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Objectives: Manual and physical therapists incorporate neurodynamic mobilisation (NDM) to improve function 
and decrease pain. Little is known about the mechanisms by which these interventions affect neural tissue. The 
objective of this research was to assess the effects of repetitive straight leg raise (SLR) NDM on the fluid dynamics 
within the fourth lumbar nerve root in unembalmed cadavers.
Methods: A biomimetic solution (Toluidine Blue Stock 1% and Plasma) was injected intraneurally, deep to the 
epineurium, into the L4 nerve roots of seven unembalmed cadavers. The initial dye spread was allowed to stabilise 
and measured with a digital calliper. Once the initial longitudinal dye spread stabilised, an intervention strategy 
(repetitive SLR) was applied incorporating NDMs (stretch/relax cycles) at a rate of 30 repetitions per minute for 
5 minutes. Post-intervention calliper measurements of the longitudinal dye spread were measured.
Results: The mean experimental posttest longitudinal dye spread measurement (1.1 ± 0.9 mm) was significantly 
greater (P = 0.02) than the initial stabilised pretest longitudinal dye spread measurement. Increases ranged from 
0.0 to 2.6 mm and represented an average of 7.9% and up to an 18.1% increase in longitudinal dye spread.
Discussion: Passive NDM in the form of repetitive SLR induced a significant increase in longitudinal fluid dispersion 
in the L4 nerve root of human cadaveric specimen. Lower limb NDM may be beneficial in promoting nerve function 
by limiting or altering intraneural fluid accumulation within the nerve root, thus preventing the adverse effects of 
intraneural oedema.
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This article is the second in a two-part series and follows on from the article by Gilbert et al in Vol 23(4) of 
the Journal

Background
Low back pain (LBP) and nerve root compression syn-
dromes are common conditions that are multifactorial. 
Neural injuries that accompany LBP demonstrate intran-
eural oedema as a common response that can contribute 
to neural ischaemia, permeability changes, nerve struc-
tural damage, and functional alterations.1–3 The absence 
of lymphatic vessels in the endoneurium lends to limited 
oedema drainage,3,4 thereby creating the potential for a 

‘minicompartment syndrome’ within the neural tube.5,6 
This ‘minicompartment syndrome’ is a result of increased 
endoneurial pressure and may cascade to fibrosis and adhe-
sions impairing neural interfascicular gliding.5

Neurodynamic mobilisation (NDM) is often used in 
clinical practice for managing patients with LBP and nerve 
root compromise. Although the techniques appear bene-
ficial,7–11 their mechanisms of action remain unclear. The 
NDM techniques include passive or active movements 
that focus on restoring the ability of the nervous system 
to tolerate the normal compressive, frictional and tensile 
forces associated with daily activities.12 The hypothesised 

*Correspondence: Kerry K. Gilbert, Center for Rehabilitation 
Research, Texas Tech University Health Sciences Center, Lubbock, 
Texas, USA. Email: Kerry.Gilbert@ttuhsc.edu.

mailto:Kerry.Gilbert@ttuhsc.edu


Gilbert et al. Lumbar root fluid dispersion-NDM

Journal of Manual and Manipulative Therapy  2015  VOL. 23  NO. 5240

benefits from these techniques include pain reduction, 
nerve glide facilitation, nerve adherence diminution, dis-
persion of noxious fluids, increased neural vascularity and 
improvements in axoplasmic flow.7,8,10,12–14 Selected text-
books15,16 describe NDM techniques but echo a lack in both 
the quantity and quality of available research that explains 
and supports such a therapeutic approach. Moreover, most 
clinical trials have evaluated cervicobrachial nerves,17–22 
while a qualitative analysis revealed limited evidence to 
support the use of NDM.10

