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Inferring sparse networks for noisy 
transient processes
Hoang M. Tran1,2 & Satish T.S. Bukkapatnam1

Inferring causal structures of real world complex networks from measured time series signals remains 
an open issue. The current approaches are inadequate to discern between direct versus indirect 
influences (i.e., the presence or absence of a directed arc connecting two nodes) in the presence of 
noise, sparse interactions, as well as nonlinear and transient dynamics of real world processes. We 
report a sparse regression (referred to as the l1-min) approach with theoretical bounds on the 
constraints on the allowable perturbation to recover the network structure that guarantees sparsity and 
robustness to noise. We also introduce averaging and perturbation procedures to further enhance 
prediction scores (i.e., reduce inference errors), and the numerical stability of l1-min approach. 
Extensive investigations have been conducted with multiple benchmark simulated genetic regulatory 
network and Michaelis-Menten dynamics, as well as real world data sets from DREAM5 challenge. These 
investigations suggest that our approach can significantly improve, oftentimes by 5 orders of 
magnitude over the methods reported previously for inferring the structure of dynamic networks, such 
as Bayesian network, network deconvolution, silencing and modular response analysis methods based 
on optimizing for sparsity, transients, noise and high dimensionality issues.

Many real world processes including biological1,2, socio-economics3,4, and engineering systems5, can be repre-
sented as large scale dynamic networks6. The multitude of state variables of the process represent the network 
nodes and the arcs represent the dynamic coupling between pairs of state variables. Inferring the structure of 
these networks is critical for multiple purposes such as identifying key causal relationship, clustering, partition-
ing or reducing the system state space; thereby facilitating effective prediction, control and/or interventions of 
its underlying processes. For example, inferring the signaling pathways of the gene p53 was noted to be crucial 
towards advancing cancer treatment7.

Real world processes exhibit nonlinear dynamics and they almost always occur in transient conditions. 
Identifying the structure, especially the existence or absence of a direct dynamic coupling between the variables 
of such systems has been noted to be a standing challenge of modern science8, and the underlying causal mech-
anisms remain largely undiscovered. Most often, only noisy measurements of the network outputs in the form 
of a small ensemble of time series data are available for network inference8–13. The use of conventional system 
identification approaches can produce many spurious links due to the transitivity of influences among the nodes. 
Several methods for network inference notably based on Bayesian update14–19, Granger causality and multivari-
ate autoregressive20–24, partial correlation25, network deconvolution (ND)26, network silencing27 and conditional 
causal relation28–31 have been investigated to filter the effect of indirect influences. When the time series gathered 
under transient conditions were available, a Modular Response Analysis (MRA)32–34 method was proposed to 
infer the network structure at each time point. However, these methods suffer from serious drawbacks such as 
they mostly assume the system to exhibit linear and time-invariant dynamics26, determinism (noise-free)33–35, 
and/or the existence of a point attractor under steady state27. While MRA method can be employed to reconstruct 
dynamics under transient conditions33, its performance deteriorates sharply in the presence of noise and the 
method encounters severe numerical stability issues, especially when the underlying dynamics is highly nonlin-
ear. This tends to severely restrict its applicability to real world processes. Notably, the earlier methods essentially 
focus on dealing with each of the following scenarios including transient time series33, noisy measurements14–19, 
and indirect influence removal14–25,33separately. The realistic scenario combining all these scenarios has not been 
considered. All available methods literally break down when presented with this scenario.

Towards addressing this gap, we introduce an approach based on modifying ND, silencing and MRA methods 
to account for sparsity, transients, noise and high dimensionality issues. Specifically, we have investigated a sparse 
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regression (henceforth referred to as the 1-min) formulation to recover the structure of dynamic networks from 
noisy data gathered under transient conditions. Our main contribution is in providing a theoretical bound on the 
constraints of the 1-min formulation and providing stable numerical procedures that overcome effects of nonlin-
ear couplings in large interconnected processes, availability of only a small sample of short time series ensembles, 
and inaccuracies in estimating noise levels. These bounds mitigate tedious trial and error procedures employed 
customarily as part of 1-min implementations1,34–36. The theoretical results and subsequent experimental studies 
suggest that the present 1-min approach is more robust to noise compared to the contemporary dynamic 
Bayesian network14–19 as well as NDs26,27,32. It is shown that up to 5 orders of magnitude reduction in the inference 
error are possible from the present approach, leading to a more accurate inference of the network structure for 
complex real world networks.

Methods
Towards a more formal treatment, we define a real world system as high dimensional coupled differential equa-
tion of the form

= ( , ), ( )
x f x pd

dt 1

or

τΦ( ) = ( , ( )), ( )x xt t 2

where ∈ ⊂x M n is a state vector, p is the parameter vector, τ( )x  is an initial condition. As noted in the forego-
ing, such dynamics can also be represented in form of a network37 shown in Fig. 1, where the node i represents the 
state variable xi and a directed arc represents the existence and the strength of the coupling (direct influence) sij 
between node i and node j. In this context, the direct influence ( )s tij  of node j on node i around a certain point x 
in the state space defined in Eq. (1) can be expressed as
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It may be noted that, a node j is connected to a node i at time t if ( ) ≠s t 0ij . Hence, ( ) = ( ( ))S t s tij  captures the 
physical structure of the dynamical system (1) at time t. In practice, ( )S t  needs to be inferred from the measure-
ments of the total influence ( )g tij  between every pair of nodes26,27 or estimated from time series outputs of the 
dynamic system gathered under transient conditions33. The total influence ( )g tij  is the sum of the direct influence 
of node j on node i and all indirect influences from node j to node i through other nodes connecting to both of 
them (see Fig. 1b). For example, total influence from →1 4, ( )g t41  is the sum of indirect influences along the 
paths → → →1 3 2 4 and → →1 2 4, or ( ) = ( ) ( ) ( ) + ( ) ( )g t s t s t s t s t s t41 31 23 42 21 42 . In other words, the total 
influence that node j has on node i around a certain point x on the state space defined in Eq. (1) is defined recur-
sively as
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Figure 1.  Illustration of direct and total influence. The total influences in (b) are the accumulation of the 
influences transited through all paths in (a). For example, the total influence →1 4 in (b) is the accumulation of 
the influence transited through the paths → → →1 3 2 4 and → →1 2 4.
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which is similar to the expression noted in in Barzel and Barabási27. Conventionally, under stationarity assump-
tions, ( )g tij  can be approximated using similarity measures, such as correlation and mutual information8 esti-
mated from raw samples of time series. The direct and total influence matrices are related at every time t by the 
following equation:

( ) ( ) − ( ) = , ( )S t B t C t 0 7

where ( )B t  and ( )C t  are functions (defined depending on the context) of ( )S t  and ( )G t , respectively. Pertinently, 
when the underlying dynamical system is linear and time-invariant, ( )S t  and ( )G t  do not depend on time. Eq. (7) 
generalizes previous network deconvolution formulations as follows: for Feizi et al.26, ( ) = ( + ), ( ) =B t I G C t G, 
for Barzel and Barabási27 ( ) = , ( ) = − + ( )B t G C t G I SG  , and for Sontag et al.33, ( ) = ( ), ( ) = Γ( )B t R t C t t , 
where ( ) = ∂ ( , )/∂ Γ ( ) = ∂ ( )/∂pR t x t p t R t t;ij i j ij ij . For simplicity of expressions, we use henceforth S, B and C 
instead of ( ), ( )S t B t  and ( )C t  in this subsection. The “true” network structure S0 can be estimated by solving the 
following 1-min formulation:

= . . − ≤ , ( )
⁎S S SB Carg min s t 8S F1

where = ∑ ,S si j ij1 , and   is the allowable perturbation that captures the effects of noise in the measured data. 
We note that in the absence of noise, this formulation is equivalent to ND and MRA. In the following sections we 
present two alternative 1-min formulations for direct influence inference. The first formulation presented in Eqs 
(9, 10) addresses the estimation of sij for real world scenarios when the total influence g ij is directly measurable 
(e.g., based on the strengths of co-excitations), and the second formulation Eqs (21, 22) addresses the inference of 
the network structure (i.e., determine all node pairs where ( ) = ∀s t t0ij ) under one of the most generic scenarios 
of using multiple ensembles of time series realizations of the state variables, collected under noisy and transient 
conditions with different parameter settings. It may be noted that inferring the network structure under such 
generic conditions has not been investigated to date.

Network inference when total influence matrix is available.  For the case where the measurements 
of total influence matrix G are provided26, the relaxed 1-min formulation can be written as

. . ( + ) − ≤ , ( )S S G I Gmin s t 9F1

or in vector form as

ε. . ( + ) − ≤ , ∀ ,
( )

s s gG I imin s t
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where g i is the ith column of G. In order to solve for an accurate estimate of S0 from Eqs (9) or (10) using standard 
solvers38,39, estimation of   and εi are crucial. Specifically, when noisy measurements of the total influence matrix 
differ from the “true” total influence as = + ∆G G G0 , the estimated direct influence matrix differs from the true 
direct influence matrix as = + ∆S S S0 , and

( + ∆ )( + ) = ( )S S G I G 110

⇒ ( + ) − = −∆ − ∆ . ( )S G I G SG S 120

The quantity ∆ + ∆SG S F is called total perturbation. In vector form, ( ∆ + − )s g gG i i i
0

2
0

2
 can represent 

the total perturbation for computing row i of S0. The bounds on   and εi are as follows (See Theorem 1 in 
Supplementary Information):

γ≈ = ( + ) , ( )( ) G1 13F
1 

 ≤ = ( + )
∆

( − − ∆ )( − )
,

( )
( ) ‖

G
G

G G G
1

1 1 14F
F

F F F

2

ε
δ

≤





− + ∆
−

( + − )





,

( )
g g g g gG2 1

1 15
i i i F

K
i i i

0
2

2

2
0

2
2

where γ is the largest eigenvalue of Δ G, δK is the restricted isometry constant40 and · F is the Frobenius norm 
of a matrix. By employing these bounds, we can set the values of   and εi for effective network inference. As sub-
sequent numerical investigations indicate, the performance of the method does not degrade significantly due to 
the presence of noise, and this is the major advantage of the present approach. It may be noted that our method is 
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designed to provide the sparsest network structure that replicates the measured total influence G within a bound 
(specified in terms of the allowable total perturbation). This is very important because only a small set of noisy 
observations are available, for most real world applications. For example, in the case of genetic regulatory net-
works, only a subset of dynamic regimes (i.e. marked by the active degrees of freedom) of the underlying process 
are captured. Therefore, identification of true network structure would never be guaranteed by any approach, and 
among the network structures that can replicate the observed total influence within a specified bound, the spars-
est network would be of the most interest. Although sparser than the network derived by ND, 1-min derived 
structure might be adequate to uncover the total dynamic couplings of the process captured in the observed data.

In real world scenarios, ∆G is not always known. Overestimation of ∆G can lead to network structures that 
are sparser than the original. However, we show that the effects of under-estimation of noise can be alleviated to 
a great extent. When noise level is unknown but multiple realizations of the noisy measurements of G are availa-
ble, it is possible to further reduce the inference error by combining the estimates with different realizations of G 
as = ∑

( )
=

( )ˆS SN
N r

N r1
1  (See the Proposition 1 in Supplementary Information), where 

( )
Ŝ s

r
 are direct influence 

matrices computed from 
( )

Ĝ
r

 and ,...,
( ) ( )ˆ ˆG G

N1
 are N different measurements or estimates of the total influence 

matrix G0. This result assumes that ( )
( )ˆVar S
r

 is bounded. However, it may be noted that even if ( )
( )ˆVar S
r

 is arbi-
trarily large we find that ( )S N  is at least as good as 

( )
Ŝ

r
. This averaging procedure allows us to improve the network 

inference accuracy when multiple measurements of the total influence matrix are available. For example, when 
the network structure does not change significantly as the system approaches a steady state, the total influence 
matrices can be measured multiple times, each corresponds to one time window.

Network inference when the time series under transient conditions are available (total influ-
ence matrix not given).  In practice, g ij are often estimated using convenient similarity measures such as 
correlation or mutual information between the time series ( )x ti  and ( )x tj  of the nodes i jand  as stated in the 
foregoing section. These estimations have a very low accuracy due to nonstationaries (transient), low sampling 
rates and sample size limitation; and can not capture the total influence in the system. Also, in most real world 
applications, only finite samples of time series ( )x t  are available, and the present NDs can not be employed in 
these scenarios. To overcome these drawbacks, we have adapted an approach to estimate the direct influence 
based on multiple time series ensembles obtained by perturbing parameters of the dynamical system Eq. (1)33. We 
first modify the perturbation procedure proposed by Sontag et al.33 to make it more robust to numerical error 
then further improve the accuracy of network inference by introducing a sparse regression formulation and the 
averaging scheme.

