

Detection and Prevalence of Penicillin-Susceptible *Staphylococcus aureus* in the United States in 2013

S. S. Richter,^a G. V. Doern,^b K. P. Heilmann,^b S. Miner,^b S. Tendolkar,^b F. Riahi,^b D. J. Diekema^b

Cleveland Clinic, Cleveland, Ohio, USA^a; University of Iowa College of Medicine, Iowa City, Iowa, USA^b

Using *blaZ* PCR as the "gold standard," the sensitivities of CLSI penicillin zone edge and nitrocefin-based tests for β -lactamase production in *Staphylococcus aureus* were 64.5% and 35.5%, respectively, with specificity of 99.8% for both methods. In 2013, 13.5% of 3,083 *S. aureus* isolates from 31 U.S. centers were penicillin susceptible.

Penicillinase-producing strains of *Staphylococcus aureus* emerged in the 1940s and by the 1970s represented 70 to 85% of the *S. aureus* population (1). Four types of *blaZ* genes (A to D) have been associated with penicillinase production in *S. aureus* (2). A study conducted in Germany demonstrated the sensitivity of nitrocefinbased testing was unacceptably low (36%) for penicillinase detection compared to *blaZ* PCR (3). Since 2012, the Clinical and Laboratory Standards Institute (CLSI) has recommended the penicillin zone edge test (4) to screen *S. aureus* isolates with a susceptible penicillin MIC ($\leq 0.12 \mu \text{g/ml}$) or disk zone ($\geq 29 \text{ mm}$) for β -lactamase production (5).

There are limited data regarding the detection and prevalence of penicillin-susceptible *S. aureus* using a molecular method as the reference standard. The objectives of this national study were (i) to evaluate multiple phenotypic methods for β -lactamase detection in *S. aureus* using *blaZ* PCR as the "gold standard" and (ii) to determine the prevalence of penicillin-susceptible *S. aureus* in the United States.

As part of a national surveillance program, laboratories were asked to send 100 clinically significant *S. aureus* isolates to the University of Iowa. Isolates were recovered from specimens received during June to December 2013. Susceptibility testing using the CLSI broth microdilution method (5, 6) and *mecA* PCR were performed as previously described (7) on the 3,083 isolates received from 31 centers. The predominant specimen sources were 61% wound, 18% blood, 10% lower respiratory tract, 4% tissue, and 2% sterile body fluid. Classification as methicillin-susceptible *S. aureus* (MSSA) was based on a negative *mecA* PCR result. All isolates with a susceptible penicillin MIC ($\leq 0.12 \mu g/m$) were assessed for β -lactamase production using *blaZ* PCR, penicillin zone edge, and induced nitrocefin-based testing. PCR to amplify a 355-bp region of the *blaZ* gene was followed by sequencing to classify positive strains as type A, B, C, or D as previously described

TABLE 1 blaZ PCR results for 448 MSSA isolates with susceptible penicillin ${\rm MICs}^a$

Penicillin MIC	No. of	No. (%) of isolates:		
(µg/ml)	isolates	<i>blaZ</i> positive	<i>blaZ</i> negative	
≤0.015	1	0 (0)	1 (100)	
0.03	24	0 (0)	24 (100)	
0.06	370	14 (3.8)	356 (96.2)	
0.12	53	17 (32.1)	36 (67.9)	
Total	448	31 (6.9)	417 (93.1)	

^{*a*} Susceptibility was defined as a MIC of ≤0.12 µg/ml.

TABLE 2 Phenotypic test results for 31	blaZ-positive isolates with
susceptible penicillin MICs	

Penicillin MIC (µg/ml)	No. of isolates	No. (%) of isolates detected by:			
		Penicillin zone edge	Inducible nitrocefin test		
0.06	14	4 (28.6)	3 (21.4)		
0.12	17	16 (94.1)	8 (47.1)		
Total	31	20 (64.5)	11 (35.5)		

(8). The *blaZ* type was also determined for a subset of penicillinresistant isolates (n = 51). The penicillin zone edge test was performed on Mueller-Hinton agar using a 10-U penicillin disk following CLSI guidelines (5). After 16 to 18 h of incubation in ambient air, a sharp zone edge was interpreted as positive and a fuzzy zone as negative for β -lactamase production. Nitrocefinbased testing was performed on induced growth taken from the zone margin surrounding a 10-U penicillin disk.

