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Abstract Inherited cardiac conditions (ICCs) are characterised
by marked genetic and allelic heterogeneity and require exten-
sive sequencing for genetic characterisation. We iteratively
optimised a targeted gene capture panel for ICCs that includes
disease-causing, putatively pathogenic, research and pheno-
copy genes (n=174 genes). We achieved high coverage of
the target region on both MiSeq (>99.8 % at ≥20× read depth,
n=12) and NextSeq (>99.9 % at ≥20×, n=48) platforms with
100 % sensitivity and precision for single nucleotide variants
and indels across the protein-coding target on the MiSeq. In the
final assay, 40 out of 43 established ICC genes informative in
clinical practice achieved complete coverage (100 % at ≥20×).
By comparison, whole exome sequencing (WES; ∼80×),
deep WES (∼500×) and whole genome sequencing
(WGS; ∼70×) had poorer performance (88.1, 99.2 and
99.3 % respectively at ≥20×) across the ICC target. The
assay described here delivers highly accurate and afford-
able sequencing of ICC genes, complemented by accessi-
ble cloud-based computation and informatics. See Editorial
in this issue (DOI: 10.1007/s12265-015-9667-8).
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Introduction

Inherited cardiac conditions (ICCs) are diseases of the
heart and circulation with a combined prevalence of
∼1 %. ICCs include inherited arrhythmia syndromes, car-
diomyopathies, aortopathies and hyperlipidaemias [1–4].
They most commonly exhibit autosomal dominant inheri-
tance, though with highly variable expressivity and pene-
trance. Sequencing of ICC genes can be performed to con-
firm an ICC diagnosis, inform patient management/
cascade screening and be useful for molecular autopsy in
the case of sudden unexplained death [5].

Until recently, Sanger sequencing was used for ICC gene
sequencing for both clinical and research applications, but this
technique has limited throughput and is prohibitively
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expensive for large genes/large numbers of genes [6]. Next-
generation sequencing (NGS) reduces the cost and increases
throughput of gene sequencing and can now be performed on
inexpensive bench-top NGS platforms [7]. Bench-top se-
quencers have the advantages of low capital cost, compact
footprint and a simplified workflow compared to high-
throughput sequencers, yet still meet the sequencing needs
of individual research and clinical laboratories [8].

Whole exome sequencing (WES) and targeted sequencing
have been developed as alternatives to whole genome se-
quencing (WGS). These approaches have reduced sequencing
costs, turnaround times, data storage needs and informatics
burdens compared to WGS. There are many approaches to
enrich for target sequences that use varying DNA preparation
and capture methods that can be in solution, solid-phase or
PCR-based [9]. In solution, WES is a popular off-the-shelf
choice, as assays have been designed to capture all human
genes. However, WES often results in uneven coverage across
and between genes and can particularly struggle with GC-rich
regions such as first exons [10]. The interpretation of inciden-
tal variants, as suggested by American College of Medical
Genetics and Genomics (ACMG), is also a potential issue
for WES where variants unrelated to the patient’s referral con-
dition may be detected [11]. AugmentedWES assays contain-
ing additional probes targeting disease genes have been devel-
oped, but average assay performance remains suboptimal
(∼90 %, ≥20×) and WGS may perform better [12].

Targeted sequencing of gene panels is an alternative to WES
and has beenwidely used in research and is increasingly applied
in clinical settings [13]. In the ICC setting, small gene panels
have been used for specific ICCs, including long QT syndrome
(LQTS), hypertrophic cardiomyopathy (HCM), dilated cardio-
myopathy (DCM) and arrhythmogenic right ventricular cardio-
myopathy (ARVC) [14–16]. Multiple workflows and bioinfor-
matics pipelines are needed to run these various ICC gene
panels, and gene coverage is such that Sanger sequencing ‘fill
in’ is needed, which has very major manpower implications.

Here, we describe the development of a new gene panel for
ICCs, which provides a comprehensive, single workflow assay
with high levels of coverage across all ICC genes for use in
research and ultimately clinical settings. The performance of
the panel was iteratively improved by probe design, across
sequencing platforms and by sequencing chemistry refinement.
Assay performance was assessed in detail compared to WES
and WGS using local and cloud-based informatics pipelines.