A robust perturbation procedure.  According to Sontag et al.33, ( ) = 
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Note that Γ  plays the role of the total influence matrix G in the previous section. To compute the row i of the 
matrix S, the parameters pj to be perturbed are chosen such that ∈p Pj i

33. As a consequence, changes in pj indi-
rectly affect xi, and dx

d p
i
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 are much smaller than dx
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j

 is much smaller (2 orders of magnitude smaller as in the Table 1 for the network studied in case study 1) 

compared to other columns when ∈p Pj i. A numerical issue this poses can be understood based on the following 
linear system of equations

= .u bA

Here, the sensitivity of solution u to the change in A can be quantified as follows41
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, ∀ ≠⋅ ⋅c c r ii r . As a consequence, ∂
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i

jk
 becomes several magnitudes larger than other rows. Therefore, the 

perturbation procedure proposed by Sontag et al.33 is very unrobust to noise or numerical error in xis.
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The following modification to the perturbation procedure addresses the aforementioned issue. Consider the 
case when xi depends linearly on xi as in the following system42:
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This system describes popular biochemical reactions when the activity of a chemical species is inhibited by its 
own concentration43,44. To compute the ith row of the Jacobian, the parameters pi is also perturbed. Note that
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The remaining parameters are perturbed as in Eqs (17, 18). Therefore, to compute ∂ ( , )
∂

x pf

x
i i

k
, we can solve the sys-

tem of equations (16) with
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i

i
i ii
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and other P sij , R sij  are defined as in (17, 18).

A robust network identification approach.  In addition to the perturbation procedure proposed in Eqs (17–19), 
we present a method to solve Eq. (16) that is more robust to the presence of noise. In the present context, the  
1-min formulation of Eq. (16) takes the following form:

. Γ − ≤ , ( )S SRmin s t 21F1

or

∑ ε. Γ ( ) − ( ) ( ) ≤ , ∀ , ∀ ∈ .
( )=

s t R t s t i k p Pmin s t :
22i ik

l

n

lk il i k i1
1

As noted in the foregoing section, estimation of   and εi based on the noise levels when measuring ( )x t  is essential 
to ensure that the solution to Eq. (21) serves as a viable estimator of the “true” direct influence S0. The following 
bounds and approximation allow the specification of   and εi (Theorems 4 and 5 in Supplementary Information)

 ≤ ( Γ + ∆Γ )
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+ ∆Γ ,
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R R1 23F F

F

F
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1
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ε ≈ ∆ (Γ − ∆Γ)′ + (∆Γ′) , ( )
− ‖ ‖ ‖ ‖R R [ ] 25i i i

1

where

r.1 r.2 r.2 r.2 r.2 r.2 r.2 max|r.j|

r1. − 2.868e-4 − 7.284e-5 − 3.106e-4 − 1.578e-4 2.443-e4 − 8.315e-5 − 4.896e-4 0.0005

r2. 1.160e-4 0.1050 − 4.261e-4 − 1.803e-4 6.490e-4 2.261e-4 − 2.379e-4 0.1050

r3. − 1.136e-4 − 2.658e-4 0.1179 − 2.766e-4 1.370e-4 − 2.524e-4 2.776e-4 0.1179

r4. − 4.431e-4 − 4.543e-4 − 4.138e-4 0.0961 6.824e-4 6.710e-5 1.609e-4 0.0961

r5. − 2.397e-4 − 4.439e-4 − 1.225e-4 − 7.024e-4 0.1100 3.256e-4 2.069e-4 0.1100

r6. 4.053e-4 − 3.773e-4 − 2.577e-4 − 5.065e-5 0.0012 0.1195 4.481e-4 0.1195

r7. − 1.030e-4 3.312e-5 − 2.900e-4 − 5.258e-5 0.0100 − 1.651e-4 0.0820 0.0820

Table 1.   The matrix R for computing the first row of S is estimated using Sontag et al.33’s perturbation 
procedure. The first row/column of R is two orders of magnitude smaller than others, which presents major 
numerical issues for inferring structures of large networks.
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1 2  are the errors incurred when measuring ( , ),x t pi k

0  ( , + ∆ )x t p pi k k
0 , respectively. As stated in 

the foregoing, noise level is not known a priori in most real world systems. In this situation, the network structure 
is deduced based on the entries in the estimated ( )S t0  that are equal to zero for all t and can be estimated by the 
entries in as = ∑ ( )( )

=
ˆS S tN

N r
N

r
1

1  that converge to zero, where ( )Ŝ tr  is the direct influence matrix computed from 
Γ( )ˆ tr , and Γ( ), ( = .. )ˆ t r N1r  are measurements or approximations of the total influence matrix Γ ( )t0  at time tr 
(see Proposition 2 in Supplementary Information). This averaging procedure allows us to improve the accuracy 
to predict the pair of nodes that are not connected when the measurement noise level is not available. As a result, 
our method ensures low false positive rates on the “arcs”. As noted in the context of Proposition 1, network infer-
ence with ( )S N  tends to be at least as good as with ( )Ŝ tr  even when ( ( ))ˆVar S tr  is arbitrarily large.

Results
We have considered two case studies to validate the theoretical results and evaluate the performance of the 1-min 
approach. The first case study contains two simulation scenarios. The first scenario simulates a scale-free network 
whose structure resembles that of the genetic regulation process of E. Coli species45. Here, the challenge is to esti-
mate the true network structure, i.e., the direct influence matrix S0 from a noisy total influence matrix G. This 
scenario is optimal for assessing the closeness of the bounds stated in Eqs (14,15) relative to the true bounds on 
the constraints  = ( + ) −( ) G I S GT

F
0 0 , and comparing the performance of the 1-min formulation relative to 

the recent ND methods in terms of inference error and sparsity. The next scenario simulates a system of Hill-type 
differential equations modeling a gene interaction network. Here, the challenge is to estimate the true network 
structure from noisy and transient time series data. The second case study is an application of our method to infer 
genetic regulatory networks (GRNs) from empirical data in the context of DREAM5 challenge46. This challenge 
is a standard framework for evaluating GRN inference methods.