As expected, all 1,387 *mecA*-positive strains had penicillin MICs in the resistant range ($\geq 0.5 \ \mu g/ml$; 80% at $>16 \ \mu g/ml$). There were 448 isolates (14.5% of all isolates, 26.4% of MSSA isolates) with a susceptible penicillin MIC of $\leq 0.12 \ \mu g/ml$. Thirty-one of the 448 isolates (6.9%) were *blaZ* positive (Table 1) and represented 32.1% of 53 isolates with a penicillin MIC of 0.12 $\mu g/ml$ and 3.8% of 370 isolates with a penicillin MIC of $\leq 0.03 \ \mu g/ml$ contained *blaZ*.

Phenotypic β -lactamase screening test results for the 31 *blaZ*positive isolates are shown in Table 2. One *blaZ* PCR-negative isolate (penicillin MIC, 0.12 µg/ml) was positive by both phenotypic tests. The sensitivity and specificity of penicillin zone edge testing were 64.5% and 99.8%, respectively. The sensitivity and

Received 23 November 2015 Returned for modification 10 December 2015 Accepted 5 January 2016

Accepted manuscript posted online 13 January 2016

Citation Richter SS, Doern GV, Heilmann KP, Miner S, Tendolkar S, Riahi F, Diekema DJ. 2016. Detection and prevalence of penicillin-susceptible *Staphylococcus aureus* in the United States in 2013. J Clin Microbiol 54:812–814. doi:10.1128/JCM.03109-15.

Editor: K. C. Carroll

Address correspondence to S. S. Richter, richtes@ccf.org.

Copyright © 2016, American Society for Microbiology. All Rights Reserved.

Penicillin MIC (µg/ml)	No. (%) of isolates:		No. of isolates with <i>blaZ</i> type detected			
	Tested for <i>blaZ</i>	<i>blaZ</i> positive	A	В	С	NT
Susceptibility						
0.015	1 (100)					
0.03	24 (100)					
0.06	370 (100)	$14(3.4)^a$	2	2	8	2
0.12	53 (100)	$17 (32.1)^b$	6	2	8	1
Resistance						
0.25	8 (14.8)	8 (100)	5		3	
0.5	1 (0.7)	1 (100)	1			
1	10 (3.0)	10 (100)	3	3	4	
2	4 (4.5)	4 (100)	2	1	1	
4	10 (3.8)	10 (100)	2		8	
8	11 (2.6)	11 (100)	3	1	7	
16	3 (1.6)	3 (100)	1		1	1
>16	4 (0.4)	4 (100)		1	3	
Total	499	82	25	10	43	4

TABLE 3 blaZ types detected in S. aureus isolates with susceptible and resistant penicillin MICs

^{*a*} The *blaZ* types of the 10 isolates with a penicillin MIC of 0.06 μ g/ml and not detected by the penicillin zone edge test were types A (n = 2), B (n = 1), C (n = 6), and nontypeable (NT [n = 1)).

^b The blaZ type of the isolate with a penicillin MIC of 0.12 µg/ml and not detected by the penicillin zone edge test was type A.

specificity of the induced nitrocefin testing were 35.5% and 99.8%, respectively. These findings are similar to those from a German study that included 197 S. aureus isolates with Vitek 2 penicillin-susceptible results and reported sensitivities of 71.4% for penicillin zone edge and 35.7% for nitrocefin testing with blaZ PCR as the reference standard (3). A small Australian study assessed 50 S. aureus isolates that appeared penicillin susceptible by disk diffusion but only found 2 blaZ-positive isolates for evaluation of phenotypic methods (with one isolate detected by penicillin zone edge and neither detected by nitrocefin testing) (9). A larger Australian evaluation analyzing 157 isolates that appeared penicillin susceptible by agar dilution (38 were *blaZ* positive) noted 89% sensitivity and 100% specificity for the CLSI zone edge test (10). The EUCAST zone edge test incorporating a lower-concentration (1-U) penicillin disk provided 100% sensitivity and specificity for penicillinase detection in the Australian study (10). Lack of a CLSI quality control range and limited availability of the 1-U penicillin disk hinder further investigation of the EUCAST zone edge test. A U.S. study evaluating 105 isolates that appeared penicillin susceptible by disk diffusion found 10 (9.5%) to possess blaZ and noted variability among four readers of the CLSI penicillin zone edge test (with only 60% of those 10 strains having a sharp edge reported by all readers) (11).