Materials and Methods

Subject Specimens

Subjects (n=348) were recruited from National Heart Centre
Singapore and via advertisement at the MRC Clinical

Sciences Centre, Imperial College London. Samples for
WGS (n=8) were obtained from National Cancer Centre Sin-
gapore, National University Hospital Singapore. All partici-
pants gavewritten informed consent, and study protocols were
approved by the local institutional ethics committees and car-
ried out in accordance with local Tissue Acts, as appropriate.
Genomic DNAwas extracted from blood using Prepito DNA
Blood 600 kit (Perkin Elmer, MA) (targeted sequencing), EZ1
DSP DNA blood 48 kit (Qiagen, Netherlands) (WES) or
QIAsymphony DNA kit (Qiagen, Netherlands) (WGS) fol-
lowing manufacturer’s protocols. Quality and quantity of ex-
tracted DNA were assessed by an ultraviolet-visible
spectrophotometer.

Targeted Enrichment

An initial ICC gene panel targeting 169 ICC genes (ICCv1,
target region= 1.47 Mb; including 3′ and 5′UTRs) and an
iterated version targeting 174 genes (ICCv2, target
region=0.57 Mb; protein coding ± 40 bp buffer) were de-
signed using Illumina Design Studio (San Diego, CA). Genes
were chosen on the basis of reported associations of disease-
causing variants with relevant ICCs which were identified in
the Human Gene Mutation Database (HGMD) Professional
version 2014.1, followed by manual curation and addition of
further genes of research interest by a team of cardiologists
and clinical geneticists (Table S1). ICCv2 BED file with tar-
gets and genomic coordinates are provided in Table S2. The
169 ICC genes consistently represented in all sequence cap-
ture panels were assessed for the purposes of this study. Li-
braries were prepared using Nextera Rapid Capture Enrich-
ment kits according to the manufacturer’s protocols.

Targeted, Whole Exome and Whole Genome Sequencing

Targeted sequencing: Pooled libraries (n samples=6–48) pre-
pared using the ICC panel were sequenced on the Illumina
MiSeq (v2 kit; n=108) or NextSeq 500 (Mid Output v2 kit,
n=144) benchtop sequencers using paired-end, 150 bp reads.
WES: 96 samples underwent WES using the Nextera Rapid
Capture Exome kit according to the manufacturer’s instruc-
tions. Each pool (n=12) was sequenced on a single lane of the
HiSeq 2500 (SBS v4 kit, 125 bp paired-end (PE) reads, yield-
ing ≥4 GB of raw data per sample, ∼mean read depth of 80×
and >80 % of bases at >10×). Deep WES: Six out of 96 WES
samples were randomly selected, and all reads were combined
to obtain sequencing depth equivalent to that acquired by ICC
panel sequencing in typical use (∼43 GB of raw data per
sample, ∼mean read depth of 500×). WGS: Eight samples
were prepared using the TruSeq Nano DNA kit according
to the manufacturer’s instructions. Each sample was se-
quenced on two lanes of the HiSeq X (v2.5 kit, 150 bp
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PE reads, yielding ∼200 GB of raw data per sample, ∼mean
read depth of 70×).

Sequence Alignment and Variant Calling

Raw sequencing data (.bcl files) were demultiplexed into in-
dividual FastQ read files with Illumina’s bcl2fastq v2.16.0.10
based on unique index pairs. Low quality (Q<20) reads/bases
were trimmed using Trimmomatic v0.3220.4 [17], and read
quality was assessed using FastQC v0.10.1 [18]. High-quality
reads were mapped to UCSC GRCh37/hg19 reference ge-
nome using Burrows-Wheeler Aligner (BWA) v0.7.10 [19].
Picard v1.119 and The Genome Analysis Toolkit (GATK)
v3.3 [20] were used to mark duplicate reads, realign locally
around indels and recalibrate base quality scores according to
best practices. Alignment summary metrics and coverage and
callability metrics were generated using Picard v1.119,
SAMtools v1.1 [21], Bedtools v2.17 [22] and in-house
Perl/Shell scripts. A base was considered ‘callable’ if se-
quenced with minimum read depth=20×, base quality≥20
and mapping quality≥20. GATKv3.3 HaplotypeCaller and
UnifiedGenotyper were used to call variants from reads
mapped with quality ≥ 20. Variants were annotated with
Ensembl Variation database v75_37 [23] and HGMD Profes-
sional version 2014.1 [24]. Among all 252 samples sequenced
using the ICC panel, there were ten outliers (defined as total
number of reads per sample greater than third quartile +1.5
inter-quartile range (IQR) or below first quartile −1.5 IQR),
which were excluded from the analysis. In addition, 11 WES
samples with <80 % of bases at >10× were excluded from
analysis. Pathogenic or likely pathogenic variants (n=26)
identified using the ICC panel in a research cohort (n=35)
were subjected to Sanger sequencing. In addition to our in-
house pipeline described above, a subset of samples (n=65)
were also analysed using the BWA Enrichment v2.1 and Isaac
Enrichment v2.1 available in Illumina’s cloud genomics plat-
form (https://basespace.illumina.com), and variant calling
data was compared to the in-house GATK HaplotypeCaller
pipeline (Table S3) [25, 26].

