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Abstract

Background—Monocytes are an important cell type in chronic periodontitis (CP) by interacting 

with oral bacteria and mediating host immune response. The aim of this study was to reveal new 

functional genes and pathways for CP at monocyte transcriptomic level.

Methods—We performed an RNA-sequencing (RNA-seq) study of peripheral blood monocytes 

(PBMs) in 5 non-smoking moderate to severe CP (case) individuals vs. 5 controls. We took 

advantage of a microarray study of periodontitis to support our findings. We also performed 

pathway-based analysis on the identified differentially expressed (DEx) transcripts/isoforms using 

DAVID (Database for Annotation, Visualization and Integrated Discovery).
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Results—Through differential expression analyses at both whole gene (or whole non-coding 

RNA) and isoform levels, we identified 380 DEx transcripts and 5,955 DEx isoforms with a PPEE 

(posterior probability of equal expression) of < 0.05. Pervasive up-regulation of transcripts at 

isoform level in CP vs. control individuals were observed, suggesting a more functionally active 

monocyte transcriptome for CP. By comparing with the microarray dataset, we identified several 

CP-associated novel genes (e.g., FACR and CUX1) that have functions to interact with invading 

microorganisms or enhance TNF production on lipopolysaccharide stimulation. DAVID analysis 

of both the RNA-seq and the microarray datasets leads to converging evidence supporting 

“endocytosis”, “cytokine production” and “apoptosis” as significant biological processes in CP.

Conclusions—As the first RNA-seq study of PBMs for CP, this study provided novel findings 

at both gene (e.g., FCAR and CUX1) and biological process level. The findings will contribute to 

better understanding of CP disease mechanisms.

Keywords

periodontitis; RNA sequencing analysis; monocytes; apoptosis; endocytosis; cytokine; FCAR; 
CUX1

Background

Chronic periodontitis (CP) [1] is an inflammatory disease that affects the supporting 

structures of teeth. It is one of the most prevalent chronic diseases and a major cause of loss 

of permanent teeth [2], which severely affects the quality of life in old people.

While oral bacteria are necessary for initiating pathological cascades of CP [3], it is host 

immune response and inflammatory process that is responsible for periodontal tissue 

damage [4], where monocytes play a central role. Monocytes, by differentiating into 

dendritic cells (DCs) in periodontium [5], trigger T cell differentiation into type 1, type 2 or 

type 17 T-helper (Th) cells, which in turn direct cellular, humoral and innate immune 

responses, respectively [6, 7]. Monocytes, by interacting with oral bacteria, initiate 

inflammatory processes in periodontium and produce a series of inflammatory factors, such 

as PGE2, IL-1-β, TNF-α and MMP [8].

Although the important pathological cascades mediated by monocytes mainly occur in 

periodontium, peripheral blood monocytes (PBMs), as functional continuum and the sole 

source of the monocytes in the periodontium, play a critical role in CP pathogenesis. It was 

found that in CP patients, PBMs had a “specific functional profile” that favors the Th2-cell 

response over Th1-cell response [9–12]. Therefore, functional aberrance of PBMs may 

predispose an individual to a destructive host immune response leading to CP.

While the immune response and inflammatory processes are well known as the key 

mechanisms for CP, the detailed functional genes and pathways underlying the disease at the 

PBMs transcriptome level are still unclear. Despite two recent genome-wide gene 

expression studies of CP [13, 14] the studies were performed on the gingival tissue that may 

have a different transcriptomic landscape from PBMs, and hence the findings from those 

studies may not be relevant to functional genes contributing to CP at the PBMs level. 

Another study [15] was conducted on PBMs on CP patient using the microarray technology. 
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However, the interesting findings from the study may need further confirmation from an 

independent study, such as the one presented here.

Here, to shed light on those important genes and pathways for CP, we used the latest next 

generation sequencing technology and performed the first RNA-sequencing (RNA-seq) 

analysis of PBMs for CP. Our findings contributed to further understanding of CP 

pathogenesis by having identified a number of novel yet functionally relevant genes and 

biological processes as specific key players for the disease.

Methods

Study participants characteristics

The study was approved by Institutional Review Board of Louisiana State University Health 

Science Center (LSUHSC). Signed informed-consent documents were obtained from all 

study participants before entering the study.

The study participants (cases and controls) were recruited at LSUHSC School of Dentistry 

(LSUHSC SOD) periodontics clinic. All case individuals (n=5) were non-smoking African 

American (AA) males diagnosed with generalized moderate to severe CP as per the 1999 

world workshop classification [16].