For potentially persistent and debilitating conditions, 
such as LBP and lower limb peripheral neuropathic 
pain, selected neural mobility tests commonly used in 
practice include the straight leg raise (SLR), the pas-
sive neck flexion (PNF) test, the slump test and the 
prone knee bend test.11,15,16 Other manifestations of the 
SLR are emerging with bias to other terminal branches 
such as the sural nerve.23 The same test positions and 
movements can be used as NDM treatment techniques 
with or without modifications.15,16 However, a contem-
porary clinical evidence-supported practice model for 
the use of these manoeuvres in patients suffering from 
LBP or after spinal surgery is sparse and conflicting. 
Kitteringham24 observed that SLR angle improvements 
were not significantly different at 6 weeks after lum-
bar surgical decompression between two groups of 
patients treated with different frequencies of NDM 
exercises performed in the SLR direction. Scrimshaw 
and Maher25 noted a lack of additional benefit from 
NDM (SLR) on global perceived effect, pain and disa-
bility in a 12-month follow-up trial when compared to 
standard physiotherapy treatment after spinal surgery 
(laminectomy, discectomy and fusion). Conversely, 
Bertolini et al.26 observed a greater decrease of pain 
in rats with experimentally induced sciatica following 
NDM (SLR + ankle alternately moved in passive plan-
tarflexion/dorsiflexion) as compared to hindlimb static 
stretching (SLR with 70° of hip flexion, maximum knee 
extension and ankle dorsiflexion). Nagrale et al.27 exam-
ined the effects of NDM in patients with non-radicu-
lar LBP who received 3 weeks of physiotherapy. They 
found that patients receiving slump stretching in addi-
tion to lumbar spinal mobilisation with exercise expe-
rienced greater improvements in Oswestry disability 
index, pain and fear-avoidance belief questionnaires at 
a 6-week follow-up versus patients who received spinal 
mobilisation and stabilisation exercises without slump 
stretching.27

In spite of the clinical influence of NDM on patients' 
symptoms, the underlying mechanisms for this response 
are unclear. Initial considerations lead clinicians to sus-
pect a mechanical influence. The perspective of move-
ment and gliding may apply in the context of peripheral 
nerves within the limbs23,28; however, Ridehalgh et al.29 
indicated that the mobility of the lumbar roots were not 
available using their measurement techniques, and findings 

by Smith et al.30 were obtained incorporating significant 
dissection, specifically, laminectomy and facetectomy. 
Gilbert et al.31,32 found that an in situ SLR produced min-
imal displacement ( < 1.0 mm) of the L4, L5 and S1 nerve 
roots, with 60° of hip flexion needed to induce signifi-
cant movement of the roots. It is doubtful that such small 
movements during NDM would free up scar tissue/fibrotic 
adhesions within the intervertebral foramen or lateral 
recess and increase lumbar nerve root mobility, and while 
selected patients continue to experience clinical benefits in 
response to NDM, the mechanisms behind the symptom 
improvement remain unclear. A recent in situ cadaveric 
investigation showed that repetitive ankle plantar and 
dorsiflexion NDM-induced intraneural fluid dispersion 
within the tibial nerve, suggesting a passive mechanical 
effect of NDM on peripheral intraneural fluid behaviour.6 
A similar finding was noted with in vitro peripheral nerve 
tissue using a standardised mechanically delivered sim-
ulated NDM strategy.33 However, the effect of NDM on 
intraneural fluid dispersion within lumbar nerve roots has 
not been investigated.

The purpose of this study was to assess the effects of 
repetitive SLR neural mobilisation on the fluid dynam-
ics within the fourth lumbar nerve root in unembalmed 
cadavers. We hypothesised that NDMs performed through 
passive SLR would induce fluid dispersion in the lateral 
recess/foraminal region of the fourth lumbar root.

Methods
Experimental design
A pretest–posttest repeated measures design.

Dissection and specimens
This study included seven unembalmed cadavers (four 
females; three males) with a mean age of 74.0 ± 10.3 years, 
height of 173.8 ± 8.9 cm and weight of 73.1 ± 12.0 kg (Table 
1). Cadaveric specimens were handled in accordance with 
university policy and State of Texas regulations as deter-
mined by the Texas Anatomical Board.

Cadavers were positioned prone and the skin, subcu-
taneous tissue, and fascia were reflected from the lum-
bar region from the first lumbar (L1) to first sacral (S1) 
levels. The fourth lumbar (L4) nerve roots were exposed 
bilaterally via posterior dissection (laminectomy and 
facetectomy) from L3 to L5. After dissection and clear 
visualisation of the L4 root, 0.2 cc of dye solution (2:1 
human plasma: 1% Toluidine Blue Stock Solution)34 was 
injected into the L4 nerve root just proximal to the dorsal 
root ganglion expansion. This injection was administered 
via a syringe (1 cc) and a 0.45 × 23 mm needle at a location 
just deep to the epineurium. The initial injection longi-
tudinal dye spread was measured using a digital calliper 
(Digimax 6″ precision digital calliper, Wiha Quality Tools, 
LLC, Monticello, MN, 55362 USA). Measurements were 
taken as described previously,6,33 including the most dis-
tinct proximal and distal borders of the dye spread (Fig. 
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1). One investigator was responsible for dye spread meas-
urements and was blinded to the measurement results. The 
investigators previously established the high reliability of 
this dye spread measurement technique (r = 0.987).6,33

