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SUMMARY

Ribosome-footprint profiling provides genome-wide snapshots of translation, but technical 

challenges can confound its analysis. Here, we use improved methods to obtain ribosome-footprint 

profiles and mRNA abundances that more faithfully reflect gene expression in Saccharomyces 

cerevisiae. Our results support proposals that both the beginning of coding regions and condos 

matching rare tRNAs are more slowly translated. They also indicate that emergent polypeptides 

with as few as three basic residues within a 10-residue window tend to slow translation. With the 

improved mRNA measurements, the variation attributable to translational control in exponentially 

growing yeast was less than previously reported, and most of this variation could be predicted 

with a simple model that considered mRNA abundance, upstream open reading frames, cap-

proximal structure and nucleotide composition, and lengths of the coding and 5’-untranslated 
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regions. Collectively, our results provide a framework for executing and interpreting ribosome-

profiling studies and reveal key features of translational control in yeast.

INTRODUCTION

Although most cellular mRNAs use the same translation machinery, the dynamics of 

translation can vary between mRNAs and within mRNAs, often with functional 

consequences. For example, strong secondary structure within the 5' untranslated region 

(UTR) of an mRNA can impede the scanning ribosome, thereby reducing the rate of protein 

synthesis (Kozak, 1986; Andersson and Kurland, 1990; Bulmer, 1991; Kudla et al., 2009; 

Tuller et al., 2010; Plotkin and Kudla, 2011; Tuller et al., 2011; Ding et al., 2012; Bentele et 

al., 2013). The accessibility of the 5' cap (Godefroy-Colburn et al., 1985; Richter and 

Sonenberg, 2005) and the presence of small ORFs within 5' UTRs referred to as upstream 

ORFs (uORFs) (Kozak, 1986; Ingolia et al., 2009; Brar et al., 2012; Zur and Tuller, 2013) 

can also modulate the rate of translation initiation (Sonenberg and Hinnebusch, 2009). 

Likewise, codon choice, mRNA structure, and the identity of the nascent polypeptide can 

influence elongation rates (Varenne et al., 1984; Brandman et al., 2012). In addition, 

differences in elongation rates can influence co-translational protein folding, localization of 

the mRNA or protein, and in extreme cases the rate of protein production (Kimchi-Sarfaty et 

al., 2007; Xu et al., 2013; Zhou et al., 2013). Finally, stop-codon read-through can introduce 

alternative C-terminal regions that affect protein stability, localization, or activity (Dunn et 

al., 2013). Despite known examples of regulation at each of these stages of translation, 

translation is largely controlled at initiation, which is rate limiting for most mRNAs 

(Andersson and Kurland, 1990; Bulmer, 1991; Chu and von der Haar, 2012; Shah et al., 

2013).

Variation in protein abundances observed in yeast cells largely reflects variation in mRNA 

abundances, indicating that much of gene regulation occurs at the level of mRNA synthesis 

and decay (Greenbaum et al., 2003; Csardi et al., 2015). However, differences in translation 

rates also contribute. Studies using microarrays for global polysome profiling indicate that 

ribosome densities for different mRNAs vary over a 100-fold range (from 0.03 to 3.3 

ribosomes per 100 nucleotides), indicating extensive translation control in Saccharomyces 

cerevisiae (Arava et al., 2003). More recently, the use of ribosome-footprint profiling has 

enabled transcriptome-wide analyses of translation using high-throughput sequencing, which 

again suggested a nearly 100-fold range of translational efficiencies (TEs) in log-phase yeast 

(Ingolia et al., 2009).

The ribosome-profiling method has itself undergone refinements over the last few years. 

Here, we build upon these advances and present improved ribosome-profiling and mRNA-

seq datasets for log-phase yeast. Comparisons to many previous datasets reveal protocol-

specific biases that can influence interpretation of ribosome-profiling experiments. With 

these insights, we then address several classical questions and on-going debates in protein 

translation, such as the influence of tRNA abundances and nascent-peptide sequence on 

elongation rates. Our improved datasets also constrict the differences in TEs observed in 
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log-phase yeast, such that the gene-to-gene variability that does remain can be largely 

predicted using a simple statistical model that considers only six features of the mRNAs.

RESULTS

Less perturbed ribosome footprints reveal the dynamics of elongation

Protocols for analyzing polysome profiles or capturing ribosome footprints (referred to as 

ribosome-protected fragments, or RPFs) typically involve treating cells with the elongation 

inhibitor cycloheximide (CHX) to arrest the ribosomes prior to harvest (Ingolia et al., 2009; 

Gerashchenko et al., 2012; Zinshteyn and Gilbert, 2013; Artieri and Fraser, 2014; McManus 

et al., 2014). An advantage of CHX pre-treatment is that it prevents the run-off of ribosomes 

that can otherwise occur during harvesting (Ingolia et al., 2009). However, this treatment 

can also have some undesirable effects. Because CHX does not inhibit translation initiation 

or termination, pre-treatment of cultures leads to ribosome accumulation at start codons and 

depletion at stop codons (Ingolia et al., 2011; Guydosh and Green, 2014; Pelechano et al., 

2015). In addition, because CHX binding to the 80S ribosome is both non-instantaneous and 

reversible, the kinetics of CHX binding and dissociation presumably allow newly initiated 

ribosomes to translocate beyond the start codon. Another possible effect of CHX treatment 

is that ribosomes might preferentially arrest at specific codons that do not necessarily 

correspond to codons that are more abundantly occupied by ribosomes in untreated cells. 

Although effects of CHX pre-treatment have minimal consequence for analyses performed 

at the gene level, i.e., comparisons of the same gene in different conditions, or comparisons 

between different genes after discarding reads in the 5' regions of ORFs, CHX pre-treatment 

may have severe consequences for analyses that require single-codon resolution.