Specifically, cases with >30% sites with clinical attachment loss (CAL) of ≥3–4 mm were 

diagnosed as generalized “moderate” chronic periodontitis and cases with >30% sites with 

CAL ≥5 mm were diagnosed as generalized “severe” chronic periodontitis.

Control individuals (n=5) were periodontally healthy based on clinical and radiographic 

examinations. None of the controls exhibited CAL ≥ 3 mm, probing depths ≥ 4 mm or 

radiographic evidence of bone loss. All control individuals were also non-smokers and 

gender and ethnically matched to the cases..

The average age of case individuals was 44.6 years with a standard deviation of 7.73 years. 

The average age of control individuals was 36.4 years with a standard deviation of 12.97 

years. There was no statistical difference in age between case and control individuals (p = 

0.26) according to the t test.

Exclusion criteria for all participants were as follows: 1) Recent treatment for periodontal 

disease (within a year) 2) Current and/or long-term use of NSAIDs (non-steroidal anti-

inflammatory drugs) which could affect the outcome of the study; 3) Former or current 

smokers, since smoking is one of the most influential factors in periodontitis; 4) Diabetes 

mellitus; 5) Treatment with corticosteroid therapy currently or for more than 6 months 

duration at any time; 6) Treatment with anticonvulsant therapy or anti-depressants currently 

or for more than 6 months duration at any time; 7) Treatment with antibiotics currently or 

for more than 6 months duration at any time; 8) Evidence of other metabolic or inherited 

bone diseases such as hyper or hypoparathyroidism, Paget’s disease, osteomalacia, 

osteognesis imperfect or others; 9) Hyperthyroidism; 10) History of or current diagnosis 

with aggressive periodontitis.
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Monocyte isolation

Monocyte isolation from whole blood was performed with a monocyte-negative isolation kit 

(Miltenyi Biotec Inc, Auburn, CA) following manufacturer’s recommendation. The kit is an 

indirect magnetic labeling system for isolating untouched monocytes from human peripheral 

blood mononuclear cells (PBMCs). Non-monocytes, i.e. T cells, NK cells, B cells, dendritic 

cells and basophils, are indirectly magnetically labeled using a cocktail of biotin-conjugated 

antibodies against CD3, CD7, CD16, CD19, CD56, CD123 and Glycophorin A, and Anti-

Biotin MicroBeads. Isolation of highly pure unlabeled monocytes is achieved by depletion 

of the magnetically labeled cells. Based on our extensive experience of monocyte isolation 

using this kit [17, 18], the isolated monocytes can achieve a purity of at least 85%.

Total RNA extraction

Total RNA from monocytes was extracted using Qiagen RNeasy Mini kit (Qiagen, Inc., 

Valencia, CA). We used Agilent Bioanalyzer (Agilent, Santa Clara, CA) to control the RNA 

quality before RNA-seq experiment, where RNA integrity number (RIN) was confirmed at 

no less than 7.0 before RNA-seq experiment.

RNA-seq

RNA sequencing was performed at JP Sulzberger Columbia Genome Center. We used poly-

A pull-down to enrich mRNAs from total RNA samples (200ng–1ug per sample) and 

proceeded on library preparation by using Illumina TruSeq RNA prep kit (Illumina Inc., San 

Diego, CA).

Specifically, we purified the polyA containing mRNA molecules using oligo-dT attached 

magnetic beads with two rounds of purification. During the second elution of the polyA 

RNA, the RNA was fragmented and primed for cDNA synthesis. We then performed reverse 

transcription on the RNA fragments to synthesize first strand cDNA using reverse 

transcriptase and random primers. The RNA template was then removed and a 2nd strand 

cDNA was synthesized. End repair was then performed to convert the overhangs into blunt 

ends using the End Repair Mix. After 3′ ends adenylation, multiple indexing adapters were 

ligated to the ends of the ds cDNA and those DNA fragments with adapter molecules were 

enriched with PCR reactions that constructed a library for downstream sequencing 

experiments. The library was validated using Agilent Bioanalyzer (Agilent, Santa Clara, 

CA) to ensure the size and purity of the sample by observing a band at approximately 260 

bp.

Libraries were then sequenced using an Illumina HiSeq 2500 instrument (Illumina Inc., San 

Diego, CA). We multiplexed samples in each lane, which yielded targeted number of single-

end 100bp reads for each sample, as a fraction of 180 million reads for the whole lane.

We used the RTA software (Illumina Inc., San Diego, CA) for base calling and CASAVA 

software (version 1.8.2) (Illumina Inc., San Diego, CA) for converting the BCL files to fastq 

format, coupled with adaptor trimming. The read depth for each sample was 30 million 

reads.