Pretest measurements
The initial longitudinal dye spread was noted, and the 
injected fluid spread was allowed to stabilise for 5 to 
15 minutes. In order to maximise measurement reliability 
and decrease error, three separate dye spread measure-
ments were taken at each interval (5 minutes) and val-
ues were averaged. As previously described,6,33 the dye 
spread was considered stabilised when the average of three 
measurements at each time frame (5-minute intervals) was 
within 0.5 mm of the previous measurement.

Experimental nerve segments
Once the dye spread was stabilised, the NDMs (stretch/
relax cycles) were applied. One researcher performed 
5 minutes of NDM (intervention consisting of prone SLR 
with the experimental lower limb off the side of the table) 
on the experimental limb at a rate of one stretch/relaxation 
cycle every 2 seconds (e.g., 150 stretch/relax cycles across 
5 minutes). Mobilisation was induced from resting position 
to 90° hip flexion with the knee and ankle/foot in maximal 
extension and dorsiflexion, respectively. After the mobili-
sation cycles, three longitudinal dye spread measurements 
were taken and averaged. This ‘posttest’ measurement was 

compared to the pretest measurement to determine if a 
change in longitudinal dye spread occurred from the ini-
tially stabilised condition within the experimental nerve 
segment. While the prone position for SLR NDM differs 
from the typical clinical application, a supine position 
would have disallowed the calliper measurements. Care 
was taken to allow pelvic movement during SLR NDM 
as would have occurred in a supine position.

Control nerve segments
Previous studies indicated no significant longitudinal dye 
spread movement within an immobilised control limb or 
nerve segment.6,33 Therefore, the current study focussed on 
the comparison between the pre-mobilisation and post-mo-
bilisation measurement on the experimental limb. In addi-
tion, a preliminary observation of the control behaviour in 
the lumbar roots was conducted on four cadavers. In this 
case, the control limb underwent the same dye stabilisa-
tion procedures described above followed by a 5-minute 
‘non-mobilisation’ period, where no NDM (stretch/relax-
ation) was performed. The ‘posttest’ measurements were 
taken at the end of the 5-minute ‘non-mobilisation/waiting’ 
period in the fashion previously described.

Statistical analysis
The mean, standard deviation, ranges and confidence inter-
vals were calculated for the length of the longitudinal dye 
spread within the experimental nerve segments during pre-
test and posttest conditions.

Inferential analysis (α = 0.05) was conducted using 
SPSS (v17.0). The independent variable was time with two 
levels: pretest versus posttest. The dependent variable was 
the length of longitudinal dye spread. Although the sample 
size was small, the data were parametric in nature and met 
assumptions for normality, based on Shapiro–Wilk test 
outcomes of W = 0.827, P = 0.159 and W = 0.89, P = 0.384 
(pre- and post-mobilisation spread measurements, respec-
tively). In response, a paired samples t-test was used to 
compare pre-mobilisation measurements to post-mobili-
sation measurements.

Results
Quantitative findings
The intraneural fluid longitudinal dye spread increased 
as a result of NDM. The mean experimental posttest 

Table 1 Cadaver demographics

SD: standard deviation.

Cadaver number Sex Age (years) Height (cm) Weight (kg)

1 Female 65 167.6 59.1
2 Male 70 182.9 90.9
3 Female 66 167.7 68.2
4 Male 86 182.9 75.1
5 Male 86 180.3 72.2
56 Female 82 175.3 85.7
7 Female 63 160.1 60.5
Mean 74.0 173.8 73.1
SD 10.3 8.9 12.0