Sensitivity and Precision of Variant Calling

Sensitivity and precision of variant calling of the ICC panel
were assessed using the NA12878 reference sample. High
confidence regions and the associated variant calls were
downloaded from Genome in a Bottle (GIAB) (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/
NISTv2.19/) [27] and compared to variant calls from ICC
panel sequencing on both the MiSeq and NextSeq platforms.
Variant calls were defined as true positive (TP) for those iden-
tified from panel sequencing and by GIAB, false positive (FP)
for those identified as reference by GIAB but as variant in
panel sequencing, false negative (FN) for variants identified

by GIAB but not by panel sequencing and true negative (TN)
for bases identified as reference in both the GIAB call set and
panel sequencing. Sensitivity was calculated as TP / (TP+FN)
and precision as TP / (TP+FP). Finally, we calculated the
Matthews correlation coefficient (MCC), an alternative accu-
racy measure that takes into account unbalanced data, using
the following equation: (TP×TN)− (FP×FN) /√[(TP+FP)
(TP+FN)(TN+FP)(TN+FN)].

Results

ICC Panel: Optimisation and Performance

The performance across the iteratively improved ICC gene
panels was compared using a callability metric (minimum
read depth=20×, base quality≥20 and mapping quality≥20)
that defines adequate coverage for robust variant calling. Four
methods were compared (Table S4). First, ICCv1 (169 genes,
1.47 Mb target) was sequenced at standard multiplex (method
1; M1). The mean callability of all genes using ICCv1 was
proportional to the number of mapped reads per sample at low
depth but saturated at ∼4 M mapped reads per sample. The
low overall performance of M1 (∼94 % target, mean read
depth>20×) reflected low capture efficiency of specific gene
regions as opposed to a global effect. In an attempt to improve
assay performance, we included fewer samples per run (n=6,
method 2 (M2)) resulting in better performance (99.8% target,
≥20×) but at a greater cost (Table S4). Overall, the perfor-
mance of the M1 and M2 assays were suboptimal and are
not referred to further.

We then made a major iteration of the target capture assay
in ICCv2 by reducing the target (size=0.57Mb) to the coding
DNA sequence only and by modifying the baits targeting
poorly captured regions. The ICCv2 assay consisted of 174
genes, of which 169 genes were shared with the ICCv1 panel
(169 genes, size=0.56Mb) and are considered in the compar-
isons presented here (Table S1). Libraries prepared with
ICCv2 were sequenced either on the MiSeq (method 3,
(M3)) or the NextSeq 500 (method 4, (M4)). Both M3 and
M4 achieved major improvements in overall performance
when compared to M1 and M2, in additional to a reduced
sequencing cost per sample (Table S4).