The potential effects of CHX pre-treatment near the start codon have been discussed since 

the introduction of ribosome profiling, where an alternative protocol with flash-freezing and 

no CHX pre-treatment is also presented (Ingolia et al., 2009). Indeed, many recent 

ribosome-profiling experiments avoid CHX pre-treatment (Gardin et al., 2014; 

Gerashchenko and Gladyshev, 2014; Guydosh and Green, 2014; Jan et al., 2014; Lareau et 

al., 2014; Pop et al., 2014; Williams et al., 2014; Nedialkova and Leidel, 2015). However, 

consensus on the ideal protocol has not yet been reached, in part because the influence of 

alternative protocols on the interpretation of translation dynamics has not been 

systematically analyzed.

Here, we implemented a filtration and flash-freezing protocol to rapidly harvest yeast 

cultures. Importantly, this protocol minimized the time the cells experience starvation, 

which leads to rapid ribosome run-off (Ingolia et al., 2009; Gardin et al., 2014; Guydosh and 

Green, 2014). The protocol did include CHX in the lysis buffer to inhibit elongation that 

might occur during RNase digestion, although we doubt this precaution was necessary.

The original ribosome-profiling protocol also used cDNA circularization (Ingolia et al., 

2009), while some subsequent protocols instead ligate to a second RNA adapter prior to 

cDNA synthesis (Guo et al., 2010). Both approaches can introduce sequence-specific biases 

at the 5' ends of reads, which are not expected to influence results of analyses performed at 

the level of whole mRNAs but might influence results of codon-resolution analyses. 
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Borrowing from methods developed for small-RNA sequencing (Jayaprakash et al., 2011; 

Sorefan et al., 2012), we minimized these biases by ligating a library of adapter molecules 

that included all possible sequences at the eight nucleotides nearest to the ligation junction. 

Using this ligation protocol with a rapidly harvested, flash-frozen sample, we generated 74.3 

million RPFs for log-phase yeast.

The 5' ramp of ribosomes

Using the 5' ends of RPFs, we inferred the codon at the A site of each footprint (Ingolia et 

al., 2009). Analysis of all mapped reads revealed the expected three-nucleotide periodicity 

along the ORFs, as well as ribosome accumulation at the start and stop codons (Figure 1A–

B).

To examine the global landscape of 80S ribosomes, we averaged the position-specific RPF 

densities of individual genes into a composite metagene, in which each gene was first 

normalized for its overall density of RPFs (i.e., RPKM of RPFs) and then weighted equally 

in the average (Eqn S10). A small excess of ribosome density was observed in the first ~200 

codons compared to the remainder of the ORF (Figure 1C). The trend towards decreasing 

ribosome density with codon position was also evident on a gene-by-gene basis: 82% of 

genes exhibited declining raw RPF reads along their entire gene-length, based on linear-

regression of RPF reads with codon position (binomial test, p < 10−15), with the 5'-to-3' 

decrease in ribosome densities for a gene of average length (~500 codons) averaging ~43%.

Much larger 5' ramps are observed in other studies (Ingolia et al., 2009; Gerashchenko et al., 

2012; Zinshteyn and Gilbert, 2013; Artieri and Fraser, 2014; Guydosh and Green, 2014; 

McManus et al., 2014), which is attributed to their use of CHX pre-treatment (Ingolia et al., 

2009; Gerashchenko and Gladyshev, 2014) (Figure S1). However, CHX pre-treatment 

cannot explain the more modest ramp observed in our dataset, since our protocol did not 

involve such treatment.

The 5' ramp of ribosomes has previously been attributed to slower elongation due to 

preferential use of codons corresponding to low-abundance cognate tRNAs at the 5’ ends of 

genes (Tuller et al., 2010). To determine the contribution of codon usage, we tested whether 

differences in RPF densities between the 5' and 3' ends of genes depended on codon choice. 

Surprisingly, for each of the 61 sense codons, the average density of RPFs was 33% greater 

on average when the codon fell within the first 200 codons of an ORF (Figure 1D and S1), 

which showed that differential codon usage alone cannot explain the 5' ramp. Consistent 

with these experimental results, simulation of protein translation in a yeast cell, using a 

whole-cell stochastic model of yeast translation (Shah et al., 2013), indicated that codon 

ordering could account for at most a 20% ramp (Figure S1). Thus, codon ordering might 

explain some of the ~60% ramp observed in our dataset, but the majority of this ramp is 

likely caused by other mechanisms (see Discussion).

Codon-specific elongation dwell times are inversely correlated with tRNA abundances

The 61 sense codons varied in their average RPF densities by more than 6 fold (Figure 1D), 

indicating that different codons are decoded at different rates. Molecular biologists have 
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long assumed that such differences in elongation rates are caused by corresponding 

differences in the cellular abundances of cognate tRNAs (Andersson and Kurland, 1990; 

Bulmer, 1991). Several early experiments provide empirical support for this view (Varenne 

et al., 1984; Sorensen and Pedersen, 1991), but early analyses of ribosome-profiling results 

do not find any relationship between ribosome density and cognate tRNA abundance 

expected from this model (Ingolia et al., 2011; Li et al., 2012; Qian et al., 2012; Charneski 

and Hurst, 2013; Zinshteyn and Gilbert, 2013). However, the datasets analyzed in these 

studies were all from experiments that used CHX pre-treatment.

At least three considerations help explain why CHX pre-treatment would disrupt the 

correlation between tRNA abundances and measured ribosome densities at the A site. The 

first is that CHX, once bound to a ribosome, allows for an additional round of elongation 

before halting ribosomes (Schneider-Poetsch et al., 2010; Gardin et al., 2014; Lareau et al., 

2014), which alone would remove any correlation at the A-site. Second, CHX binding is 

reversible, and at concentrations typically used in ribosome-profiling protocols, additional 

rounds of elongation might occur between CHX-binding events. Third, CHX prevents 

translocation of the ribosome by binding to the E-site, with space for a deacylated tRNA 

(Schneider-Poetsch et al., 2010), and thus CHX binding affinity presumably varies with 

features of the E site and the tRNA in it. Thus, in the presence of CHX pre-treatment, the 

ribosome density at a site is likely more a function of the on and off rates of CHX binding 

than a function of differential isoaccepting tRNA availability. Indeed, recent analyses of 

profiling results obtained without CHX pre-treatment have observed modest correlations 

between tRNA abundances and ribosome-densities at the A-site (Gardin et al., 2014; Lareau 

et al., 2014).