The raw RNA-seq data were deposited to GEO with an accession number of GSE61490.
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Differential expression analysis of RNA-seq data

We used RSEM v1.2.11 [19] to analyze the RNA-seq data for alignment and expression 

calculation. Under RSEM, we used EBSeq [20] to identify differentially expressed (DEx) 

transcripts at whole gene (or whole non-coding RNA) level or at isoform level.

EBSeq assumes the expected count (X) for a gene or an isoform is distributed as Negative 

Binomial (NB), i.e., X~NB(r; p), and determines the posterior probability of differential 

expression of a gene or an isoform through the Bayes’ rule. To achieve that, EBSeq models 

a prior distribution of the data using β distribution. Under the null hypothesis (EE: equal 

expression), the data  (where gi denote a gene or isoform i, C1 condition 

1 and C2 condition 2) can be represented by a prior predictive distribution 

(which is constructed based on beta functions). Under the alternative (DE: differential 

expression),  follows another prior predictive distribution . Given a 

latent variable Zgi, where Zgi = 1 represents that the gene/isoform gi is DE and Zgi = 0 

represents that gi is EE, and also Zgi~Bernoulli(p). Based on that, the marginal distribution 

of  and Zgi is  Therefore, the posterior probability 

of DE for gi is defined by Bayes’ rule:

For more details, please refer to the supplement to the paper on EBSeq [20].

An online microarray dataset to provide supportive evidence

We took advantage of an online microarray dataset from GEO (GEO accession #: GSE6751) 

[15] as an independent dataset to support the findings from our RNA-seq data. The dataset 

contains 15 CP patients, whose PBMs expression was analyzed 1 week before periodontal 

treatment (time point #1), at treatment initiation (time point #2), 6 weeks after the treatment 

(time point #3) and 10 weeks after the treatment (time point #4) [15]. At 10 weeks after 

treatment, considerable improvement in periodontal status, including bleeding sites per 

individual (decreased from an average of 81% before treatment to an average of 25% after 

treatment) and deep pockets per individual (decreased from an average of 69.2 before 

treatment to an average of 9.2 after treatment), was achieved [15]. The treatment involved 

only periodontal surgery and tooth extractions, if necessary, without local or systemic 

antibiotics.

We took advantage of the 15 individuals’ PBMs samples before treatment and the samples 

10 weeks after treatment as a “paired” cohort with difference in periodontal status. Given the 

considerable improvement of periodontal status 10 weeks after treatment vs. before 

treatment, we treat the individuals before treatment as “periodontally unhealthy status” and 

the individuals 10 weeks after treatment as “periodontally healthy status”. Comparing the 

two statuses in gene expression may shed lights on those genes differentially expressed in 

terms of “difference in periodontal health”. Such differentially expressed genes may provide 
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supporting evidence for those differentially expressed genes as identified in our RNA-seq 

data, where two groups of individuals are also different in terms of periodontal health.

The PBMs gene expression was assayed using Affymetrix U133 Plus 2.0 arrays. We 

analyzed the raw cel files for each individual before the periodontal treatment (time point 

#1) and 10 weeks after the treatment (time point #4). The cel files were normalized using 

RMA [21]. We then performed differential expression analysis using paired t test through 

the Bioconductor’s LIMMA (linear models for microarray data) package [22] to compare 

the PBMs gene expression before vs. after periodontal treatment. Genes and their 

differential expression p values as assessed above were used as the basis for supporting 

those DEx transcripts identified in our RNA-seq data.

Enrichment analysis using DAVID

GO (gene ontology) and other pathway/functional term enrichment analysis was performed 

on a number of group of genes (e.g., DEx transcripts or isoforms identified in CP vs. control 

individuals) using DAVID (Database for Annotation, Visualization and Integrated 

Discovery) v6.7 software package (http://david.abcc.ncifcrf.gov/) [23].

Results

Quality control (QC) analysis

The mean number of reads over the 10 samples is 26,549,771, with a range from 21,697,093 

reads to 31,754,419 reads. The average mapping rate (ratio of number of uniquely mapped 

reads over total number of reads) across the 10 samples is 75.93%, with a range from 69% to 

84%.

The sequence QC results on base quality are quite excellent. According to the FastQC 

software (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/), all of the 10 samples pass 

the QC (with a green light tick) for both the “Per base sequence quality” and “Per sequence 

quality scores”, two important metrics for base quality QC. Specifically, the average quality 

score per read is either 37 or 38 for all the samples, which is very good as the maximum 

quality score is 40.

Our sequence read depth turns out to be sufficient for quantifying lowly expressed 

transcripts as we have detected a large number of transcripts with a low count. As shown in 

our data, we have observed >4,400 transcripts with a count of 10–50 for at least one sample. 