MiSeq Versus NextSeq 500 Sequencing

The maximal data output of theMiSeq was 6.6 GB (up to 42.1
million paired-end reads passing filters), while the NextSeq
500 generated up to 65 GB of data (up to 420 million paired-
end reads passing filters). Limited duplicate reads (∼15 %)
were observed with MiSeq runs, while a twofold increased
duplicate reads were found (∼30 %) with NextSeq 500 runs,
likely reflecting limited library complexity (fragment start
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Table 1 ICC disease genes (n = 43) categorised by primary disease association and regions not covered at 20× read depth using ICCv2 and NextSeq
500 sequencing

Cardiac diseases Core genes Gene description Mean callability
at 20× coverage
(95 % CI)

Base pairs
(bp) with
<20× read
depth

Aortopathies ACTA2 Actin, alpha 2, smooth muscle, aorta 100 (100–100) 0

COL3A1 Collagen, type III, alpha 1 100 (100–100) 0

FBN1 Fibrillin 1 100 (100–100) 0

MYH11 Myosin, heavy chain 11, smooth muscle 100 (100–100) 0

TGFB2 Transforming growth factor, beta 2 100 (100–100) 0

TGFBR1 Transforming growth factor, beta receptor 1 98.0 (97.8–98.2) 97

TGFBR2 Transforming growth factor, beta receptor II (70/80 kda) 100 (100–100) 0

Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

DSC2 Desmocollin 2 100 (100–100) 0

DSG2 Desmoglein 2 100 (100–100) 0

DSP Desmoplakin 100 (100–100) 0

JUP Junction plakoglobin 100 (100–100) 0

PKP2 Plakophilin 2 100 (100–100) 0

Brugada syndrome (BrS) SCN5A Sodium channel, voltage-gated, type V, alpha subunit 100 (100–100) 0

Catecholaminergic polymorphic
ventricular tachycardia (CPVT)

CASQ2 Calsequestrin 2 (cardiac muscle) 100 (100–100) 0

RYR2 Ryanodine receptor 2 (cardiac) 100 (100–100) 0

Dilated cardiomyopathy (DCM) DES Desmin 100 (100–100) 0

LMNA Lamin A/C 100 (100–100) 0

MYBPC3 Myosin-binding protein C, cardiac 100 (100–100) 0

MYH7 Myosin, heavy chain 7, cardiac muscle, beta 100 (99.9–100) 160

RBM20 RNA binding motif protein 20 100 (100–100) 0

TNNI3 Troponin I type 3 (cardiac) 100 (100–100) 0

TNNT2 Troponin T type 2 (cardiac) 100 (100–100) 0

TPM1 Tropomyosin 1 (alpha) 100 (100–100) 0

TTN Titin 99.7 (99.7–99.8) 1569

Familial hypercholesterolaemia (FH) APOB Apolipoprotein B (including Ag(x) antigen) 100 (100–100) 0

LDLR Low-density lipoprotein receptor 100 (100–100) 0

PCSK9 Proprotein convertase subtilisin/kexin type 9 100 (100–100) 0

Hypertrophic cardiomyopathy (HCM) ACTC1 Actin, alpha, cardiac muscle 1 100 (100–100) 0

CSRP3 Cysteine and glycine-rich protein 3 (cardiac LIM protein) 100 (100–100) 0

MYBPC3 Myosin-binding protein C, cardiac 100 (100–100) 0

MYH7 Myosin, heavy chain 7, cardiac muscle, beta 100 (99.9–100) 160

MYL2 Myosin, light chain 2, regulatory, cardiac, slow 100 (100–100) 0

MYL3 Myosin, light chain 3, alkali; ventricular, skeletal, slow 100 (100–100) 0

TNNI3 Troponin I type 3 (cardiac) 100 (100–100) 0

TNNT2 Troponin T type 2 (cardiac) 100 (100–100) 0

TPM1 Tropomyosin 1 (alpha) 100 (100–100) 0

Long QT syndrome (LQTS) KCNE1 Potassium voltage-gated channel, Isk-related family, member 1 100 (100–100) 0

KCNE2 Potassium voltage-gated channel, Isk-related family, member 2 100 (100–100) 0

KCNH2 Potassium voltage-gated channel, subfamily H (eag-related),
member 2

100 (100–100) 0

KCNJ2 Potassium inwardly rectifying channel, subfamily J, member 2 100 (100–100) 0

KCNQ1 Potassium voltage-gated channel, KQT-like subfamily, member 1 100 (100–100) 0

SCN5A Sodium channel, voltage-gated, type V, alpha subunit 100 (100–100) 0

Noonan syndrome (NS) KRAS V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 100 (100–100) 0

PTPN11 Protein tyrosine phosphatase, non-receptor type 11 100 (100–100) 0

RAF1 V-raf-1 murine leukemia viral oncogene homolog 1 100 (100–100) 0
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sites and insert sizes of PE reads). Using ICCv2 and the
NextSeq platform, the coverage of well-characterised,
disease-causing genes across the major ICC disease classes
was 100 % for 40 out of the 43 genes (Table 1). Small recur-
rent gaps in gene coverage occurred in three important genes:
TGFBR1 (97 bp, exon 1), MYH7 (160 bp, exon 27) and TTN
(72 to 90 bp, 19 exons (168–252)) (Table 1).