The distribution of β -lactamase types detected in the present study among *blaZ*-positive isolates with a penicillin MIC of $\leq 0.12 \mu$ g/ml was 26% A, 13% B, and 52% C. (Three isolates did not correspond to a known type [NT].) The distribution was similar for isolates with higher penicillin MICs (Table 3). A 2009 study analyzing 98 MSSA isolates reported no *blaZ* for 13%, type A β -lactamase for 26%, type B for 15%, and type C for 46% (8). A South Korean study found type A *blaZ* in 17%, type B in 20%, type C in 53%, and type D in 1% of 220 MSSA isolates (12). Cefazolin failures have been reported for MSSA infections caused by type A *blaZ* isolate demonstrating an inoculum effect (8), but other retrospective studies have only found treatment success (12). Prospective studies are needed to determine if screening MSSA isolates for a cefazolin inoculum effect has clinical utility. A correlation of penicillin zone edge test performance with *blaZ* type was not apparent in the present study. The 11 isolates not detected by the zone edge method represented all of the *blaZ* types (37% of the 8 type A, 25% of the 4 type B, 38% of the 16 type C, and 33% of the 3 nontypeable [NT] isolates).

In conclusion, the CLSI penicillin zone edge method detected penicillinase production among 45% more *blaZ*-positive *S. aureus* isolates than nitrocefin-based testing. The failure of the CLSI zone edge test to detect 35% of *blaZ*-positive isolates is concerning. This study indicates that in the United States, 13.5% of *S. aureus* isolates (24.6% of MSSA isolates) are penicillin susceptible based on negative *blaZ* testing. Many labs do not routinely test for penicillin susceptibility (13, 14). Although higher mortality has been reported for cefuroxime therapy of penicillin-susceptible MSSA bacteremia (15), superiority of penicillin over penicillinase-stable agents (e.g., dicloxacillin, nafcillin, and oxacillin) has not been proven. The limitations of phenotypic testing should be relayed to clinicians who request assessment of penicillin susceptibility. Molecular testing for *blaZ* is recommended before relying on penicillin for therapy of complicated MSSA infections.

(This work was presented in part at the 54th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC, 7 September 2014 [16].)

ACKNOWLEDGMENTS

We thank the participating medical centers for providing the isolates of *S. aureus* characterized in this study.

S.S.R. has received research funding from bioMérieux, BD Diagnostics, OpGen, Forest Laboratories, Nanosphere, and Pocared. D.J.D. has received research funding from Merck, Pfizer, Schering-Plough, Astellas, and bioMérieux. G.V.D. has received research funding from Abbott Laboratories, Schering-Plough, Bayer Pharmaceutical, Merck, Shionogi, Cubist, and Astra-Zeneca. He has been on the speakers' bureaus of Abbott Laboratories, Aventis, Astra-Zeneca, Forest Laboratories, Pfizer, Astellas, and Schering-Plough. All other authors report no conflicts of interest.

Financial support for this project was provided by Allergan Laboratories, Inc. (New York, NY).

FUNDING INFORMATION

Allergan (Allergan, Inc.) provided funding to Daniel J Diekema.