(To preclude false expression signals, these transcripts do not include those whose counts 

are either 0 or lower than 10 in any sample.) Among these, there are >600 transcripts with an 

average count of <50 across the 10 samples, representing transcripts with an overall low 

expression for all the 10 samples. Note that although the level of expression is very low 

these >600 transcripts are consistently detected in all the samples. Hence it is unlikely that 

these detected transcripts are false signals (e.g., due to mistaken alignment).

RNA-seq analysis at the whole gene level

At the whole gene (or whole non-coding RNA) level, we identified a total of 380 DEx 

transcripts in CP vs. control individuals, which achieved a PPEE (posterior probability of 
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equal expression) of < 0.05 and a PPDE (posterior probability of differential expression) of 

> 0.95. Among these transcripts, 228 were up-regulated and 152 were down-regulated in CP 

vs. control individuals.

As a large number of DEx transcripts achieved a PPEE of 0 or near 0 (or PPDE of 1 or near 

1), to rank the DEx transcripts, we used the measure of PostFC (posterior fold change). 

Listed in Table 1 are the top 10 up-regulated transcripts with the largest PostFC in CP vs. 

control individuals and the top 10 down-regulated transcripts with the smallest PostFC in CP 

vs. controls.

Among the transcripts with the most extreme PostFC in CP vs. control individuals (Table 1), 

representing those transcripts that may be strongly regulated in terms of CP status, LST1 

was previously found to be up-regulated in response to LPS and bacterial infection and in 

blood of rheumatoid arthritis (RA) patients as compared to controls [24]. This gene’s known 

function is consistent with the context of CP pathogenesis, where LPS and bacterial 

infection initiates the pathologic cascade of the disease. Another up-regulated gene, LILRA5 

was found to be expressed by synovial tissue macrophages in RA patients and induce pro-

inflammatory cytokines [25]. RNF5, down-regulated in CP patients vs. controls, was found 

to influence susceptibility to bacterial infection [26]. Another down-regulated transcript, 

IER3, was reported in a study, where deficiency of IER3 expression in mice may result in 

aberrant immune regulation and enhanced inflammation [27].

As another interesting finding, almost half of the transcripts (n=8) presented in Table 1 are 

located in the MHC (major histocompatibility complex) regions, which include 2 up-

regulated transcripts, LST1 [28] and LY6G5C [29], and 6 down-regulated transcripts, HLA-

DRA [30], ZNRD1 [31], GABBR1 [32], RNF5 [33], TRIM26 [33], and PPP1R11 [34]. The 

co-localization to the MHC regions of these strongly regulated transcripts in terms of CP 

status once again suggests immune aberration as an important component of CP 

pathogenesis.

Pathway-based analysis using DAVID for those transcripts identified at the whole gene 
level

Using DAVID, we analyzed the 380 DEx transcripts that achieved a PPEE of <0.05. The top 

ten enriched pathways/functional terms are listed in Table 2. These terms achieved 

significant enrichment p values even after adjusted with the Bonferroni method.

Among these ten terms, two are related to immune response (GO:0006955 and 

SP_PIR_keyword immune response), three are related to immunoglobulin/major 

histocompatibility complex (MHC) (IPR003006, IPR003597 and GO:0042611) and one is 

related to antigen processing and presentation (GO:0019822).

Differential expression analysis of the microarray dataset

Using Bioconductor’s LIMMA package [35], we identified 2,354 probe sets, corresponding 

to 2,092 annotated genes, which were DEx in periodontally unhealthy (one week before 

treatment) vs. periodontally healthy statuses (10 weeks after periodontal treatment), among 
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which, 1,310 genes were found to be up-regulated and 782 genes down-regulated before vs. 

after treatment at a p value of <0.05.

Supporting evidence from the microarray data on those transcripts identified at the whole 
gene level

At the whole gene level, we identified in the RNA-seq data 380 DEx transcripts, which 

achieved a PPEE (posterior probability of equal expression) of < 0.05 and a PPDE (posterior 

probability of differential expression) of > 0.95. We selected a subset with a higher 

significance, which were 210 DEx transcripts that achieved a PPDE =1 (and a PPEE < 

4.70E-10), for finding supporting evidence from the microarray dataset. Those transcripts in 

the list of 210 DEx transcripts were checked for differential expression signals in the 

microarray data. Through this analysis, we identified 11 genes that achieved a PPEE of 

1.78E-15 or lower in the RNA-seq dataset and a p value of <0.05 in the microarray dataset. 