Comparison Between Targeted ICC Sequencing, WES,
Deep WES and WGS

We then compared the performance of the final assay (ICCv2)
against Nextera-basedWES andWGS (Table 2; Fig. 1). Using
routinely applied, off-the-shelf WES, most disease-causing
ICC genes (n=36/43) had suboptimal coverage (49–98 %,
20×). For a direct comparison at the same level of read depth
as the ICC methods, deep WES (∼500×) was used. However,
even with deep WES, ten disease genes remained poorly cov-
ered, an average of 208 bases had no coverage at all and the
cost was extremely high ($5400). The performance ofWGS at
∼75× average read depth was similar to deep WES at ∼520×
read depth but at lower cost.

By comparison, using the ICCv2 assay (M4, NextSeq),
only three of the major ICC disease genes were not 100 %
covered at 20× and an average of only 22 bases of target were
not covered at all (Fig. 1, Table 1). Gene complexity was a
major determinant of base coverage, especially for regions of
high GC content and low mappability in the titin gene (Fig. 2)
[29]. Perhaps surprisingly, mean read depth coverage of titin
exons using deepWES was higher thanM4 for regions of low
complexity, perhaps reflecting greater library complexity for
deepWES. However, the overall titin gene coverage at a mean
read depth of 20× was best with our final assay on the
NextSeq (99.7 %), less good with deep WES (99.0 %) and
WGS (99.2 %) and poor with standard WES (85.1 %).

Variant Calling Accuracy

Variant calling accuracy was assessed using an in-house pipeline
using the reference NA12878 sample. Variants were assessed
over a 522,763 bp region overlapping with the GIAB high con-
fidence regions andwhich corresponded to the ICC target ±8 bps
(to include essential splice site and proximal intronic regions).
The ICC panel had very high accuracy as compared to GIAB

Table 1 (continued)

Cardiac diseases Core genes Gene description Mean callability
at 20× coverage
(95 % CI)

Base pairs
(bp) with
<20× read
depth

SOS1 Son of sevenless homolog 1 (Drosophila) 100 (100–100) 0

Phenocopy genes GLA Galactosidase, alpha 100 (100–100) 0

LAMP2 Lysosomal-associated membrane protein 2 100 (100–100) 0

PRKAG2 Protein kinase, AMP-activated, gamma 2 non-catalytic subunit 100 (100–100) 0

Genomic coordinates of regions with poor callability are given in Table S7

Table 2 Comparison of quality metrics for ICCv2 (marketed as the TruSight Cardio Sequencing Kit) panel (M3, MiSeq; M4, NextSeq 500), WES,
Deep WES and WGS

Sequencing summary Method 3 (M3) Method 4 (M4) WES Deep WES WGS

Nextera Rapid Capture kit ICCv2 ICCv2 WES WES TruSeq Nano DNA

Sequencer MiSeq NextSeq 500 HiSeq 2500 HiSeq 2500 HiSeq X

Sequencing reagent kit MiSeq v2, 300 cycles Mid Output v2,
300 cycles

SBS v4, 250 cycles SBS v4, 250 cycles V2.5, 300 cycles

Samples per lane 12 48 12 2 0.5

Average output per sample (GB) 0.5 1.2 5.4 43.7 200

Mean read depth of ICC target
(95 % CI)

329× (317×–342×) 578× (568×–587×) 74× (71×–78×) 522× 69.4× (65.4×–73.5×)

Mean ICC bases ≥20× (%)
(95 % CI)

99.8 (99.8–99.9) 99.9 (99.9–99.9) 88.1 (87.3–88.9) 99.2 99.3 (99.2–99.5)

Targeted enrichment and sequencing
cost per sample (USD)

200 200 900 5400 2800

Library preparation and sequencing
time per run (days)

4 4 9 9 4

A full comparison of methods 1–4 using ICCv1 and ICCv2 panels is shown in Table S4
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benchmark calls dataset (Table 3). The MiSeq and NextSeq as-
says had near identical performance with SNV sensitivity of
100 %. The NextSeq data had one false positive that only just
passed the minimum variant confidence/quality by depth (QD)
threshold of 2.0 (QD=2.1) andwas of obvious low quality when
viewed in IGV. The false negative indel missed by both plat-
forms was an A deletion, 6 bp into an intron and before a run
of 15 As. This variant was initially called on the MiSeq platform
but filtered out due to low QD (chr12 22063251 CA C).