Figure 1 Data collection: dye spread measurement at the 
right L4 nerve root using digital calliper – notice the dye 
spread in the intradural space (darker colour)
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displacement and strain during lower limb movement,30–32 
they provided no perspective regarding the mechanisms 
responsible for the perceived benefits of incorporating 
NDM. Intraneural oedema is a common response to 
nerve damage,2,4,35–37 regardless of the aetiology. Previous 
studies reported the common presence of neural oedema/
inflammation surrounding compromised nerve roots both 
in animals38 and human beings.39,40 In human beings, the 
location of the swollen lumbar nerve root corresponded 
with the pain locations indicated in pain drawings from 
patients with sciatica.39 Therefore, researchers and clini-
cians have geared their management strategies towards 
therapeutic injections,41,42 low velocity mobilisations, and 
high velocity thrust manipulative therapies,43,44 all aimed 
at reducing LBP and nerve root irritation. Our hypothesis 
that NDM would lead to increased fluid dispersion in the 
L4 nerve root was supported. Longitudinal dye dispersion 
increases were statistically significant post-mobilisation 
compared to the pre-mobilisation stabilised longitudinal 
dye spread. These results are consistent with similar stud-
ies that examined a comparison between these pretest/
posttest conditions, with matched controls (contralateral 
side).6,33 In these previous studies, the matched controls 
demonstrated no significant longitudinal dye spread dur-
ing the ‘no-mobilisation’ period. The preliminary control 
segments tested in this study indicated the same general 
behaviour of no significant change in longitudinal dye 
spread movement during the ‘no-mobilisation’ period.

The qualitative observations expand our understand-
ing of neural tissue response to NDM. We observed a 
proximal/cranial migration of the fluid into the dura in 
all cadaveric specimens following the SLR neural mobi-
lisations. While the fluid dispersion was significant, the 
distal dispersion appeared to be limited to the level of 
the dorsal root ganglia. While our study did not objec-
tify the reason for this behaviour, perhaps the dorsal root 
ganglion served as a mechanical barrier to further dis-
tal intraneural passive fluid movement. Future research 
should examine the specific mechanical influence of the 
dorsal root ganglion on fluid dispersion throughout the 
intraneural space.

measurement was 1.1  ±  0.9 mm greater than the initial 
stabilised pretest measurements (Fig. 2). These increases 
ranged from 0.0 to 2.6 mm and represented an average 
of 7.9% and up to an 18.1% increase in longitudinal dye 
spread (Table 2). The results of the paired samples t-test 
demonstrated that these differences were statistically sig-
nificant (t = − 3.157; P = 0.02). Concerning the preliminary 
control nerve segments, the mean change of the dye spread 
length was 0.2 ± 0.6 mm, which was not statistically sig-
nificant (t = − 0765; P = 0.500) nor was the average spread 
greater than the criterion used for a ‘stabilised’ dye spread 
(i.e. less than 0.5 mm on an average of three measures at 
5-minute increments as described in the Methods section 
of this manuscript as well as those of Brown et al.6 and 
Gilbert et al.6,33

Qualitative observations
At rest, the dura appeared relatively slack, likely due to the 
reduced cerebrospinal fluid within the dural sheath. During 
the mobilisation cycles, the dura filled with air/fluid upon 
return (to hip extension) from each lower extremity neural 
mobilisation (to hip flexion). In addition, the mobilisation 
cycles appeared to spread a portion of the injected dye 
proximally into the dural sac. However, we were unable 
to quantify the degree and extent of this fluid dispersion 
with the calliper. Additionally, on several cadavers, we 
noted increased blood leakage from surrounding tissues 
and vessels with the mobilisation, possibly from the lum-
bar venous plexus or surrounding vessels damaged by 
dissection. This ‘bleeding’ appeared to occur only during 
mobilisation cycles and was not present during the resting 
state once dissection was completed.

Discussion
This is the first study, to our knowledge, to investigate 
the effect of neural mobilisation using the SLR on fluid 
dispersion in the lateral recess/foraminal area of a lumbar 
nerve root. Results indicate that intraneural fluid within the 
neural tissue of L4 nerve root dispersed following repeti-
tive SLR in the cadaveric specimens.

While previous studies of NDM investigated quantita-
tive findings related to the lumbar nerve root mechanics of 

Figure 2 Longitudinal intraneural fluid dispersion (pretest 
to posttest).

Table 2 Descriptive statistics – experimental slide

SD: standard deviation; CI: confidence interval.

Range Mean SD 95% 
CI

Initial dye spread (mm) 9.9–
16.7

14.4 2.2 1.8

Stabilized dye spread (mm) 9.3–
17.0

14.5 2.5 2.0

Time to stabilize (minutes) 10.0–
15.0

11.4 2.4 2.0

Post-mobilization dye 
spread (mm)

10.8–
18.0

15.5 2.5 2.0

Total dye spread length 
change post-mob (mm)

0.0–2.6 1.1 0.9 0.7

Percent change  
post-mob dye spread (%)

 − 0.2–
18.1

7.9 6.9 5.6
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beneficial, especially if these studies quantify intraneural 
pressure alterations.