The 11 genes also had the same direction of regulation across the two datasets. The direction 

of regulation in the RNA-seq dataset is defined based on the ratio of posterior mean 

expression in CP patients over controls, with a ratio of >1 as up-regulation and a ratio of <1 

as down-regulation. The direction of regulation in the microarray dataset is defined based on 

the ratio of mean expression in the periodontally unhealthy status (before treatment) over 

periodontally healthy status (after treatment), with a ratio of >1 as up-regulation and a ratio 

of <1 as down-regulation. Table 3 shows the information of the 11 genes supported by the 

microarray dataset.

Among the 11 DEx transcripts with supporting evidence from the microarray data (Table 3), 

FCAR achieved the most significant p value (7.78E-4) in the microarray study [15]. In 

addition, multiple probe sets (207674_at, 211307_s_at, 211816_x_at) from this gene were 

associated with periodontal health status in the microarray study [15]. According to OMIM 

description (entry #: 147045), FCAR “interacts with aggregated IgAs, such as IgA coated on 

the surface of an invading microorganism, and mediates several immunologic defense 

processes such as phagocytosis, antibody-dependent cell-mediated cytotoxicity, and 

stimulation of the release of inflammatory mediators” [36]. This gene’s expression in 

monocyte or mononuclear cells has been associated with several autoimmune diseases, such 

as autoimmune thyroid disease [37], multiple sclerosis [38] and ankylosing spondylitis [39]. 

Given FCAR’s roles in immunologic defense of microorganism and the gene’s importance 

in autoimmune diseases, FCAR may also play a key role in CP pathogenesis.

In addition to FCAR, other 6 DEx genes supported by the microarray dataset (Table 3) may 

also be involved in CP pathogenesis as they have a close link with immune response or 

immune-related diseases. CUX1 was found to enhance TNF production on LPS stimulation 

[40]. RNASE3 is a mediator in host immune response to parasites, bacteria and viruses and 

may also cause side-effects on the host’s own tissues [41]. CLCN5 was found to play a role 

in immunopathogenesis of ulcerative colitis [42]. REL is a transcription factor that regulates 

innate and adoptive immunity. In particular, REL is essential for IL-12 and IL-23 

transcription by macrophages and dendritic cells, which is crucial for T-cell differentiation 

and effector functions [43]. VNN2’s up-regulation in mononuclear cells was associated with 
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both inflammatory bowel disease and RA [44]. HLA-DOA, as a MHC class II gene, has 

been associated with asthma [45], RA [46] and type I diabetes [47].

Supporting evidence at the pathway level from the microarray data for those transcripts 
identified at the whole gene level

Using DAVID, we analyzed the 380 DEx transcripts (PPEE < 0.05) identified at the whole 

gene level from the RNA-seq data. We did the same analysis using DAVID on those 2,092 

DEx genes (p < 0.05) as detected in the microarray dataset. The identified pathways and 

functional terms that achieved a Bonferroni enrichment p value of < 0.05 in the RNA-seq 

data were checked for enrichment signals in the DAVID analytical results of the microarray 

data. Through this analysis, we identified one functional term “SP_PIR_Keyword: immune 

response”, which achieved an enrichment p value of 7.27E-8 (Bonferroni p value = 2.58E-5) 

in the RNA-seq data and an enrichment p value of 2.24E-2 in the microarray data.

In the RNA-seq data, the component genes that fall into this term include HLA-DRA, HLA-

H, HLA-DMB, HLA-DPB1, MICB, HLA-DOB, HLA-DOA, C1QB, HLA-F, TMED7, 

LILRB4, TLR9, TAP2, HLA-DQA2, LST1 and LILRA5. For the microarray data, the 

component genes that fall into this term include CD7, IL23A, LIME1, DCLRE1C, 

POLR3G, TLR3, POLR3B, IL2, HLA-DOA, NLRX1, POLR3E, IFIH1, TLR10, HFE, 

CD300LB, INPPL1, CNPY3, TLR7, MYD88, TLR6, TLR5, LILRA1, TLR4, CR1, HLA-

DRB1, CLU, CLEC7A, TLR8, CLEC5A, LY86, CLEC4E, CLEC4A and TLR2.

Differential expression analysis at the isoform level using the RNA-seq data

We identified 5,955 DEx at the isoform level, which achieved a PPEE of <0.05 and a PPDE 

of >0.95. Due to the large number of DEx isoforms identified, to control for false positives, 

we focused on a subset of isoforms that achieved a higher significance for differential 

expression, which are 2,344 DEx transcripts that achieved a PPDE of 1 (and a PPEE from 0 

to 4.89E-10).