REFERENCES

- 1. Chambers HF. 2001. The changing epidemiology of *Staphylococcus aureus*? Emerg Infect Dis 7:178–182. http://dx.doi.org/10.3201/eid0702 .010204.
- 2. Voladri RK, Tummuru MK, Kernodle DS. 1996. Structure-function relationships among wild-type variants of *Staphylococcus aureus* beta-lactamase: importance of amino acids 128 and 216. J Bacteriol **178**:7248–7253.
- Kaase M, Lenga S, Friedrich S, Szabados F, Sakinc T, Kleine B, Gatermann SG. 2008. Comparison of phenotypic methods for penicillinase detection in *Staphylococcus aureus*. Clin Microbiol Infect 14:614–616. http://dx.doi.org/10.1111/j.1469-0691.2008.01997.x.
- Gill VJ, Manning CB, Ingalls CM. 1981. Correlation of penicillin minimum inhibitory concentrations and penicillin zone edge appearance with staphylococcal beta-lactamase production. J Clin Microbiol 14:437–440.
- Clinical and Laboratory Standards Institute. 2015. Performance standards for antimicrobial susceptibility testing; 25th informational supplement. CLSI document M100-S25. CLSI, Wayne, PA.
- Clinical and Laboratory Standards Institute. 2015. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—10th ed. CLSI document M7-A10. CLSI, Wayne, PA.
- Richter SS, Heilmann KP, Biek D, Critchley I, Diekema DJ, Doern GV. 2011. Activity of ceftaroline and epidemiologic trends in *Staphylococcus aureus* isolates collected from 43 medical centers in the United States in 2009. Antimicrob Agents Chemother 55:4154–4159. http://dx.doi.org/10 .1128/AAC.00315-11.
- Nannini EC, Stryjewski ME, Singh KV, Bourgogne A, Rude TH, Corey GR, Fowler VG, Murray BE. 2009. Inoculum effect with cefazolin among clinical isolates of methicillin-susceptible *Staphylococcus aureus*: frequency and possible cause of cefazolin treatment failure. Antimicrob Agents Chemother 53:3437–3441. http://dx.doi.org/10 .1128/AAC.00317-09.

- 9. Pereira LA, Harnett GB, Hodge MM, Cattell JA, Speers DJ. 2014. Real-time PCR assay for detection of *blaZ* genes in *Staphylococcus aureus* clinical isolates. J Clin Microbiol 52:1259–1261. http://dx.doi.org/10.1128 /JCM.03413-13.
- Papanicolas LE, Bell JM, Bastian I. 2014. Performance of phenotypic tests for detection of penicillinase in *Staphylococcus aureus* isolates from Australia. J Clin Microbiol 52:1136–1138. http://dx.doi.org/10.1128/JCM .03068-13.
- El Feghaly R, Stamm JE, Fritz SA, Burnham C-A. 2012. Presence of the bla_z beta-lactamase gene in isolates of Staphylococcus aureus that appear penicillin susceptible by conventional phenotypic methods. Diagn Microbiol Infect Dis 74:388–393. http://dx.doi.org/10.1016/j .diagmicrobio.2012.07.013.
- 12. Chong YP, Park SJ, Kim ES, Bag KM, Kim MN, Kim SH, Lee SO, Choi SH, Jeong JY, Woo JH, Kim YS. 2015. Prevalence of *blaZ* gene types and the cefazolin inoculum effect among methicillin-susceptible Staphylococcus aureus blood isolates and their association with multilocus sequence types and clinical outcome. Eur J Clin Microbiol Infect Dis 34:349–355. http://dx.doi.org/10.1007/s10096-014-2241-5.
- Crane JK. 2014. Resurgence of penicillin-susceptible *Staphylococcus aureus* at a hospital in New York State, USA. J Antimicrob Chemother 69: 280–281. http://dx.doi.org/10.1093/jac/dkt317.
- 14. Chabot MR, Stefan MS, Friderici J, Schimmel J, Larioza J. 2015. Reappearance and treatment of penicillin-susceptible *Staphylococcus aureus* in a tertiary medical centre. J Antimicrob Chemother 70:3353–3356. http://dx.doi.org/10.1093/jac/dkv270.
- Nissen JL, Skov R, Knudsen JD, Ostergaard C, Schonheyder HC, Frimodt-Moller N, Benfield T. 2013. Effectiveness of penicillin, dicloxacillin and cefuroxime for penicillin-susceptible *Staphylococcus aureus* bacteraemia: a retrospective, propensity-score-adjusted case-control and cohort analysis. J Antimicrob Chemother 68:1894–1900. http://dx.doi.org /10.1093/jac/dkt108.
- Richter SS, Doern GV, Heilmann KP, Miner S, Tendolkar S, Riahi F, Diekema DJ. 2014. Abstr 54th Intersci Conf Antimicrob Agents Chemother, abstr D-870.