the IBIS risk 

score. Using the Hosmer–Lemeshow goodness-of-fit test, while there was evidence that the 

BOADICEA risk score alone did not give a good fit, there was no evidence that any of the 

combined risk scores gave a poor fit to the data.
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Table 3 shows that, using the AUC criteria, for each of the four risk prediction models the 

combined risk score gave greater discrimination than both the SNP-based score and the 

corresponding model risk score. The BOADICEA and SNP combined risk score had the 

highest AUC, followed by the combined BRCAPRO and SNP-based score, while the IBIS 

risk score had the lowest AUC. When including the SNP-based score compared with the risk 

prediction model alone, compared with the baseline of 0.5, the AUC was 25%, 27%, 21%, 

and 86% higher for the BOADICEA, BRCAPRO, BCRAT, and IBIS models, respectively. 

Figure 1 shows, for each of the risk prediction models, the receiver operating characteristic 

curves for the risk prediction model, the SNP-based score and the combined risk score. The 

combined risk scores increased the AUC for BOADICEA (P = 0.01), BRCAPRO (P = 

0.004) and IBIS (P < 0.001), but not for BCRAT (P = 0.2).

The AUC for the SNP-based score was higher (P = 0.01) for ER positive disease (AUC = 

0.65; 95% CI 0.61, 0.69) than for ER negative disease (AUC = 0.56; 95% CI 0.51, 0.61). 

Similarly, the AUC for the SNP-based score was higher (P = 0.02) for PR positive disease 

(AUC = 0.64; 95% CI 0.60, 0.68) than for PR negative disease (AUC = 0.56; 95% CI 0.50, 

0.62). For the IBIS risk score, the AUC was marginally higher (P = 0.05) for PR negative 

disease (AUC = 0.64; 95% CI 0.59, 0.70) than for PR positive disease (AUC = 0.57; 95% CI 

0.53, 0.62). For the combined BCRAT and SNP-based score, the AUC was marginally 

higher (P = 0.05) for ER positive disease (AUC = 0.70; 95% CI 0.65, 0.75) than for ER 

negative disease (AUC = 0.62; 95% CI 0.56, 0.68). For all other risk scores, there was no 

difference in AUC by ER or PR disease status (data not shown; all P > 0.1).

For each of the four models, the risk scores and the combined risk scores were classified as 

low risk (1.5%), intermediate risk (≥1.5% and <2.0%), and high risk (≥2.0%), as shown in 

Table 4, which also shows the percentage of cases and controls moving into higher and 

lower risk categories. For each of the models, there was a statistically significant net 

reclassification improvement (all P < 0.05).

Discussion

For all four clinical risk prediction models, BOADICEA, BRCAPRO, BCRAT and IBIS 

models, the OR was higher for the combined risk scores than for the models alone, and the 

AUC was increased by at least 20% when the model risk score was combined with the SNP-

based score. We found that the SNP-based score gave greater discrimination for predicting 

ER positive and PR positive disease, even when combined with the risk prediction scores.

The SNP-based score was not correlated with the risk factors derived from the risk 

prediction models. This might seem surprising given that the BOADICEA and BRCAPRO 

risk scores are based on family history and the 77 SNPs explain a non-trivial proportion of 

breast cancer risk overall (18), but the studies from which the 77 SNPs were discovered 

were dominated by later onset disease. The issue of SNPs and early-onset disease, for which 

familial factors are stronger risk factors, remains relatively unexplored. New genome-wide 

association studies based on early-onset cases in the discovery phase could help rectify this 

situation and allow even better risk prediction models for young women.
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Using SNPs might potentially be better able to improve risk prediction models than using 

other risk factors for breast cancer (2). For example, perhaps because of the correlation 

between the mammographic density risk factor and the risk factors involved in the BCRAT 

model, the inclusion of mammographic density resulted in only a modest improvement in 

AUC for BCRAT (34, 35).

For each of the risk prediction models, combining with the SNP-based score resulted in 

about 10% of cases moving into a higher risk category and less than 2% of controls moving 

into a lower risk category, which is similar to results from a much larger cohort study 

examining the effect of combining a risk score based on 67 SNPs with the IBIS model (25).

The odds ratio per adjusted standard deviation (OPERA) assesses the ability of a risk factor 

to discriminate between cases and controls on a population basis (32). It builds on the fact 

that the estimated risk gradient for a risk factor is its change when holding constant all other 

factors that have been controlled for. That is why we have fitted the age-adjusted risk scores. 

If the OR is the risk gradient on a given scale, then OPERA = ORs, where s is the estimated 

standard deviation of the risk factor in the population after adjusting for all other factors, and 

s can be estimated using the control sample.

In this study, the SNP-based score did not vary with the age of controls, but the 5-year risk 

predictions were strongly associated with age when based on the models alone and when 

combined with the SNP-based score. Following the OPERA concept, we have presented the 

ORs in Table 2 in terms of the standard deviations of the age-adjusted risk scores, and this 

allows comparison of risk gradients across the different risk measures.