Case I: simulation studies.  Inferring direct influence networks from total influence network.  First, we 
adapted the procedure specified by Muchnik47 to generate 500 random realizations of scale-free networks consist-
ing of =n 100 nodes, with a degree exponent of 2.2. In each realization, the weights of the true direct influence 
network, sij

0 follow the distribution  µ σ( , )S S
20 0  with µ ( , . )~ 0 0 04S0 , and σ ( , . )~ 0 0 04S0  . The true total influ-

ence matrix G0 was obtained as = ( − )−G S I S0 0 0 1. The noisy total influence matrix was generated as 
= + ∆G G G0 , where the contaminated noise ∆G was considered in two cases: (1) proportional, i.e., 

α µ σ(∆ ) = ( , )G ij S S
20 0  and (2) independent, i.e., σ(∆ ) = ( , )G 0ij S

2
0 . We considered cases where the measure-

ment noise level ∆G F is known as well as those where there is uncertainty in estimating the measurement noise 
level.

We first compare the “true” bound ( )0  (computed using S0) and the bounds for   estimated based on Eqs 
(13,14). In the presence of noise, the bounds appear to be in the same order of magnitude for all simulated net-
works (Table 2). The results also suggest that the bound specified in Eq. (13) closely matches the “true” bound and 
can be used to approximate the feasible region when  ( )0  is unknown with high accuracy. Although the bound in 
Eq. (14) tends to be loose, it can be used as an upper bound for ( )0 .

We next compared the performance of ND and 1-min approaches (using our bounds Eqs (13) and (14)) in 
terms of inference error defined as ρ =

−Ŝ S

S
F

F

0

0
, where Ŝ is computed using the different methods being com-

pared. The 1-min approach with “true” constraint bound ε ε= ( )
i i

0  significantly improves the ND (the mean and 
the variance of the estimated ρ were reduced by 45% and 99%, respectively) (Fig.  2). Employing 
ε ε= = /( ) ( ) ni i

1 1  (based on Eq. (13)), the 1-min approach performs much better than ND (the mean and 
variance of ρ are reduced by 33.5% and .87 5%, respectively). More importantly, the inference error of 1-min 
approaches were concentrated around of 0.15 within ± 0.05, while those of ND were spread over a larger range, 
from 0.3 to 0.6. This suggests that 1-min approach using our bound in Eq. (13) is more robust than ND to noise 
and approximation error incurred when measuring the total influence matrix.

We also compared the sparsity of the recovered networks measured in terms of Hoyer sparsity measure48 
defined as follows

Formula Mean

 = ( + ) −( ) G I S GT
F

0 0 9.79 ×  10−3

 ( )1  (Eq. 13) 8.89 ×  10−3

( )2  (Eq. 14) 8.61 ×  10−2

Table 2.   Comparison of bounds on total perturbation obtained using Eqs (13) and (14) suggests that Eq. 
(13) provides a good approximation and Eq. (14) serves as an upper bound of ( )0 .
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( ) =
− (∑ | |)/ ∑

−
.

, = , =Hoyer S
n s s

n 1
i j
n

ij i j
n

ij1 1
2

Note that ( ) ∈ ,Hoyer S [0 1]. The closer it is to 1, the sparser S is. In terms of this measure, the solution of the 1
-min approach is much sparser (mean is 16.38% larger, variance is 69% smaller when using the true bound 
ε ε= ( )

i i
0 , and mean is 15.90% larger, variance is 75.69% smaller when using the approximated bound ε ε= )

( )
i i

1  
than solution of ND (Fig. 2b). Also, the Hoyer measure of the 1-min approach is concentrated more around a 
much higher value (sparse matrices) than that of ND indicating that the 1-min approach using our bound gives 
a significantly sparser solution than ND. As a result, this gives a more interpretable connection structure without 
the loss of performance.

We also studied the effects of the bounds of 1-min formulation on inference error to verify Eq. (40) numeri-
cally. When ε ε/ >( ) 1i i

0 , the inference error trends almost linearly with εi (see Fig. 3). This confirms the conclu-
sion of Theorem 3. Also, when ε ε/ <( ) 1i i

0  and tends toward 0, the inference error increases. This shows an 
evidence of over-fitting.

Subsequently, we studied the effect of averaging (Proposition 1) in the context of the 1-min and ND methods. 
We conducted N =  40 simulations, in each of which, ,S G0 0 and ∆G were generated as stated in the foregoing. We 
used the inference error without ρ( )N  and with averaging ρ as measures for comparison from each simulation 
defined as follows:

∑ρ =


 −



 / ,

( )
( )

=

( )ˆ
N

S S S1
26

N

k

N k

F
F

1

0 0

ρ = − / , ( )
( )S S S 27
N

F F
0 0

Figure 2.  Histograms summarizing the relative performance of ND and 1-min approaches for the benchmark 
numerical case in terms of (a) inference error that quantifies the accuracy and (b) Hoyer measure that quantifies 
the sparsity of the solution. The solution from the 1-min approach is more precise and sparser than ND: 
compared to NDs, the mean and the variance of the inference error are reduced by 45% and 99%, respectively, 
when using 1-min with ε ε= ( )

i i
0 ; 33.5% and 87.5%, respectively when using 1-min with ε ε= ( )

i i
1 ; the mean of 

Hoyer measure is increased by 16.38% and variance reduced by 69% when using the 1-min with ε ε= ( )
i i

0 , and 
is increased by 15.90% in mean, reduced by 75.69% in variance when using ε ε= ( )

i i
1 .

Figure 3.  Variation of inference error with total perturbation bound εi. The inference error attains a 
minimum near the true bound ε ( )i

0 , and it trends almost linearly with εi as it is increased beyond ε ( )i
0 . As  

ε → 0i , the inference error increases exponentially, which is an evidence of over fitting.
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where Ŝ(k)  = ...k N( 1 , , ) is the kth realization of ( )S k  and ( )S N  is estimated as stated in Proposition 1. The results 
suggest that averaging reduces the inference error of both methods by about 8 times in all cases, thus supporting 
the validity of Proposition 1 (Fig. 4). The inference errors were almost the same between ND and 1-min with 
ε ε= ( )

i
1 .