When examining earlier ribosome-profiling datasets, we found that whenever CHX pre-

treatment was employed, the relationship between ribosome occupancy and tRNA 

abundance was both insignificant (p > 0.05) and in the opposite direction than expected 

(Figure S2C–E). Moreover, the concordance between these CHX pre-treatment datasets 

indicated a systematic bias (Figure S2), suggesting that an orthogonal set of mRNA 

sequence biases influence CHX binding. In contrast, for every dataset without CHX pre-

treatment, we found that ribosome densities were inversely correlated with tRNA 

abundances (Figure S2C–E).

In our dataset, we found that codon-specific excess ribosome densities (vk, Eqn S19) were 

strongly anti-correlated with cognate tRNA abundances, as estimated by copy numbers of 

tRNA genes and wobble parameters (Figure 2A–B). This strong anti-correlation was also 

observed with direct estimates of tRNA abundances obtained from our RNA-seq 

measurements (Figure S2A, Table S1). As expected, the correlation was specific to the 

codon within the A site, with residual correlations at the P and E sites, which were 

potentially caused by some 5' heterogeneity of RPFs.

Taken together, these results strongly support the idea that differential cognate tRNA 

abundances influence differential elongation times of codons in the absence of CHX. 

Without CHX pre-treatment we also observed widespread pausing after polybasic tracts 
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(Figure S3) but not at P-site proline codons (Figure S2), which has been the subject of some 

debate (Supplemental Text).

Slower elongation at regions encoding inter-domain linkers

The modulation of elongation rates by either tRNA abundances (Figure 2A) or polybasic 

stretches (Figure S3) might influence the kinetics of co-translational folding. Indeed, slower 

elongation rates within inter-domain linkers relative to the adjacent domains is reported to 

coordinate co-translational folding of nascent polypeptides (Thanaraj and Argos, 1996; 

Kimchi-Sarfaty et al., 2007; Pechmann and Frydman, 2013). However, systematic 

experimental evidence for such differences in elongation rates has been lacking.

To examine whether our ribosome-profiling data reveals such differences, we first used 

InterProScan classifications (Jones et al., 2014) based on the Superfamily database (Wilson 

et al., 2009) to partition coding sequences into domain and linker regions. We then 

calculated the mean normalized RPF densities (zij, Eqn S7) for codons within the domain- 

and linker-encoding regions and found significantly lower densities in regions of genes that 

fell within domains compared those that fell outside of domains (Figure 3A, mean difference 

0.094, paired t-test, p < 10−26). To eliminate any influence of the 5' ramp, we repeated the 

analysis excluding the first 200 codons. Although the size of the effect diminished (mean 

diff = 0.029), the difference in mean ribosome densities remained significant (p = 0.0002), 

indicating that the 5' ramp was not solely responsible for lower ribosome densities within 

domains (Figure S4A).

The trend towards relatively lower ribosome densities in domain regions held even when 

restricted to each individual amino acid, with the exceptions of cysteine residues and the 

single-codon-encoded methionine and tryptophan residues (Figure S4). Thus, differences in 

amino-acid content between domains and linkers could not account for the observed 

differences in bound ribosome densities. Moreover, for 54 out of 61 sense codons, we found 

significantly higher ribosome densities in domains compared to linkers (one-sided t-test, p < 

0.05). For 26 out of 61 codons, we found significantly higher ribosome densities in domains 

even after excluding the first 200 codons (one-sides t-test, p < 0.05). This result implied that 

differences in synonymous codon usage between domain and linker regions cannot alone 

account for the differences in ribosome densities. One possible mechanism for differential 

ribosome occupancy, independent of codon usage, is differential recruitment of chaperones 

and their associated effects on co-translational folding (Ingolia, 2014).

Similar results for densities in domain and linker regions were obtained when using 

InterProScan classifications (Bateman et al., 2002) instead of the Superfamily database 

(Figure S4B). Finally, consistent with other computational analyses (Pechmann and 

Frydman, 2013), differences in elongation rate were found at the level of protein secondary 

structures as well: Regions corresponding to helices and sheets exhibited significantly lower 

RPF densities than regions corresponding to loops (Figure S4C). Taken together, these 

results provided systematic empirical support for the claim that co-translational folding 

requirements influence elongation rates. Nonetheless, the magnitude of this signal was very 

small, suggesting that slower inter-domain elongation either has very little impact or impacts 

very few genes.
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Estimates of protein-synthesis rates

Our results thus far indicated that the ribosome density at a given codon position is 

influenced by the abundance of cognate tRNAs and whether the codon is immediately 

downstream of a polybasic stretch, falls within a protein domain, or lies in the 5’ region of 

the ORF. The non-uniform ribosome densities along individual ORFs imply that the overall 

RPF density on each gene (i.e., RPKM of RPFs) does not directly reflect the rate of protein 

synthesis (Li et al., 2014). For example, the RPF densities of genes enriched in more slowly 

elongated codons would tend to overestimate their protein-synthesis rates; and the same 

would be true for shorter ORFs. To more accurately quantify the protein-synthesis rates of 

individual genes from RPF densities, we used empirically derived correction factors to 

account for the position- and codon-specific effects we observed (fj, Eqn S23). With these 

correction factors, the ~74.3 million sequenced RPFs enabled reliable estimates of protein-

synthesis rates for 4839 genes (Eqn S28).