The majority of the 2,344 isoforms (~85%) were up-regulated in CP vs. control individuals. 

These isoforms are from 1,816 distinct genes or non-coding RNAs. We used DAVID to 

analyze these isoforms and the top 10 most enriched functional terms are listed in Table 4.

Supporting evidence from the microarray data on the DEx isoforms identified from the 
RNA-seq data

Due to the large number (n = 2,344) of DEx isoforms that achieved a PPDE of 1, we focused 

on the subset of transcripts (with a higher significance) that achieved both a PPDE of 1 and 

PPEE of 0 (1,843 isoforms) to find supporting evidence from the microarray data. For these 

isoforms, we checked for the DEx signals at the gene level from the microarray data. The 

analysis identified supporting evidence for 213 isoforms from 177 distinct genes or non-

coding RNAs, which achieved a p value of less than 0.05 in the microarray data. Again they 

all had the same direction of regulation in terms of CP status across the two datasets. Almost 

all of the 213 isoforms/genes were up-regulated in CP cases vs. controls (or periodontally 

unhealthy status vs periodontally healthy status); among these isoforms, only those from 7 
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genes were down-regulated in CP cases vs. controls, which are URGCP, RPS20, FAM98A, 

XBP1, G3BP1, NFAT5 and ZNF207.

For these 213 isoforms/genes supported by the microarray dataset, we used DAVID to map 

them to functional terms and pathways. The top 10 most enriched functional terms/pathways 

were all GO terms (listed in Table 5). Almost all of these GO terms were significant even 

after Bonferroni correction (Bonferroni enrichment p values from 5.83E-3 to 5.06E-2). 

Among these terms are endocytosis (GO:0006897), cytokine production (GO:0001816) and 

apoptosis (GO:0006915).

Thirteen genes (DEx in both RNA-seq and microarray datasets) belong to the GO term “GO:

0006897~endocytosis”, which are DENND1A, RUFY1, CORO1C, ASGR2, APP, DAB2, 

PICALM, CD36, AP1S2, CLEC7A, THBS1, CLCN5 and RIN3. All of these genes/isoforms 

were up-regulated in CP patients vs. controls (or periodontally unhealthy vs. periodontally 

healthy statuses).

Seven genes (DEx in both RNA-seq and microarray datasets) belong to the GO term “GO:

0001816~cytokine production”, which are NLRC4, G6PD, MYD88, NFAT5, TLR4, 

NLRP3 and PTAFR. Except for NFAT5, all of the genes were up-regulated in CP patients 

vs. controls (or periodontally unhealthy vs. periodontally healthy statuses).

Twenty genes (DEx in both RNA-seq and microarray datasets) belong to the GO term “GO:

0006915~apoptosis”, which are ARHGEF2, SGK1, DNM1L, XIAP, UBE4B, CIDEB, 

STK17B, TRIO, NLRP3, BCL2L13, NCSTN, TNFRSF1A, PEA15, NLRC4, APP, GSN, 

HIPK3, BNIP3L, NLRP12, THBS1. All of these genes were up-regulated in CP patients vs. 

controls (or periodontally unhealthy vs. periodontally healthy statuses). Among these genes, 

ten are categorized by DAVID as apoptosis induction genes (BCL2L13, BNIP3L, NLRC4, 

NLRP3, ARHGEF2, ARP, CIDEB, NCSTN, STK17B, TRIO), whereas only 5 were 

categorized as anti-apoptosis genes (BNIP3L, XIAP, HIPK, PEA15 and THBS1).

Supporting evidence from the microarray data at the pathway level for the DEx isoforms 
identified in the RNA-seq data

We used DAVID to map those 2,344 DEx isoforms, which achieved a PPDE of 1 (and a 

PPEE from 0 to 4.89E-10) in the RNA-seq dataset. For those functional terms/pathways that 

achieved a Bonferroni-corrected enrichment p value of < 0.05, we cross-checked the 

enrichment signals against the DAVID analytical results from the microarray data.

Through this analysis, we identified 7 functional terms that achieved a Bonferroni-corrected 

enrichment p value of <0.05 in both the RNA-seq data and the microarray data. These 

functional terms include 6 GO terms and 1 SP_PIR_Keywords term (listed in Table 6). 

Among these terms, 3 are related to apoptosis: GO:0042981~regulation of apoptosis, GO:

0043067~regulation of programmed cell death and GO:0010941~regulation of cell death, 

and other 4 are GO:0031982~vesicle, GO:0031410~cytoplasmic vesicle, GO:

0010627~regulation of protein kinase cascade and actin-binding (SP_PIR_KEYWORDS).