Inferring direct influence network structure from multiple time series under transient conditions.  In this section we 
represent the performance of 1-min approach in inferring network structure from transient time series with an 
unknown noise level. In this study we used Michaelis-Menten dynamic system given by27:

∑= +
+

,
( )= , ≠

x p x s
x

x1 28
i i i

j j i

n

ij
j

j1

0

where the “true” network defined by ( )sij
0  is a scale-free network45 generated randomly with degree exponent 

γ = .2 2 consisting of =n 40 nodes with about 70 edges, whose weights sij
0 follow the distribution ( , . )5 0 25 .

We obtained 30 different variants of this network. For each of these invariants (trials), a perturbed network 
was obtained by changing (perturbing) the parameters according to Eqs (18–20). Every solution ( )x t , ∈ ,t [0 1], 
obtained from an initial condition ( )x 0  was contaminated with noise of the form  σ( , )0 2  to simulate a noisy 
measurement ( )x̂ t . Here σ2 was chosen to be 10−4. The direct influence matrix ( )Ŝ tk  were estimated using Sontag 
et al.’s33 method, as well as 1-min formulations, with different values of bounds. Next, ( )S N  was estimated as in 
Proposition 2 by averaging over 30 time samples ∈ , , = ..t k[0 1] 1 30k  chosen randomly. For performance evalu-
ation, we used the inference error without ρ( )N  and with averaging ρ, given by

∑∑ρ = ( − (| |))( ( )) ,
( )

( )

= ,

ˆ
N

s s t1 1
29

N

k

N

i j
ij ij k

1

0 2

Figure 4.  Box plots summarizing the effects of averaging on (a) ND and (b) 1-min with ε ε= ( )
i

1 . The inference 
errors were almost unchanged with 1-min compared to ND. Averaging (light/red) reduced inference error 
further by about 8 times compared to without averaging (dark/blue). The ρ values were 0.1196 with ND and 
0.0259 with 1-min (p-values of the paired t-tests between the inference error without and with averaging were 
≤ 10−5 in all cases).
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∑ρ = ( − (| |))( ) ,
( ),

( )s s1
30i j

ij ij
N0 2

where (.) is Heaviside function. These error measures quantify the number of absent links ( = )s 0ij
0  that are 

correctly identified.
As summarized in Fig. 5, the 1-min approach performs better than Sontag et al.’s33 method in all cases tested. 

In fact, ρ ρ,  were reduced by 105 times. The poor performance of Sontag et al.’s33 method is attributed to the 
numerical issues noted in the earlier section. A further 30% reduction in inference error resulted from averaging 
for both cases. Next, the cases (c) and (d) were designed to simulate the real situations where the noise magnitude 
is unknown. We considered cases where the noise levels are under or overestimated by 1 order of magnitude. 
While Sontag et al.’s33 method would not be applicable in such cases, 1-min without averaging was found to lead 
to suboptimal inference. Under underestimation ε ε< /( ) 10i i

0 , averaging was found to further reduce the infer-
ence error by about 70%, and the inference error ρs were of the same level as one would obtain when the noise 
level is known. This result is consistent with and is a clear verification of Proposition 2. When the noise level is 
overestimated, the resulting network tends to be highly sparse, offering excellent specificity in identifying the 
absence of direct coupling. The inference errors are therefore low even without averaging by default. In this case 
averaging reduces the inference errors by 5%. The p-values of the paired t-tests between the inference error with 
and without averaging were below 0.0282 in all cases suggesting that averaging helps improve network 
inference.

Figure 5.  Box plots summarizing the inference errors without and with averaging for. (a) Sontag et al.’s33 
method ρ ρ( = . × , = . × )7 58 10 5 87 104 4 ; (b) 1-min with noise magnitude given ρ ρ( = . , = . )7 11 5 32 , (c) 1
-min with noise magnitude underestimated as 10% the actual ρ ρ( = . , = . )52 50 13 40 , and (d) 1-min with noise 
magnitude overestimated as 10 times the actual ρ ρ( = . , = . )0 80 0 60 . The inference error was reduced by 105 
times when using the 1-min approach (21, 22), compared to Sontag et al.’s33 method. Averaging further reduced 
inference error by at least 30% in all cases (p-values of the paired t-tests consistently were below 0.0282).
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Case II: Application to empirical genetic regulatory network inference.  Next, we applied our 
method to infer real world GRNs and compare its performance with other methods including ND26, Bayesian 
network inference, Pearson and Spearman correlation networks8 using the framework presented in DREAM5 
challenge. Here, the Pearson and Spearman correlations were considered as they are the most widely used meth-
ods for network inference and can provide a reasonable estimation of the total influence matrix26,27. In addition, 
ND has been most effective in inferring network topology when the total influence matrix G is estimated using 
Person and Spearman correlations. Therefore, these serve as the challenging test cases to evaluate the perfor-
mance of 1-min where ND is already effective. The DREAM5 challenge contains gene-expression microarray 
data of three species including an in silico benchmark, a prokaryotic model organism (E. coli) and a eukaryotic 
model organism (S. cerevisiae). Beside ρ and Hoyer metrics, we employed the following score, which was used in 
earlier works8 to assess the performance of a network inference method for recovering the structure underlying 
these data sets:

ξ = −
( ) + ( )

, ( )
p plog log

2 31
ROC PR

where pROC and pPR are p-values computed from AUROC (area under receiver operating characteristic curve) 
and AUPR (area under precision-recall curve).

The results of the performance evaluation are summarized in Fig. 6. We note that for computing the perfor-
mance metrics we first generated 30 different G matrices with Pearson correlation, 30 others with Spearman 
correlation and another 30 with Mutual Information for each data set. The G matrix in each case was estimated 
using samples of size 75% of the data set. The averaging procedure considers the S matrices estimated from these 
G matrices using different methods. In terms of ξ-score (Eq. (31)), which quantifies how well—in terms of having 
low false negative rates (FNR, related to sensitivity), and low false positive rates (FRN, related to specificity), the 
true positive rate (TPR) and true negative rate (TNR)—the estimated Ŝ captures S0, 1-min approach yields Ŝ with 
at least 18.53% higher than with ND in all cases tested except the in silico case (see Fig. 6). Both ND and 1-min 
performed better than Bayesian network approach whose ξ-scores were 14.891, 0.029, 0.0001, respectively, for the 
three data sets8. In terms of ρ-score (Eq. (29)), which quantifies the false positive rates (i. e., the specificity), 1-min 
approach reduces ρ by 2-3 orders compared to ND in all cases. These results provide a strong evidence for the 
relevance of the 1-min approach for network structure inference. In terms of sparsity, 1-min approach increased 
the Hoyer measure by about 20% in most cases, and were much closer to the Hoyer measures of the gold-standard 
network, compared to ND.