Accurate measurement of yeast mRNA abundances

In addition to improving measurements of ribosome densities, we sought to improve 

measurements of mRNA abundances, which is also critical for accurately quantifying 

translational control. Prior experiments have typically measured yeast mRNA abundances 

by performing RNA-seq on poly(A)-selected RNA (Ingolia et al., 2009; Gerashchenko et al., 

2012; Zinshteyn and Gilbert, 2013; Artieri and Fraser, 2014; Guydosh and Green, 2014; 

McManus et al., 2014). However, poly(A) selection might bias mRNA-abundance 

measurements. For example, mRNAs that lack a poly(A) tail of sufficient length to stably 

hybridize to oligo(dT) might not be as efficiently recovered. Although S. cerevisiae is not 

known to contain translated mRNAs that altogether lack a poly(A) tail, the lengths of 

poly(A) tails found on S. cerevisiae mRNAs are relatively short, with a median length of 27 

nt (Subtelny et al., 2014). Another source of potential bias in poly(A)-selection is partial 

recovery of mRNAs endonucleolytically cleaved during RNA isolation or poly(A)-selection. 

The 5' fragments resulting from mRNA cleavage are not recovered by poly(A) selection, 

which causes a 3' bias in the resulting RNA-seq data (Nagalakshmi et al., 2008). Indeed, 

analyses of published RNA-seq datasets from ribosome-profiling studies revealed a severe 3' 

bias in poly(A)-selected RNA-seq reads, ranging from 19–130% excess reads (Eqn S15) 

(Figure S5). Because longer mRNAs have a higher probability of being cleaved, the 

abundances of longer mRNAs might be systematically underestimated by poly(A) selection 

(Table S3).

An alternative to poly(A) selection is ribosomal RNA (rRNA) depletion, which enriches 

mRNAs by removing rRNA using subtractive hybridization. A concern with subtractive 

hybridization is the potential depletion of mRNAs that either cross-hybridize to the 

oligonucleotides used to remove rRNA sequences or adhere to the solid matrix to which the 

oligonucleotides are attached. To investigate the extent to which unintended mRNA 

depletion occurs when using reagents sold for yeast RNA-seq library preparations, we 

subjected the same total RNA to each of three procedures: Dynabeads oligo(dT)25 (Life 

Technologies), RiboMinus Yeast Transcriptome Isolation Kit (Life Technologies), or Ribo-

Zero Yeast Magnetic Gold Kit (Epicentre). As a reference, we also generated an RNA-seq 

library from the total RNA that was not enriched for mRNA and thus contained primarily 
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rRNA (90.2% of 199.7 million genome-mapping reads). We also note that we started with 

RNA extracted from the lysate that was used for ribosome-footprint profiling, as opposed to 

RNA extracted from whole cells as done in the original ribosome-profiling study (Ingolia et 

al., 2009). When comparing the 4540 mRNAs for which we obtained at least 64 reads in our 

total RNA library, only the Ribo-Zero-treated sample faithfully recapitulated the mRNA 

abundances observed in total RNA (R2 = 0.98, Figure 4A, Figure S5). The poly(A)-selected 

and RiboMinus-treated samples each had significantly lower correlations with total RNA 

(R2 = 0.85 and R2 = 0.87, respectively), indicating a skewed representation of the 

transcriptome. Compared to RNA-seq data from published ribosome-profiling studies, our 

Ribo-Zero-treated sample also exhibited the highest correlations with microarray-based 

estimates of mRNA abundances (Table S3).

As anticipated, the poly(A)-selected sample contained a strong 3' bias (Figure 4B), which 

caused a systematic underestimation of the abundances of longer genes (Figure 4C). After 

accounting for this strong bias in the poly(A)-selected sample, we did not detect a 

relationship between poly(A)-tail length and poly(A)-selection efficiency, suggesting that 

tail-length differences did not significantly contribute to the biases of poly(A)-selected 

RNA-seq data. For the RiboMinus-treated sample, cross-hybridization to the depletion 

probes might have skewed the mRNA abundances, which might have been largely avoided 

in the Ribo-Zero protocol because of its more stringent hybridization conditions. The 

RiboMinus-treated sample also had substantial rRNA contamination (44.5% of reads, 

originating primarily from the 5S rRNA).

Interestingly, the total-RNA and the Ribo-Zero datasets both contained a small 3' bias 

(Figure 4B), with median 3'/5' excess reads of 22% and 28%, respectively (Table S4). This 

bias was consistent with reports that yeast mRNAs are primarily degraded in the 5'-to-3' 

direction (Hu et al., 2009; Pelechano et al., 2015). The decay intermediates of this vectorial 

degradation process would contribute more reads toward the 3' ends of mRNAs, giving rise 

to the observed bias, especially when considering that our RNA samples were enriched for 

cytoplasmic RNA, which would diminish the countervailing vectorial mRNA synthesis 

process occurring in the nucleus. Nonetheless, the 3' biases in the total-RNA and Ribo-Zero 

datasets were smaller than those in poly(A)-selected samples, for which median 3'/5' excess 

mRNA reads ranged from 42% to 275% (Table S4). Because Ribo-Zero treatment enabled 

deep coverage of the yeast transcriptome without substantially biasing mRNA abundances, 

we used mRNA abundances estimated from Ribo-Zero-treated RNA for all subsequent 

analyses.

A narrow range of initiation efficiencies in log-phase yeast

Because protein synthesis is typically limited by the rate of translation initiation (Andersson 

and Kurland, 1990; Bulmer, 1991; Shah et al., 2013), we defined the initiation efficiency 

(IE) of each gene as its protein-synthesis rate divided by its mRNA abundance (Eqn S27). 

Thus, the IE measure quantified the efficiency of protein production per mRNA molecule of 

a gene, in a typical cell. To facilitate comparisons with published datasets, we also 

calculated the translational efficiency (TE) of each gene, defined as its RPF density 

normalized by its mRNA abundance (Ingolia et al., 2009). Because TE is calculated based 
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on the RPF density rather than the protein-synthesis rate, TE does not account for 

differential rates of elongation associated with the 5' ramp or codon identity. Nonetheless, IE 

and TE were highly correlated (R = 0.951, Figure S6A).