In the RNA-seq data, 121 genes belong to the GO apoptosis-related terms. In the microarray 

data, 137 genes belong to the GO apoptosis-related terms. By comparing the 121 vs. 137 
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component genes across the two datasets, 22 genes (29 isoforms from RNA-seq data vs. 27 

probe sets from microarray data) were shared between the two datasets (Table 7). These 

isoforms/probe sets were all up-regulated in CP vs. control individuals (or periodontally 

healthy vs. unhealthy statuses). According to DAVID analysis, among the 22 genes, 15 are 

classified as those for apoptosis induction (TRIO, ARHGEF2, BCL6, TLR4, STK17B, 

NLRP3, BCL2L13, IKBKG, BNIP3L, APP, NLRC4, RXRA, CIDEB, NCSTN, BID), 

whereas only 8 as those for anti-apoptosis (HIPK3, BCL6, BNIP3L, PEA15, XIAP, NUP62, 

THBS1, MYD88) (Table 7). (Note that BCL6 and BNIP3L are classified as both apoptosis 

induction and anti-apoptosis genes.)

Discussion

We performed the first RNA-seq study of PBMs for CP. Although we had a small sample 

size, the DEx transcripts as detected by the RNA-seq analysis were biologically relevant; the 

top 10 enriched functional terms identified by DAVID [23] for the DEx transcripts identified 

at the whole gene level (Table 2) were almost all related to immune response, antigen 

processing and presentation and immunoglobulin/MHC. As host immune response is well 

recognized as the key basis for CP pathogenesis, this result (Table 2) lent strong support to 

the biological validity of DEx transcripts identified in our RNA-seq study.

We performed differential expression analysis of the RNA-seq data at both whole gene (or 

whole non-coding RNA) level and isoform level. We used a PBMs microarray dataset [15] 

to provide supporting evidence for our RNA-seq analyses results. We also used DAVID [23] 

to map the DEx transcripts/isoforms identified in the RNA-seq data and supported by the 

microarray datasets to major functional terms (e.g., GO terms) in order to gain an overall 

picture of the functions of the identified genes.

Overall, the majority of the transcripts DEx at the whole gene level and supported by the 

microarray dataset are immune system or immune disease related genes, which were all up-

regulated in CP vs. control individuals. Through analysis of the DEx transcripts at the 

functional term (or pathway) level using DAVID [23], the term that was shared between our 

RNA-seq and the microarray datasets [15] is “immune response (a SP_PIR_Keyword)”. 

Taking the above evidence, our findings confirmed immune response as the key mechanism 

for CP pathogenesis. Many genes identified in this study, in spite of their functional 

relevance to immune response, inflammation and other aspects of periodontitis 

pathogenesis, have not been linked to the disease in previous studies. Hence our findings 

also furnished novel genetic clues to the field and contributed to better delineation of the 

disease mechanism at the genetic/genomic level.

Additional new information was revealed by isoform level analysis of the RNA-seq data. 

First, the majority (~85%) of the DEx isoforms were up-regulated in CP patients vs. 

controls. This observation suggests that PBMs may be more functionally active at 

transcriptomic level in CP status than in healthy status, consistent with the key functional 

roles that PBMs may play in the pathologic process of CP.

Liu et al. Page 11

Gene. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Second, through DAVID [23] analysis on the isoforms supported by the microarray dataset 

[15], we identified several GO terms, including endocytosis (GO:0006897), cytokine 

production (GO: 0001816) and apoptosis (GO: 0006915). Essentially all of the 40 

component genes of the three GO terms were up-regulated in CP patients vs. controls, which 

may suggest enhanced monocytic endocytosis, cytokine production and apoptosis as the key 

potential mechanisms for CP.

The microarray dataset [15] is not a perfect dataset for supporting our RNA-seq study. 

However, to our knowledge, this is the only dataset that used PBMs to study gene 

expression changes related to periodontitis. As findings from gene expression studies are 

tissue/cell type dependent, it is critical that our RNA-seq study on PBMs is compared with a 

study using PBMs also. In terms of study design, the microarray study [15] did not compare 

periodontitis patients with healthy controls as in our RNA-seq study. However, the 

microarray study data do allow us to compare a periodontally unhealthy status (at the 

baseline) with a periodontally healthy status (at 10 weeks when periodontal tissue is much 

healthier compared with the baseline) through a paired study design [15]. From the 

perspective of periodontal health, our RNA-seq study had a similar study goal, which is also 

to compare periodontally unhealthy status (in diseased individuals) with periodontally 

healthy status (in healthy individuals), although this comparison was done cross-sectionally. 