As noted earlier for in silico data, although the ρ-score with 1-min was at least 1160% lower (i.e., higher spec-
ificity) and Hoyer was 33% higher (i.e., higher sparsity), the ξ-score was slightly (10%) lower than with ND. The 
lower ξ- score for 1-min is perhaps a consequence of the method being susceptible to over-specification of the 
noise level. In this context, it must be noted that the solutions from both ND and 1-min can replicate the observed 
total influence G within a specified bound (as total perturbation). However, the solutions from 1-min tend to be 
much sparser and have lower false positive rate. Given that there were only 805 sample measurements to recon-
struct G matrices for 1643 nodes in the in silico network, it is highly likely that several dynamic modes (degree of 
freedom) are not observable from the data. Therefore, 1-min generated a much sparser network which, by for-
mulation, is guaranteed to be adequate to capture the observed modes of the dynamics within the specified total 
perturbation limits. The ND derived networks for in silico and other cases that have higher ξ-score, intriguingly, 
were consistently found to have much lower Hoyer score (hence sparsity) even compared to the specified total 
influence matrix. Thus, 1-min-generated solutions provide significant improvement in specificity, although the 
sensitivity at times were found to be slightly lower than with ND.

Averaging improves the ξ-scores (Eq. (31)) with all methods by at most 10%. This is perhaps due to the 
near-stationarity of the total influence matrix G, when computed using data over long time windows that smooths 
out various higher order transient effects. Also, one may note that the averaging makes the network inferred from 
ND less sparse than without averaging. This is because under noise, transients and data sparsity, ND yields vastly 
different network topologies depending on the samples employed. Averaging over these vastly different networks 
causes a reduction in sparsity. These results, taken together suggest that the 1-min approach is perhaps the best 
known means to provide specificity for network inference from transient and noisy data. The utility of the 
approach would be to provide a minimal set of arcs (dynamic couplings or direct influences) to be considered for 
further network dynamics reconstruction applications.

Discussion and Concluding remarks.  In this paper, we have investigated a method to robustly infer the 
structure of a network representing a sparse dynamical system from noisy, transient time series data. When the 
noise level is known, the 1-min formulation employing our theoretical formula for the bound on total perturba-
tion improves the recently reported NDs in terms of both accuracy and sparsity. When the noise level is unknown, 
we have shown that by averaging the networks inferred from different time points or conditions, the inference of 
network structure of real world processes becomes highly plausible.

Pertinently, for most real world processes, the total influence is not known a priori; only the time series ensem-
bles gathered under transient conditions are available (e.g., gene expression microarray data8,49, protein-protein 
interaction data50 as in the case of Michaelis-Menten dynamics). It has been noted that most of the earlier 
approaches present severe accuracy, noise sensitivity and/or numerically stability issues for such realistic scenar-
ios. To overcome these limitations, we have investigated the 1-min approach with a novel perturbation procedure 
for time series based network inference. Averaging over the solutions estimated at different time windows has 
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been shown to allow inference of the structure for complex real world networks, especially when the noise levels 
are unknown or cannot be accurately estimated.

Next, we have applied our method to three benchmark systems: a sparse scale-free network51 with a specified 
noise level and the total influence between any two nodes given, a genetic regulatory network model formulated 
in terms of a system of Hill-type differential equations27, and GRNs of DREAM5 challenge46. These analyses sug-
gest that our proposed bounds on the constraints for the 1-min formulation, extracted from a few time series 
samples acquired under transient conditions, are of the same order (i.e., they closely envelop) with the constraints 
estimated based on the full knowledge of the noise level. The 1-min formulation reduces the inference errors 
defined in (31) and (29) by 18.53% and 2 to 3 orders of magnitude, respectively, and improves the sparsity of the 
solution (measured in terms of Hoyer sparsity measure) by 15.9%, in comparison with conventional approaches 
including various versions of dynamic Bayesian approaches for network inference as well as ND. If instead of the 
total influence, only the time series gathered under transient conditions is provided, such as in the case of 
Michaelis-Menten dynamics, 1-min approach achieves a 4 order reduction in inference error compared to MRA. 

Figure 6.  Performance comparison of (1) original G matrix, (2) ND, (3) ND with averaging, (4) ℓ1-min and 
(5) ℓ1-min with averaging for the DREAM5 challenge datasets. The total influence G matrix is estimated by 
Pearson correlation (blue/dark), Spearman correlation (red/light) and Mutual Information (green/light). 
Compared to ND, the prediction scores with 1-min are increased by 23.94% (for G from Pearson correlation), 
53.03% (for G from Spearman correlation) & 18.53% (for G from Mutual Information) for E. Coli, 89.09%, 
249.7% & 116.74% for S. cerevisiae, respectively; the inference errors ρ (29) are reduced by 2 to 3 orders of 
magnitude in all cases; Hoyer measures are increased by 34%, 36.41% & 322.91% for E. Coli, 18.85%, 19.59% & 
96.65% for S. cerevisiae, respectively. For in silico data, ND gives a solution with 11% higher prediction score but 
33% less sparse than 1-min approach. Averaging slightly improves the performance of all methods (< 10%).
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These theoretical and and numerical studies suggest that our proposed method can be employed to effectively 
infer the presence of dynamic coupling (i.e., arc set or the direct influence in a dynamic network) based on sparse 
samples.