A wide range of IEs (or TEs) among genes would indicate that protein production is under 

strong translational control, whereas a narrow range would indicate that protein production 

is typically governed by mRNA abundances, and hence protein-synthesis rate is primarily 

controlled by mRNA transcription and decay. The first ribosome-profiling study suggested a 

large amount of translational control in yeast, with the range of TEs reported to span roughly 

100 fold (Ingolia et al., 2009). Indeed, we found that the 1–99 percentile range of TEs in 

those data spanned 73 fold (Figure S6C). In contrast, the range of TEs observed in our data 

was narrower, with the 1–99 percentile spanning only a 15-fold range (Figure 5A). Although 

the range of IEs was marginally wider than that of TEs (1–99 percentile spanning 21 fold, 

Figure S6B), it was still substantially smaller than the range of TEs initially reported 

(Ingolia et al., 2009). The relatively narrow range of IEs in our data was also reflected by the 

high correlation between mRNA abundance and protein-synthesis rate (R = 0.948; Figure 

5B), supporting the conclusion that protein-synthesis rates are largely dictated by mRNA 

abundances (Csárdi et al. 2015). Interestingly, the slope of the regression between mRNA 

and protein-synthesis rates was >1 on the log-scale, indicating that translation regulation 

mostly amplifies the effect of differential mRNA abundances rather than buffering it (Csardi 

et al., 2015). Further indicating that mRNA abundance (when accurately measured) is a 

strong predictor of total protein production, mass-spectrometry-based measurements of 

steady-state protein abundance (de Godoy et al., 2008) correlated as well with mRNA 

abundances as they did with protein-synthesis rates (Figure 5C).

When we examined the range of TEs in other published datasets, we also found more 

narrow ranges (as low as 11 fold from 1–99 percentiles) than that of Ingolia et al. (2009) 

(Figure S6C). However, the TEs in published datasets—which are all generated using 

poly(A)-selected mRNA—were not particularly well correlated with each other (Table S5). 

These discrepancies in TEs were largely due to differences in measured mRNA abundances, 

whereas the RPF abundances correlated almost perfectly (Table S5). Collectively, these 

results indicate that the amount of translational control in log-phase yeast has been 

overestimated due to inaccuracies in TE measurements, largely caused by challenges in 

accurately measuring mRNA levels.

We also noticed that the shape of the TE distribution from our data, which was asymmetric, 

differed from that of the Ingolia data, which is highly symmetric. In particular, in our data 

there were relatively few genes in the right tail of the distribution (Figure 5A, note the 

location of the mode closer to the 99th than the 1st percentile). This observation implied that 

mRNAs from very few genes contain elements that impart an exceptionally high initiation 

efficiency and are thereby “translationally privileged”. Rather, most mRNAs either initiate 

close to a maximum possible rate (likely set by the availability of free ribosomes or 

initiation factors) or contain features that modestly reduce the initiation rate.

To the extent that differences in IE were observed, the genes with lower IE tended to be 

expressed at lower mRNA levels, with IE increasing roughly linearly with mRNA 
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expression levels (Figure 5D). These results were consistent with the notion that abundant 

mRNAs have undergone evolutionary selection to be efficiently translated (Sharp and Li, 

1987; Andersson and Kurland, 1990; Plotkin and Kudla, 2011; Shah and Gilchrist, 2011). 

Interestingly, in the plots comparing protein-synthesis rate or IE with mRNA level, the 

points for 11 of the 12 highest expressed mRNAs fell below the regression lines (Figure 5B 

and Figure 5D, dashed lines), suggesting that the efficiency for the highest expressed 

mRNAs might have saturated.

Two notable outliers appeared in the comparison of mRNA abundances and synthesis rates 

(Figure 5B, red dots). These two, which corresponded to relatively abundant mRNAs with 

exceptionally low synthesis rates, were HAC1 and GCN4. These are the two most well-

known examples of translational control in log-phase yeast and are both involved in rapid 

stress responses, during which translational repression is relieved (Ruegsegger et al., 2001)

(Mueller and Hinnebusch, 1986)(Dever et al., 1992). The observation that HAC1 and GCN4 

were the only abundant mRNAs that were strongly regulated at the translational level further 

emphasized that translational control only modestly influences the protein production of 

most yeast genes. Nevertheless, the tuning of synthesis rates via translational control can 

help maintain the proportional synthesis of the subunits of multiprotein complexes (Figure 

S6D–G, Supplemental Text).

Determinants of initiation efficiencies in yeast

Next, we sought to identify sequence-based features that explain the variation in IE values 

that remained among genes after improving the RPF and mRNA measurements. First we 

considered uORFS, which can inhibit translation by serving as decoys to prevent initiation at 

the start codons of bona fide ORFs (Zur and Tuller, 2013), as occurs for GCN4 (Mueller and 

Hinnebusch, 1986)(Dever et al., 1992), one of two genes with the greatest translational 

repression (Figure 5B). Using high-resolution 5' UTR annotations (Arribere and Gilbert, 

2013), we identified upstream AUGs (uAUGs) in 303 out of the 2549 genes that had 

reproducibly uniform transcription-start sites. Those genes containing uAUGs had 

significantly lower IEs than genes without uAUGs, even after controlling for 5' UTR lengths 

(Figure 6A, t-test p < 10−16). These results confirmed that a general feature of uORFs is to 

decrease the translation of downstream ORFs, and that the presence of uAUGs can explain 

some of the variance in IEs (Arribere and Gilbert, 2013; Zur and Tuller, 2013).

Another feature that has been linked to differences in synthesis rates is mRNA secondary 

structure. Structure located near the 5' cap might interfere with binding of the eIF4F cap-

binding complex, while structure within the 5' UTR could disrupt the scanning 40S 

ribosome. An open structure around the start codon might also be important for facilitating 

joining of the 60S subunit. Previous genome-wide structure analyses revealed a weak but 

significant inverse correlation between start-codon-proximal structure and TE (Kertesz et 

al., 2010), but the accessibility of the 5' UTR more generally was not reported, and the TE 

values used in those studies were affected by RNA-seq biases. For each mRNA with a single 

reproducible 5' end (Arribere and Gilbert, 2013), we predicted the accessibility of the 5' cap 

by calculating the predicted folding energy of the sequence spanning increasing distances 

from the cap. For all distances examined, we observed a significant correlation between 
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predicted cap accessibility and IE (t-test, p < 10−6 for each window; Figure 6B, Figure S7). 