Variant Calling Comparisons

Single nucleotide variant (SNV) calling was assessed using
the DNA substitution rate, i.e. the ratio of transitions (Ts) to
transversions (Tv). We observed a Ts/Tv ratio ∼3.5 across the
targeted CDS region for our assays, concordant with previous

findings [30]. A total of 65 samples from M3 (MiSeq, n=23)
and M4 (NextSeq 500, n=42) were selected for variant call-
ing comparisons using either our in-house pipeline (The
GATK Best Practices workflow) or one of two Illumina
BaseSpace Apps: Isaac enrichment v2.1 or BWA enrichment
v2.1 (Table S5) [31]. For 65 samples, BaseSpace Apps com-
pleted jobs within 1 h as compared to locally run pipelines that
took ∼2 h on a computational cluster (local cluster four CPU
cores per job with 14GB/CPURAMallocation).We observed
98.8 % concordance between our in-house pipeline and both
BaseSpace Apps for SNVs and indels with ∼100 % of SNVs
detected locally also detected by both apps. A subset of 26
variants identified by our custom pipeline underwent Sanger
sequencing and were all confirmed.

Variant calling assessment test (VCAT) [BaseSpace App,
Illumina Inc.] was performed on variant call sets obtained

Fig. 1 Stringent heat map showing the percentage coverage of ICC
disease genes commonly used to inform clinical practice (n= 43) at 20×
read depth usingM3 (MiSeq, 150 bp PE), M4 (NextSeq 500, 150 bp PE),

deep whole exome sequencing (WES; HiSeq 2500, 125 bp PE), WES
(HiSeq, 125 bp PE) and whole genome sequencing (WGS: HiSeq X,
150 bp PE) (gene coverage at 20×: dark red ≤98 %; dark green= 100 %)

Fig. 2 Percentage coverage of all
TTN exons (ENST00000589042/
NM_001267550.1) at 20× read
depth across methods (top four
panels). Mappability score
(score* [28]) and GC content in
the TTN gene (bottom two
panels). Error bars represent
standard deviation
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from all three pipelines using reference sample NA12878
(n=16, technical replicates). After comparing with gold stan-
dard GIAB high confidence calls v2.18 and Platinum genome
v8.0, we observed 100 % precision for SNV and indel calls
obtained from both the in-house, custom pipeline and BWA
Enrichment app in BaseSpace. However, Isaac Enrichment
variant call set had poorer performance with 97 % and below
50 % precision for SNV and indel calls respectively
(Table S6).

Discussion

In recent years, the use of targeted sequencing and WES for
the study of ICCs has increased, reflecting high-throughput
capabilities and reduced per-base costs of NGS when com-
pared to conventional Sanger sequencing. Current NGS car-
diac panels often represent a limited number of ICC genes
(n=9 to 88), and assay performance is variable, often requir-
ing PCR-based gap filling and Sanger sequencing [15,
32–34]. The final ICC assay presented here includes 174
ICC genes that have primary, secondary or possible involve-
ment in a wide range (>17) of ICCs (Table S1) including all 30
ACMGgenes [11] and phenocopy genes [35]. However, com-
mon pathogenic variants that are outside the captured region
cannot be assessed by this assay, for instance, the 25 bp dele-
tion in intron 32 of MYBPC3 that has been associated with
HCM [36].