As with any network reconstruction approach, the method assumes that the time series realizations taken 
together can adequately mirror the salient dynamic regimes of the underlying process52, and as noted earlier, the 
approach is restricted to ensuring high levels of specificity and not sensitivity in identifying the direct influences. 
Additionally, while the approach is fairly robust to the presence of noise, the estimates ŝij from the averaging pro-
cedure for the arcs with =s 0ij

0  is guaranteed to converge to zero only in the presence of additive noise. More 
specifically, one of the following conditions need to hold for the approach to be applicable: (1) the governing 
equation of the process dynamics is specified, so that ( )G t  or ( )R t  can be constructed; (2) one or more realizations 
of ( )G t  (based on ND or silencing method) or ( )R t  (based on MRA) are given. In our experience, 30 realizations 
ensured the convergence of the averaging method; (3) one realization of a n-dimensional time series is available 
for estimating ( )G t  using various alternative methods outlined in Feizi et al.’s26 or n2 time series realizations with 
the same initial condition are available for estimating ( )R t  using Eq. (17). Note that Scenario 1 is useful only for 
applications such as to investigate if there exists a more compact (sparser) network representation to capture the 
specified process dynamics. In Scenarios 2 and 3, we assume that the noise level or its lower limit is known, and 
adequate number of realizations are available to ensure convergence of the averaging method. In scenario 3,  
Eq. (17) yields a finite space-time approximation of the partial derivatives ,∂

∂
∂
∂
x

p
x
p

i

j

i

j

. They are estimated by perturb-

ing the parameters pj and keeping the initial condition the same for two time series signals. The length of the time 
series in this case can be really small, or it can just be samples taken over multiple (roughly 30), short (can be even 
2 samples) time windows. However, the time steps (or sampling interval) in each time window must be small 
enough to ensure that ( )R t  values locally converge. Sensitivity of the network inference performance to time step 
size, however, needs further investigation.

Efforts are underway to address some of the 1-min aforementioned limitations. We are investigating a 
two-stage approach to recover local nonlinear dynamics from sparse time series data. For future research, we will 
consider a more realistic scenario where not all state variables can be measured. In GRN inference, for example, 
only the outputs/activations of only those genes that have been discovered are measured. However, unknown 
genes might have significant influence on the network structure. Removing the effects of unmeasured variables, 
when combined with the method proposed in this paper, will lead to a more advanced network inference method.

References
1.	 Chen, T., He, H. L. & Church, G. M. Modeling gene expression with differential equations. In Pacific Symposium on Biocomputing 

vol. 4, 4 (1999).
2.	 Hecker, M., Lambeck, S., Toepfer, S., Van Someren, E. & Guthke, R. Gene regulatory network inference: data integration in dynamic 

models - a review. Biosystems 96, 86–103 (2009).
3.	 Schweitzer, F. et al. Economic networks: The new challenges. Science 325, 422 (2009).
4.	 Carrington, P. J., Scott, J. & Wasserman, S. Models and Methods in Social Network Analysis, vol. 28 (Cambridge University Press, 

2005).
5.	 Guimera, R., Mossa, S., Turtschi, A. & Amaral, L. N. The worldwide air transportation network: Anomalous centrality, community 

structure, and cities’ global roles. Proceedings of the National Academy of Sciences 102, 7794–7799 (2005).
6.	 Newman, M. E. The structure and function of complex networks. SIAM Review 45, 167–256 (2003).
7.	 Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).
8.	 Marbach, D. et al. Wisdom of crowds for robust gene network inference. Nature Methods 9, 796–804 (2012).
9.	 De Smet, R. & Marchal, K. Advantages and limitations of current network inference methods. Nature Reviews Microbiology 8, 

717–729 (2010).
10.	 Marbach, D. et al. Revealing strengths and weaknesses of methods for gene network inference. Proceedings of the National Academy 

of Sciences 107, 6286–6291 (2010).
11.	 Faisal, F. E. & Milenković, T. Dynamic networks reveal key players in aging. Bioinformatics 30, 1721–1729 (2014).
12.	 Žitnik, M. & Zupan, B. Gene network inference by probabilistic scoring of relationships from a factorized model of interactions. 

Bioinformatics 30, i246–i254 (2014).
13.	 Tang, Q., Sun, S. & Xu, J. Learning scale-free networks by dynamic node specific degree prior. In Proceedings of The 32nd 

International Conference on Machine Learning, 2247–2255 (2015).
14.	 Chiuso, A. & Pillonetto, G. A bayesian approach to sparse dynamic network identification. Automatica 48, 1553–1565 (2012).
15.	 Friedman, N., Linial, M., Nachman, I. & Pe’er, D. Using bayesian networks to analyze expression data. Journal of Computational 

Biology 7, 601–620 (2000).
16.	 Friedman, N. Inferring cellular networks using probabilistic graphical models. Science 303, 799–805 (2004).
17.	 Zou, M. & Conzen, S. D. A new dynamic bayesian network (dbn) approach for identifying gene regulatory networks from time 

course microarray data. Bioinformatics 21, 71–79 (2005).
18.	 Young, W. C., Raftery, A. E. & Yeung, K. Y. Fast bayesian inference for gene regulatory networks using scanbma. BMC Systems 

Biology 8, 47 (2014).
19.	 Hill, S. M. et al. Bayesian inference of signaling network topology in a cancer cell line. Bioinformatics 28, 2804–2810 (2012).
20.	 Seth, A. K. A matlab toolbox for granger causal connectivity analysis. Journal of Neuroscience Methods 186, 262–273 (2010).
21.	 Basu, S., Shojaie, A. & Michailidis, G. Network granger causality with inherent grouping structure. Journal of Machine Learning 

Research 16, 417–453 (2015).
22.	 Bolstad, A., Van Veen, B. D. & Nowak, R. Causal network inference via group sparse regularization. IEEE Transactions on Signal 

Processing 59, 2628–2641 (2011).
23.	 Haufe, S., Nolte, G., Müller, K.-R. & Krämer, N. Sparse causal discovery in multivariate time series. JMLR W&CP 6, 97–106 (2010).
24.	 Lozano, A. C., Abe, N., Liu, Y. & Rosset, S. Grouped graphical granger modeling for gene expression regulatory networks discovery. 

Bioinformatics 25, i110–i118 (2009).
25.	 De La Fuente, A., Bing, N., Hoeschele, I. & Mendes, P. Discovery of meaningful associations in genomic data using partial 

correlation coefficients. Bioinformatics 20, 3565–3574 (2004).
26.	 Feizi, S., Marbach, D., Médard, M. & Kellis, M. Network deconvolution as a general method to distinguish direct dependencies in 

networks. Nature Biotechnology 31, 726–733 (2013).



www.nature.com/scientificreports/

13Scientific Reports | 6:21963 | DOI: 10.1038/srep21963

27.	 Barzel, B. & Barabási, A.-L. Network link prediction by global silencing of indirect correlations. Nature Biotechnology 31, 720–725 
(2013).

28.	 Ebert-Uphoff, I. & Deng, Y. Causal discovery for climate research using graphical models. Journal of Climate 25, 5648–5665 (2012).
29.	 Runge, J., Heitzig, J., Petoukhov, V. & Kurths, J. Escaping the curse of dimensionality in estimating multivariate transfer entropy. 