This correlation rapidly increased with window length, approaching a maximum at 70–90 nt 

(Pearson correlation, R ~ 0.37 for windows 70–90 nt) and then steadily declined for larger 

windows (Figure S7), consistent with local folding of the 5' end determining cap 

accessibility. Together, these results confirmed that mRNAs with less-structured 5' UTRs 

tend to be initiated more efficiently (Godefroy-Colburn et al., 1985; Shah et al., 2013), 

which is consistent with eIF4F binding, 40S recruitment, or scanning as influential 

regulatory steps during eukaryotic initiation. Notably, the correlations that we observed 

between predicted mRNA structure and translation were the largest that have been reported 

between these features in eukaryotes, which emphasized the utility of our accurate IE 

measurements and of predicting structure near the cap as opposed to more downstream 

regions.

Gene length has also been reported to correlate with translational efficiency. Although 

global polysome-profiling studies indicate strong anti-correlation between ORF length and 

ribosome density (Arava et al., 2003), analysis of published ribosome-footprint-profiling 

data revealed essentially no correlation (or even a positive correlation in some cases) 

between length and TE (Figure S7). In contrast, we observed a striking negative correlation 

in our IE (and correspondingly in our TE) data (Figure 6C, Figure S7). Our IE measure 

already corrected for the elevated ribosome densities in the first 200 codons, and the 

negative correlation between ORF length and TE persisted even after removing the first 250 

codons of each ORF, which further confirmed that this correlation was not caused by the 5’ 

ramp (Figure S7). The discrepancy between our data and earlier ribosome-profiling datasets 

was likely due to the RNA-seq 3'-bias caused by poly(A) selection (Figure 4B, Figure S5). 

Indeed, an anti-correlation between ORF length and TE was observed in most other datasets 

when we controlled for the 3' bias by estimating mRNA abundances based on mapped RNA-

seq reads from only the 3' ends of genes (Figure S7). Together, these results showed that the 

original report of shorter mRNAs having relatively higher initiation efficiencies (Arava et 

al., 2003) is correct, even after accounting for the CHX-enhanced 5' ramp that confounded 

that analysis.

A statistical model that predicts initiation efficiencies

Based on these results, we used multiple linear regression to build a model that considered 

number of uAUGs, predicted cap-proximal RNA-folding energy (and also GC content of the 

5' UTR as another metric for structure), and lengths of the ORF and the 5' UTR to explain 

the variance in IE observed among genes. We also included an mRNA-abundance term in 

the model because IE is greater for more abundant mRNAs (Figure 5D). To identify the 

most informative features, we used Akaike's Information Criteria (AIC) for model selection 

and both step-up and step-down model-selection procedures (using the stepAIC function in 

the MASS package in R). The multiple regression model that best explained the variation in 

IE included all six variables, even after penalizing for model complexity (Figure 7A, Table 

S6). The dominant explanatory variable was mRNA abundance, which alone accounted for 

~40% of the variance in IE. Collectively, a model containing all six variables explained 

~58% of the variance in IE. A model that excluded mRNA abundance, and therefore 

depended on only sequence-based features, still explained ~39% of the variance in IE. These 
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results of our statistical modeling should help motivate mechanistic studies of how each of 

these mRNA features impacts translation.

DISCUSSION

We have shown that improved measurements of both mRNA abundances and RPFs can 

provide insights into the regulation and dynamics of eukaryotic translation. The RPFs that 

we isolated and sequenced are indicative of a dynamic and heterogeneous elongation 

process, with ribosomes transiting along mRNA molecules at variable rates depending on 

the distance from the start codon, codon identity, and nascent polypeptide sequence.

What might explain the 5' ramp of ribosomes observed even in the absence of CHX pre-

treatment (Figure 1C)? Codon usage accounted for about a third of it, but even the same 

codons were differentially occupied by ribosomes depending upon whether they occurred in 

the 5' or 3' ends of genes (Figure 1D), indicating that additional mechanisms must be 

involved. Although we cannot rule out ribosome drop-off as a contributing factor, we favor 

the idea that elongation is slower during the early phase of translation. Perhaps an initiation 

factor remains engaged with the 80S ribosome during early elongation, and the bound factor 

maintains the ribosome in a slower state until it stochastically dissociates from the ribosome 

within the first 200 codons. The eIF3 complex is a promising candidate for such a factor, as 

it binds the solvent-exposed face of the 40S ribosome (Siridechadilok et al., 2005) and can 

therefore bind to 80S ribosomes as well (Beznoskova et al., 2013). Maintaining eIF3 on 

early elongating ribosomes might also facilitate re-initiation after translation of short uORFs 

(Szamecz et al., 2008; Zur and Tuller, 2013).

A practical finding of our studies is that the choice of mRNA enrichment method can have a 

significant impact on yeast mRNA-abundance measurements. rRNA depletion using the 

Ribo-Zero kit was the only method that enriched for mRNAs without introducing substantial 

and systematic biases (Figure 4A, Figure S5). One caveat of rRNA depletion is that nascent 

pre-mRNAs that lack a poly(A) tail may also be recovered, which can inflate mRNA 

abundance measurements with respect to the pool of translatable mRNA molecules. This 

effect may be more pronounced in metazoans that contain long introns and correspondingly 

long transcription times. The extent to which poly(A)-selection biases affect metazoan 

mRNA abundance data and thereby influence TE measurements remains to be determined.

The initial report that TE spans a roughly 100-fold range across mRNAs in budding yeast 

spurred intensive investigation of the underlying TE determinants, with varying degree of 

success (Kertesz et al., 2010; Tuller et al., 2011; Charneski and Hurst, 2013; Zur and Tuller, 

2013; Bentele et al., 2013; Rouskin et al., 2014). Our results showed that this apparently 

wide range of TEs is partly explained by inaccurate mRNA-abundance measurements. After 

identifying and minimizing this source of inaccuracy, we observed a narrower range of TEs 

and IEs (Figure 5A, Table S3), suggesting a more limited degree of translational control. 