Therefore, although we acknowledge the limitation of the microarray study [15] as a 

supportive dataset for our RNA-seq study, due to the above reasons, we are confident that 

the comparison between the two datasets is necessary and valuable and can capture 

“converging” evidence for transcripts associated with periodontitis, which may represent 

much solid scientific findings than those from the RNA-seq study alone. Indeed, the value of 

using the microarray dataset is evidenced by the functional relevance of the identified genes 

shared by the two datasets (Table 3).

This study has two major limitations. First, it has a small sample size, which leads to a 

limited statistical power and more genes/transcripts associated with CP may be identified 

with a larger sample size. Second, the sequencing depth (100bp single ended reads) is also 

limited and more isoforms, especially those isoforms with a low expression, may be detected 

with a higher sequencing depth. Therefore, the findings from this study may need to be 

further validated with independent studies of larger sample sizes and higher sequencing 

depths. Such studies are also needed to identify more genes and isoforms important to CP.

Conclusions

In summary, through RNA-seq analysis, we identified a large number of transcripts DEx in 

CP vs. control individuals at both whole gene and isoform levels. At the whole gene level, 

the identified transcripts are enriched in immune response related functional terms (Table 2). 

Comparison analysis using the microarray dataset for these transcripts also identified a 

number of novel genes related to immune response (Table 3), such as FCAR and CUX1, 

which were not reported for CP before. New, interesting information emerged from the 

isoform level analyses, including the pervasive up-regulation of PBMs gene expression, and 

enhanced endocytosis, cytokine production and apoptosis in CP vs. control status (Tables 5 

and 6). Overall, our findings highlighted the significant role of PBMs for CP pathogenesis 
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and identified a number of novel genes and potentially new mechanisms for the disease. 

These findings may represent novel biomarkers/signatures for clinical diagnosis and 

treatment of CP and provide the basis for further biological and functional investigations.
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Abbreviation list

CP chronic periodontitis

RNA-seq RNA-sequencing

PBMs Peripheral blood monocytes

DEx Differentially expressed

DAVID Database for Annotation, Visualization and Integrated Discovery

PPEE posterior probability of equal expression

PPDE posterior probability of differential expression

DCs dendritic cells

Th T-helper

LSUHSC Louisiana State University Health Science Center

LSUHSC SOD LSUHSC School of Dentistry

AA African American

CAL clinical attachment loss

PBMCs peripheral blood mononuclear cells

RIN RNA integrity number

NB Negative Binomial

GO Gene ontology

PostFC posterior fold change

RA rheumatoid arthritis

MHC major histocompatibility complex
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Highlights

• The functions of monocytes in periodontitis were first explored with RNA-seq.

• There was pervasive up-regulation of transcripts at isoform level in 

periodontitis.

• Novel signatures: FACR & CUX1 genes, endocytosis, cytokine production & 

apoptosis
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Table 1

The DEx transcripts identified at the whole gene level with the most extreme fold changes

Ensembl ID Transcript name PPEE1 PPDE2 PostFC3

Up-regulated transcripts

ENSG00000235040 MTCO3P1 0 1 323

ENSG00000213029 SPHAR 0 1 306

ENSG00000262610 LILRA5 0 1 266

ENSG00000266198 PRKAB2 1.3E-9 0.99 238

ENSG00000111971 LY6G5C 0 1 189

ENSG00000234514 LST1 2.78E-8 0.99 157

ENSG00000206549 PRSS50 0 1 133

ENSG00000263001 GTF2I 0 1 133

ENSG00000198406 BZW1P2 0 1 120

ENSG00000253356 RP11-90P5.2 0 1 112

Down-regulated transcripts

ENSG00000204619 PPP1R11 0 1 0.0018

ENSG00000228405 RNF5 0 1 0.0019

ENSG00000230230 TRIM26 0 1 0.0029

ENSG00000254133 RP11-1198D22.3 0 1 0.0033

ENSG00000132692 BCAN 0 1 0.0042

ENSG00000237051 GABBR1 0 1 0.0065

ENSG00000206478 IER3 0 1 0.0089

ENSG00000224859 ZNRD1 0 1 0.0104

ENSG00000206285 B3GALT4 0 1 0.0107

ENSG00000228987 HLA-DRA 1.3E-07 0.99 0.0113

Note:

1
PPEE: The posterior probability (estimated by EBSeq) that a transcript is equally expressed.

2
PPDE: The posterior probability (estimated by EBSeq) that a transcript is differentially expressed

3
PostFC: The posterior fold change (cases over controls) for a transcript, which is defined as the ratio of posterior mean expression estimate of a 

transcript in CP over that in control individuals.
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