The assay we describe represents over 85 genes implicated
in cardiomyopathies including all major disease and pheno-
copy genes for HCM, DCM and ARVC [2, 37, 38]. Inherited
arrhythmias are an important group of ICCs, and over 28
genes implicated in inherited arrhythmias including all major
disease-causing genes for LQTS are included in the assay
(Table 1, Table S1). The panel also includes over 14 genes
implicated in inherited aortopathies, 12 of which are common

to an established panel for thoracic aortic aneurysm [39]. The
comprehensive nature of the panel we describe here makes it
ideally suited for a single workflow in laboratories providing
sequencing for multiple ICCs and for molecular pathology
studies of sudden cardiac death [40, 41], although more
specialised panels may offer advantages in focused/single dis-
ease laboratories. It is interesting to note that from a clinical
point of view, the major disease-causing ICC genes used to
inform clinical practise have not changed much over recent
years. While the current panel is of fixed content, it would be
possible to iterate the design in the future and to include
intronic regions of interest, if the ICC community was to so-
licit this change.

It could, and has been, argued that simply using off-the-
shelf WES is sufficient for ICC research and diagnostics [42].
However, the coverage of ICC genes using WES at
manufacturer-recommended sequencing depths is insufficient
for accurate variant calling for a number of ICC genes
(Table 2, Fig. 1). Even with deep WES (∼500× read depth
across ICC target), ICC gene coverage was less good than
the optimised ICC-specific assay (Fig. 1). WGS may be better
thanWES for detecting exome variants [43], and we found the
coverage of ICC genes to be good, but WGS comes with cost,
incidental finding and data storage issues [44], and at an av-
erage of 70× coverage is not as good for ICC gene assessment
as the assay we describe here.

It is important to consider differences in variant calling
between informatic pipelines as highlighted by our compari-
son of three methods that use different mapping and variant
calling algorithms and data pre-processing workflows. It has
been reported that alignment with BWA-MEM and GATK
HaplotypeCaller pipeline offers best sensitivity and precision
[45]. Cloud-based and easily implemented pipelines on
BaseSpace offer a viable alternative for those with limited
in-house informatics and, based on preliminary analyses, have
comparable sensitivity (Table S5). We suggest that individual
users prioritise and use one pipeline and then work to identify

Table 3 Comparison of variant
calls for M3 (MiSeq) and M4
(NextSeq) sequencing of the
N12878 reference sample with
the Genome in a Bottle high
confidence variant call set

Sequencer Variant type TP FP FN TN Sensitivity (%)a Precision (%)b MCC (%)c

MiSeq All 249 0 1 522509 99.6 100 99.8

MiSeq SNVs 245 0 0 522518 100 100 100

MiSeq Indels 4 0 1 522754 0.80 100 89.4

NextSeq All 249 1 1 522508 99.6 99.6 99.6

NextSeq SNVs 245 1 0 522517 100 99.6 99.8

NextSeq Indels 4 0 1 522754 0.80 100 89.4

Analysis was done over a 522,763 bp region corresponding to protein-coding region ±8 bps that overlaps with the
GIAB high confidence regions

TP true positive, FP false positive, FN false negative, MCC Matthews correlation coefficient
a Sensitivity =TP / (TP+ FN)
b Precision =TP / (TP+ FP)
cMCC= (TP×TN)− (FP × FN) / √[(TP+ FP)(TP+FN)(TN+FP)(TN+FN)]
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pipeline-specific performance parameters. An advantage of
using cloud-based processes is that computational hardware
purchase and upkeep is not needed and the processing power
accessible via BaseSpace is fast. Hence, small laboratories can
readily access both processing power and informatics tools.

In summary, the ICC gene panel described here provides
high and uniform coverage (99.9 % targeted region at >20×),
‘clinical-grade’ sequencing with up to 100 % sensitivity and
precision for SNVs and indels in the protein-coding regions of
ICC genes. This raises the question as to whether or not ‘Sang-
er validation’ is required as part of a clinical workflow; the
data presented here would suggest not. As compared to the
WES, deepWES andWGS, this assay has better performance,
shorter turnaround times, lesser informatics requirements and
lower sequencing costs. While assessment of structural varia-
tion remains a challenge, the very deep coverage this panel
affords may provide ways to interrogate this in the future. We
believe that this panel will be important for ICC research and
ultimately clinical genetic investigation of ICCs and for mo-
lecular autopsy. This panel is now available commercially
(TruSight Cardio Sequencing Kit; research use only), and with
the ease of use of cloud-based computational processing and
informatics, it is widely accessible for users.
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