The TE range that we observed in yeast resembled the range observed in mouse embryonic 

stem cells (Ingolia et al., 2011), suggesting that limited translational control is a general 

principle of gene regulation in rapidly dividing eukaryotic cells.
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Using our IE measurements, we were able to generate a statistical model that explained a 

majority of the IE variance (Figure 7A, Table S6). Based on this model, secondary structure 

within the 5' UTR, most especially cap-proximal structure, appears to be an important 

determinant of IE. These results are in agreement with early mechanistic studies 

demonstrating that cap accessibility correlates with initiation efficiency (Godefroy-Colburn 

et al., 1985) and that stable 5'-UTR secondary structures block the scanning ribosome 

(Kozak, 1986). One caveat of our structure analyses is that we used in silico prediction of 

mRNA structure, which does not always accurately capture the in vivo structure of mRNA 

(Rouskin et al., 2014). Further indicating the inadequacy of in silico predictions was the 

benefit of also including 5'-UTR GC content as a feature in our model. Likewise, the 

inclusion of mRNA abundance might have helped compensate for the inadequacy of in 

silico structure predictions, as highly expressed genes have less predicted structure in 5' 

UTRs than do lowly expressed genes (Gu et al., 2010), and presumably these differences 

would be even greater when looking at actual 5'-UTR structure. Therefore, mRNA structure 

presumably explains even more variation in IE than our analyses suggested.

We also found that longer ORFs tended to be more poorly translated in log-phase yeast, 

even after accounting for the 5' ramp (Figure 6C). Given that initiation occurs at the 5' ends 

of mRNAs, how might initiation rates be sensitive to ORF lengths? One possibility is that 

shorter mRNAs, which include ribosomal proteins and other housekeeping genes (Hurowitz 

and Brown, 2003), might be under selection for faster initiation rates by virtue of their high 

expression. However, our stepwise regression showed that ORF length was informative even 

after accounting for mRNA abundance. Another possibility is that the 5'-UTR-bound 

initiation machinery can sense and be affected by ORF length via the closed-loop structure. 

In eukaryotes, translating mRNAs are thought to adopt a pseudo-circularized structure in 

which the 5'- and 3'-ends are in close proximity, enhancing translation and mRNA stability 

(Christensen et al., 1987). Previous biochemical analysis of the closed loop in yeast extracts 

revealed that only short mRNAs adopt a stable closed-loop structure in vitro (Amrani et al., 

2008), presumably due to the relatively short distance between the mRNA termini. If the 

same principle applies in vivo, then inefficient closed-loop formation of long mRNAs could 

explain their relatively low IEs.

EXPERIMENTAL PROCEDURES

Yeast culture, harvesting, and lysate preparation

S. cerevisiae strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) was grown at 30°C in 

500 ml YPD to OD600 0.5. Cells were harvested by filtration using a Kontes Ultra-Ware 

Microfiltration Assembly with a Supor 450 Membrane Disc Filter that had been pre-wet 

with YPD. As the last liquid flowed through, the filtration apparatus was rapidly 

disassembled, cells were gently scraped off of the filter using a cell lifter, and the scraper 

was immediately submerged in a 50-ml conical tube filled with liquid nitrogen. Once the 

liquid nitrogen had boiled off, the pellet was stored in the conical tube at −80°C until lysis. 

To lyse cells under cryogenic conditions, the cell pellet was transferred into a pre-chilled 

mortar that was surrounded and filled with liquid nitrogen. The pellet was ground to a fine 

powder with a pre-chilled pestle, transferred into a 50-ml conical tube filled with liquid 
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nitrogen, and after boiling off the liquid stored at −80°C. Crude lysate was prepared by 

briefly thawing the cell powder on ice for 1 minute and then resuspending in 4 ml Polysome 

Lysis Buffer [10 mM Tris-HCl, pH 7.4, 5 mM MgCl2, 100 mM KCl, 1% Triton X-100, 2 

mM dithiothreitol, 100 µg/mL cycloheximide, 500 U/mL RNasin Plus RNase Inhibitor 

(Promega), cOmplete EDTA-free Protease Inhibitor Cocktail (Roche)]. The lysate was 

centrifuged at 1300g for 10 minutes, and the supernatant was flash frozen in single-use 

aliquots.

RNA-seq

Total RNA was extracted from an aliquot of frozen yeast lysate using TRI Reagent 

(Ambion) according to the manufacturer’s protocol. Aliquots of the same sample were 

subjected to either no enrichment (the total RNA sample), poly(A) selection using 30 µg 

total RNA and 100 µl Dynabeads oligo(dT)25 (Life Technologies) according to the 

manufacturer’s instructions, rRNA depletion using 4 µg total RNA and the RiboMinus Yeast 

Transcriptome Isolation Kit (Life Technologies) according to the manufacturer’s 

instructions, rRNA depletion using 10 µg total RNA and the Ribo-Zero Gold Yeast rRNA 

Removal Kit (Illumina) according to the manufacturer’s instructions. RNA samples were 

then diluted to 90 µl with water and precipitated with 10 µl 3 M NaCl, 30 µg GlycoBlue 

(Life Technologies), and 250 µl ethanol. RNA-seq was performed as described (Subtelny et 

al., 2014), using 5 cycles of PCR.