The estimated OR for the log SNP-based score alone was 1.46, which is similar to the 

estimate of 1.55 reported by Mavaddat et al. (18). Based on the OPERA concept, the 

combinations of the SNP-based score with the 5-year risk predictions from BOADICEA, 

BRCAPRO, and BCRAT are among the other strongest known risk factors for breast cancer; 

mammographic density adjusted for age and body mass index typically has an OPERA of 

about 1.4 (32) and epigenome-wide methylation has been reported to have an OPERA of 1.5 

(36). Therefore, the new risk prediction scores that we have derived are now the strongest 

known means for differentiating women with and without breast cancer, at least for disease 

diagnosed before age 50 years. In interpreting our risk estimates, note that about half of our 

cases were younger than 40 years at diagnosis. Familial risk is more important for young 

women, and for early onset disease, and as such, risk scores based on BOADICEA, 

BRCAPRO, and SNPs are expected to be more discriminatory.

The four breast cancer risk prediction models investigated here differ in their use of 

phenotypic information. BOADICEA (4, 5) and BRCAPRO (6–8) both use pedigree-based 

data, while IBIS (11) uses a combination of pedigrees and established risk factors and 

BCRAT (9, 10) uses established risk factors with no information about pedigree structure. 

IBIS (alone or combined with the SNP-based score) has a smaller OR than the other risk 

prediction models. This may be because IBIS was developed using data from predominately 

postmenopausal women and is intended for use with high-risk populations (37), while the 

other models are designed to be used for women unselected for risk factors, as in this study.
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A potential weakness of our study was the missing values for the models’ risk score 

calculations. However, given the key issue we are addressing is how much the addition of 

the SNP score increases the predictive ability of the models, this should not induce a 

substantive bias in our estimates of increased predictive performance. We used the approach 

of multiplying the SNP-based score by the risk factor based on a clinical model so as to be 

able to compare our findings with those of previous studies (19, 20). We also fitted models 

along the traditional line in which the SNP-based score and the (virtually independent) risk 

factor are separate entities (data not shown). When we did this, the estimates for each factor 

were virtually unchanged. The log likelihoods of the two approaches were generally similar, 

especially for the BOADICEA and BRCAPRO models. Therefore, our conclusions about 

the improvements in prediction are robust to the analytic approach.

These risk prediction models are likely to perform better when more SNPs and risk-

associated genes are discovered. There could be up to 1,000 more independent SNPs that are 

associated with risk of breast cancer (31) that could be included in risk prediction models. 

Analytic approaches that extract more information from genotyping data by, for example, 

considering pathways or SNP–SNP interactions, might produce better SNP-based risk 

prediction scores.

Given the multiplicative risk model that underlies epidemiology and now SNP-based genetic 

risk scores, the distribution of risk for women in the population would appear to be, at least 

to a good approximation, log normal. To explain the increased risk associated with having 

an affected family member, it must have a large variance such that the risk for women in the 

upper quartile is at least 20 times that for women in the lower quartile (38). This study has 

shown that, by using risk models based on SNPs and family history, substantial proportions 

of this variance is being explained and there is the ability to differentiate between women at 

low risk (much less than population average risk) as well as those at increased risk across a 

very wide range. This opens up the possibility of precision prevention and screening and 

enables genomic information to substantially lower the impact of breast cancer (39).

In conclusion, we have quantified the extent to which breast cancer risk prediction for 

women under the age of 50 years is improved by including a risk score based on 77 known 

susceptibility SNPs. Our estimates of the performance of risk prediction models that 

combine clinical and genetic information could be used to inform targeted screening and 

prevention.

Supplementary Material
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Figure 1. 
AUCs for the risk prediction model, SNP-based, and combined model and SNP-based risk 

scores for (a) BOACICEA, (b) BRCAPRO, (c) BCRAT, and (d) IBIS.
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Table 1

Characteristics of cases and controls

Cases Controls

N (%) N (%)

Age (years)

 20–34 182 (24.3) 125 (30.9)

 35–39 285 (38.0) 142 (35.1)

 40–44 128 (17.1) 77 (19.0)

 45–49 155 (20.7) 61 (15.1)

Any first-degree relative with breast cancer

 No 661 (88.1) 379 (93.6)

 Yes 89 (11.9) 26 (6.4)

Age at menarche (years)

 <12 148 (19.7) 66 (16.3)

 12 148 (19.7) 98 (24.2)

 13 231 (30.8) 113 (27.9)

 ≥14 218 (29.1) 128 (31.6)

 Missing 5 (0.7) 0 (0.0)

Age at first live birth (years)

 <20 50 (6.7) 31 (7.7)

 20–24 162 (21.6) 86 (21.2)

 25–29 225 (30.0) 109 (26.9)

 ≥30 128 (17.1) 64 (15.8)

 No live birth 185 (24.7) 115 (28.4)

Estrogen receptor status

 Negative 155 (20.7)

 Positive 261 (34.8)

 Missing 334 (44.5)

Progesterone receptor status

 Negative 118 (15.7)

 Positive 298 (39.7)

 Missing 334 (44.5)
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Table 3

Area under the receiver operating characteristic curve for the log-transformed risk scores

Log-transformed risk score AUC (95% CI)

SNP-based 0.61 (0.58, 0.65)

BOADICEA 0.66 (0.63, 0.70)

BOADICEA and SNP-based 0.70 (0.67, 0.73)

BRCAPRO 0.65 (0.62, 0.68)

BRCAPRO and SNP-based 0.69 (0.66, 0.72)

BCRAT 0.64 (0.60, 0.68)

BCRAT and SNP-based 0.67 (0.63, 0.70)

IBIS 0.57 (0.53, 0.60)

IBIS and SNP-based 0.63 (0.59, 0.66)

*
adjusted for age group

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval
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