Physical Review Letters 108, 258701 (2012).
30.	 Runge, J. et al. Identifying causal gateways and mediators in complex spatio-temporal systems. Nature Communications 6 (2015).
31.	 Runge, J., Petoukhov, V. & Kurths, J. Quantifying the strength and delay of climatic interactions: the ambiguities of cross correlation 

and a novel measure based on graphical models. Journal of Climate 27, 720–739 (2014).
32.	 Kholodenko, B. N. et al. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proceedings 

of the National Academy of Sciences 99, 12841–12846 (2002).
33.	 Sontag, E., Kiyatkin, A. & Kholodenko, B. N. Inferring dynamic architecture of cellular networks using time series of gene 

expression, protein and metabolite data. Bioinformatics 20, 1877–1886 (2004).
34.	 Wang, W. X., Yang, R., Lai, Y. C., Kovanis, V. & Grebogi, C. Predicting catastrophes in nonlinear dynamical systems by compressive 

sensing. Physical Review Letters 106, 154101 (2011).
35.	 Napoletani, D. & Sauer, T. D. Reconstructing the topology of sparsely connected dynamical networks. Physical Review E 77, 026103 

(2008).
36.	 Wang, W.-X., Yang, R., Lai, Y.-C., Kovanis, V. & Harrison, M. A. F. Time-series-based prediction of complex oscillator networks via 

compressive sensing. EPL (Europhysics Letters) 94, 48006 (2011).
37.	 Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: Structure and dynamics. Physics Reports 424, 

175–308 (2006).
38.	 Candes, E. & Romberg, J. l1-magic: Recovery of sparse signals via convex programming (2005), (Date of access: 03/05/2014). 

Available at: http://users.ece.gatech.edu/justin/l1magic/.
39.	 Gurobi Optimization, I. Gurobi optimizer reference manual (2014), (Date of access: 02/03/2014). Available at: http://www.gurobi.

com.
40.	 Herman, M. A. & Strohmer, T. General deviants: An analysis of perturbations in compressed sensing. IEEE Journal of Selected Topics 

in Signal Processing 4, 342–349 (2010).
41.	 Horn, R. A. & Johnson, C. R. Matrix Analysis (Cambridge University Press, 1985).
42.	 Barzel, B. & Barabási, A.-L. Network link prediction by global silencing of indirect correlations. Nature Biotechnology 31, 720–725 

(2013).
43.	 Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology 9, 770–780 

(2008).
44.	 Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (CRC press, 2006).
45.	 Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A.-L. The large-scale organization of metabolic networks. Nature 407, 

651–654 (2000).
46.	 Stolovitzky, G., Monroe, D. & Califano, A. Dialogue on reverse-engineering assessment and methods. Annals of the New York 

Academy of Sciences 1115, 1–22 (2007).
47.	 Muchnik, L. Complex networks package for matlab (version 1.6) (2013), (Date of access: 12/08/2014). Available at: http://www.

levmuchnik.net/Content/Networks/ComplexNetworksPackage.html.
48.	 Hoyer, P. O. Non-negative matrix factorization with sparseness constraints. The Journal of Machine Learning Research 5, 1457–1469 

(2004).
49.	 Arbeitman, M. N. et al. Gene expression during the life cycle of drosophila melanogaster. Science 297, 2270–2275 (2002).
50.	 Pagel, P. et al. The mips mammalian protein-protein interaction database. Bioinformatics 21, 832–834 (2005).
51.	 Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
52.	 Cheng, D. et al.‘s Time series forecasting for nonlinear and non-stationary processes: a review and comparative study. IIE 

Transactions 47, 1053–1071 (2015).

Acknowledgements
The authors thank the anonymous reviewers for their constructive comments that have helped improve the 
manuscript. They also acknowledge the National Science Foundation CMMI division (Grants 1437139 and 
1432914) for the generous support of this research. The open access publishing fees for this article have been 
covered by the Texas A&M University Online Access to Knowledge (OAK) Fund, supported by the University 
Libraries and the Office of the Vice President for Research.

Author Contributions
H.M.T. and S.T.S.B. designed and performed the research, analyzed the resutls and wrote the paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Tran, H. M. and Bukkapatnam, S. T.S. Inferring sparse networks for noisy transient 
processes. Sci. Rep. 6, 21963; doi: 10.1038/srep21963 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://users.ece.gatech.edu/justin/l1magic/
http://www.gurobi.com
http://www.gurobi.com
http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html
http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html
http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Inferring sparse networks for noisy transient processes

	Methods

	Network inference when total influence matrix is available. 
	Network inference when the time series under transient conditions are available (total influence matrix not given). 
	A robust perturbation procedure. 
	A robust network identification approach. 


	Results

	Case I: simulation studies. 
	Inferring direct influence networks from total influence network. 

	Inferring direct influence network structure from multiple time series under transient conditions. 
	Case II: Application to empirical genetic regulatory network inference. 

	Discussion and Concluding remarks. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Illustration of direct and total influence.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Histograms summarizing the relative performance of ND and -min approaches for the benchmark numerical case in terms of (a) inference error that quantifies the accuracy and (b) Hoyer measure that quantifies the sparsity of the solution.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Variation of inference error with total perturbation bound εi.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Box plots summarizing the effects of averaging on (a) ND and (b) -min with .
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Box plots summarizing the inference errors without and with averaging for.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Performance comparison of (1) original G matrix, (2) ND, (3) ND with averaging, (4) ℓ1-min and (5) ℓ1-min with averaging for the DREAM5 challenge datasets.
	﻿Table 1﻿﻿. ﻿  The matrix R for computing the first row of S is estimated using Sontag et al.
	﻿Table 2﻿﻿. ﻿  Comparison of bounds on total perturbation obtained using Eqs (13) and (14) suggests that Eq.



 
    
       
          application/pdf
          
             
                Inferring sparse networks for noisy transient processes
            
         
          
             
                srep ,  (2016). doi:10.1038/srep21963
            
         
          
             
                Hoang M. Tran
                Satish T.S. Bukkapatnam
            
         
          doi:10.1038/srep21963
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep21963
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep21963
            
         
      
       
          
          
          
             
                doi:10.1038/srep21963
            
         
          
             
                srep ,  (2016). doi:10.1038/srep21963
            
         
          
          
      
       
       
          True
      
   