Ribosome profiling

RPFs were isolated from an aliquot of frozen yeast lysate and sequenced on the Illumina 

HiSeq platform, as described (Subtelny et al., 2014). Detailed protocols for RNA-seq and 

ribosome profiling are available at http://bartellab.wi.mit.edu/protocols.html. RNase I 

treatment was performed using 0.2 U/µL lysate. Subtractive hybridization to remove 

contaminating rRNA fragments was performed using a mixture of three biotinylated 

oligonucleotides (Integrated DNA Technologies): 5'-GATCGGTCGATTGTGCACCTC/

3Bio/; 5'-CGCTTCATTGAATAAGTAAAG/3Bio/; 5'-GACGCCTTATTCGTATCCATC/

3Bio/

Analyses

Equations and detailed procedures for analyses are provided in the Supplemental 

Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Less perturbed RPFs reveal a codon-independent 5' ramp
(A–B) Metagene analyses of RPFs. Coding sequences were aligned by their start (A) or stop 

(B) codons (red shading). Plotted are the numbers of 28–30-nt RPF reads with the inferred 

ribosomal A site mapping to the indicated position along the ORF.

(C) Metagene analyses of RPFs and RNA-seq reads (mRNA). ORFs with at least 128 total 

mapped reads between ribosome-profiling (red) and RNA-seq (blue) samples were 

individually normalized by the mean reads within the ORF, and then averaged with equal 

weight for each codon position across all ORFs (e’j Eqn S10 and h’j Eqn S14).
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(D) Comparison of codon-specific RPFs as a function of the 5' ramp. For each of the codons, 

densities of RPFs with ribosomal A sites mapping to that codon were calculated using either 

only the ramp region of each ORF (codons 1–200) or the remainder of each ORF (v5
k Eqn 

S16 and v3
k Eqn S17, respectively). The diagonal line indicates the result expected for no 

difference between the two regions.

See also Figure S1.
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Figure 2. Codons corresponding to lower-abundance tRNAs are decoded more slowly
(A) Correlation between codon-specific excess ribosome densities and cognate tRNA 

abundances. Codons within RPFs were assigned to the A-, P-, and E-site positions based on 

the distance from the 5' ends of fragments, and codonspecific excess ribosome densities 

were calculated (vk, Eqn S19). Cognate tRNA abundances for each codon were estimated 

using the genomic copy numbers of iso-accepting tRNAs and wobble parameters (Table S2). 

Spearman R values are shown, with their significance (p values).

(B) The correlations of codon–tRNA abundance at different positions relative to the A site. 

Analysis was as in (A) using varying offsets from the A-site position within RPFs (x axis) to 

calculate Spearman correlations (y axis).

See also Figures S2–3 and Tables S1–2.
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Figure 3. Elongation dynamics correlate domain architecture
(A) Cumulative distributions of normalized ribosome densities within and outside of 

protein-folding domains. Mean normalized RPF densities (zij, Eqn S7) for codons within the 

domain-encoding and non-domain-encoding regions were individually calculated for each 

ORF. Domain assignments were based on InterProScan classifications (Jones et al., 2014) 

obtained from the Superfamily database (Wilson et al., 2009). Statistical significance was 

evaluated using paired t-test (p < 10−26).

See also Figure S4.
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Figure 4. mRNA enrichment methods can bias mRNA abundance measurements
(A) mRNA abundances measured by RNA-seq of Ribo-Zero-treated RNA compared to 

those measured by RNA-seq of total unselected RNA. Pearson R2 is indicated.

(B) Metagene analysis of RNA-seq read density in total unselected or mRNA-enriched RNA 

samples. Coding sequences were aligned by their stop codons, and RNA-seq reads were 

individually normalized by the mean reads within the ORF and then averaged with equal 

weight for each codon position across all ORFs (h’’j Eqn S15).
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(C) mRNA abundances for mRNA-enriched samples relative to total unselected RNA, as a 

function of ORF length.

See also Figures S5–7 and Tables S3–4.
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Figure 5. TEs and IEs span a narrow range in log-phase yeast cells
(A) Distribution of TE measurements, with vertical dashed lines marking the 1st and 99th 

percentiles, and the fold-change separating these percentiles indicated. All ORFs with at 

least 128 total reads between the ribosome-profiling and RNA-seq datasets were included 

(except YCR024C-B, which was excluded because it is likely the 3' UTR of PMP1 rather 

than an independently transcribed gene).

(B) Relationship between estimated protein-synthesis rate and mRNA abundance for genes 

shown in (A). GCN4 and HAC1 (red points) were the only abundant mRNAs with 

exceptionally low protein-synthesis rates. The best linear least-squares fit to the data is 

shown (solid line), with the Pearson R. For reference, a one-to-one relationship between 

protein-synthesis rate and mRNA abundance is also shown (dashed line).

(C) Relationship between with experimentally measured protein abundance (de Godoy et al., 

2008) and either (left) or mRNA abundance (right). The 3,845 genes from (A) for which 
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protein-abundance measurements were available were included in these analyses. Pearson 

correlations are shown (R).

(D) Relationship between mRNA abundance and IE for genes shown in (A). The best linear 

least-squares fit to the data is shown, with the Pearson R.

See also Figures S8–9 and Table S5.
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Figure 6. mRNA sequence, structure, and length correlate with IE
(A) Reduced IE values for genes with at least one upstream AUG (i.e., an AUG codon 

located within the annotated 5' UTR). The plots indicated the median (line), quartile (box) 

and 1st and 99th percentiles (whiskers) of the distributions.

(B) Inverse relationship between IE and the folding energy of predicted RNA secondary 

structure near the cap (Cap-folding energy). RNAfold was used to estimate folding energies 

for the first 70 nt of the mRNA. Gray bars indicate 1 SD of IE values for genes binned by 
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predicted folding energy. The best linear least-squares fit to the data is shown (solid line), 

with the Pearson R.

(C) Inverse relationship between IE and ORF length. The best linear least-squares fit to the 

data is shown (solid line), with the Pearson R.

See also Figure S7.
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Figure 7. Sequence-based features of mRNAs largely explain yeast IEs
(A) Correspondence between predicted IEs and IEs inferred directly from the RPF and 

RNA-seq data. Initiation efficiencies were predicted using a multiple-regression model, 

based on mRNA abundance and sequence-based features of the 2549 genes with empirically 

determined 5'-UTRs. Shown is the Pearson R.

See also Table S6.
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