Limitations of this study include the inability to gen-
eralise the findings to live patients based on three facts. 
First, because our study utilised cadaveric tissue, we could 
not account for the influence of active physiological pro-
cesses within the nerve on fluid spread. However, by 
eliminating these processes, we were able to infer that the 
study's effects were consequent to a mechanical influence. 
Second, the posterior approach for dissection, including 
laminectomy/foraminectomy, was necessary to examine 
the fluid dynamics of the root level. We recognise that this 
level of dissection is substantial, and creates limitations to 
generalisability. Finally, we cannot generalise the findings 
to pathologically involved nerves, such as those with signs 
of decreases in elasticity due to fibrosis or adhesions,45,51 
as these conditions may alter the manner in which fluid 
is dispersed. Future studies should examine these que-
ries, as many patients with root-related pain exhibit such 
alterations.

In conclusion, this study demonstrated that passive 
NDM, in the form of repetitive SLR, led to a significant 
increase in longitudinal fluid dispersion in the L4 nerve 
root of human cadaveric specimens. Lower limb NDM 
may aid in preserving nerve function through an altera-
tion of intraneural fluid accumulation within a nerve root 
after injury or irritation, preventing the negative effects of 
intraneural oedema and resultant pressure.
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The mechanisms responsible for the longitudinal dye 
spread during NDM may include fluid movement resulting 
from transverse narrowing of the nerve and/or intrafascicu-
lar gliding as it lengthens.45 During the NDM technique, the 
L4 nerve root underwent elongation and shortening cycles 
which may have produced a temporary rise and subsequent 
fall in intraneural pressure (i.e. an intraneural tissue pump as 
described by Gilbert et al.).33 It is possible that this repetitive 
stretch/relax cycle, or ‘pumping’ action, may have induced 
a flushing effect of the dye and possibly an intraneural pres-
sure modification with intraneural fluid dispersion.

Changes in intraneural pressure appear to be clini-
cally important as evidenced by studies demonstrating the 
adverse effects of increased intraneural pressure levels on 
neural tissue health and function.3,35 Neurodynamic tech-
niques may promote healthy nerve function by promoting 
reduced oedema and changing intraneural pressure, which 
lead to improvement in axonal transport and prevention 
of the deposit of mechanosensitivity factors that result in 
pain and limitations in neural movement.46,47 During the 
initial stages of neural tension or compression injury, the 
prevention or reduction of oedema may limit compromise 
of blood flow.3,35 Improved blood flow may limit impaired 
axonal transport,36,48 demyelination,49,50 loss of elasticity 
due to fibrosis or adhesions,45,51 and ultimately, decrease 
nerve structural and functional compromise.1,49,52,53 The 
promotion of intraneural fluid dispersion through the 
incorporation of lower limb movement may provide a 
mechanism to disrupt the cycle of oedema formation and 
the subsequent consequences that contribute to fibrosis.54

In the current study, the cadavers were positioned prone 
with one limb maintained on the table. The treatment limb 
was positioned with the hip flexed to 90°, knee extended, 
and the ankle in 0° dorsiflexion. In this position, the SLR 
movement was performed at a rate of one mobilisation 
repetition every 2 seconds or 30 repetitions per minute for 
5 minutes. Rhythmic mobilisation (stretch/relax) cycles 
were chosen as the mode of intervention since previous 
experiments in animals indicate a cessation of blood flow 
(arteriole and venous) and alterations in nerve conduction 
velocity during prolonged static stretching,55,56 as well as 
limitations in axonal transport during graded compression 
and sustained vibration.57,58 Since symptomatic patients are 
often unable to reach 90° of hip flexion during the SLR, 
future research should determine the minimum and optimal 
degree of hip flexion during SLR NDM that is necessary to 
obtain such fluid dispersion. Various degrees of ankle dorsi-
flexion during repeated SLR could be evaluated as well, as 
previous research indicated greater nerve root strain during 
the SLR with the ankle dorsiflexed,32 which may lead to 
greater fluid dispersion than with the ankle plantar flexed.

Outcomes-based clinical trial studies would be ben-
eficial in assessing the outcomes of NDM in normal 
patients as well as those presenting with discogenic 
LBP and/or signs of nerve root compression and irrita-
tion. Additionally, studies examining various limb and 
spine positions on intraneural fluid dispersion would be 
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