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Abstract

Ductal carcinoma in situ (DCIS) is a noninvasive precursor lesion to invasive breast carcinoma. 

We still have no understanding on why only some DCIS lesions evolve to invasive cancer whereas 

others appear not to do so during the life span of the patient. Here, we performed full exome 

(tumor vs. matching normal), transcriptome, and methylome analysis of 30 pure high-grade DCIS 

(HG-DCIS) and 10 normal breast epithelial samples. Sixty-two percent of HG-DCIS cases 

displayed mutations affecting cancer driver genes or potential drivers. Mutations were observed 

affecting PIK3CA (21% of cases), TP53 (17%), GATA3 (7%), MLL3 (7%) and single cases of 

mutations affecting CDH1, MAP2K4, TBX3, NF1, ATM, and ARID1A. Significantly, 83% of 

lesions displayed numerous large chromosomal copy number alterations, suggesting they might 

precede selection of cancer driver mutations. Integrated pathway-based modeling analysis of 

RNA-seq data allowed us to identify two DCIS subgroups (DCIS-C1 and DCIS-C2) based on their 

tumor-intrinsic subtypes, proliferative, immune scores, and in the activity of specific signaling 

pathways. The more aggressive DCIS-C1 (highly proliferative, basal-like, or ERBB2+) displayed 

signatures characteristic of activated Treg cells (CD4+/CD25+/FOXP3+) and CTLA4+/CD86+ 

complexes indicative of a tumor-associated immunosuppressive phenotype. Strikingly, all lesions 

showed evidence of TP53 pathway inactivation. Similarly, ncRNA and methylation profiles 

reproduce changes observed postinvasion. Among the most significant findings, we observed 
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upregulation of lncRNA HOTAIR in DCIS-C1 lesions and hypermethylation of HOXA5 and SOX 

genes. We conclude that most HG-DCIS lesions, in spite of representing a preinvasive stage of 

tumor progression, displayed molecular profiles indistinguishable from invasive breast cancer.

Introduction

Ductal carcinoma in situ (DCIS) is by definition a precursor lesion to invasive ductal 

carcinoma (IDC). The routine use of screening mammography has led to a dramatic increase 

in DCIS detection during the last four decades (1). More than 62,000 cases per year account 

for about 25% of new breast cancers in the United States (1). Early retrospective studies 

concluded that women with biopsy proven DCIS have over a 10-fold higher risk for 

developing invasive carcinoma than women without DCIS history (2). If left untreated, it 

has been estimated that at least one-third of DCIS cases are likely to progress to IDC during 

the lifetime of the patient (1, 3). Regardless, it is beyond debate that the vast majority of 

IDCs results from the progression of precursor DCIS lesions (3). DCIS lesions are usually 

classified as either high-grade (HG-DCIS) or low-grade (LG-DCIS). Such distinction has 

limited impact on clinical management, as most patients with DCIS regardless of grade still 

receive similar treatment, which is either total mastectomy or segmental resection with 

radiation therapy (4–6). Recent studies argued that it is possible to identify more indolent 

DCIS lesions based on a small gene expression panel (Oncotype DX DCIS; ref. 7); however, 

concerns have been raised on the usefulness of such test and further validation is required (8, 

9). Nevertheless, there is a great clinical need to identify those patients who can be spared 

radiation therapy after segmental resection, as it has been argued that many patients do not 

benefit from this likely overtreatment (10, 11).

Our current understanding of DCIS is that these are heterogeneous lesions and just like 

invasive carcinoma, DCIS lesions can be separated into different intrinsic subtypes on the 

basis of gene expression features (12–15). Mutations affecting genes such as TP53 and 

PIK3CA were also reported in DCIS (16, 17). However, as reviewed by Polyak, molecular 

signatures predictive of invasive progression have not been defined (18). In other words, we 

still have no understanding on why only some DCIS lesions evolve to invasive cancer 

whereas others appear not to do so. Importantly, no study to date has comprehensively 

delineated the molecular landscape of DCIS at the mutational, transcriptomic, and epigenetic 

levels in the same lesions and these are in part major goals of the present study.

Materials and Methods

Samples

Thirty fresh-frozen pure HG-DCIS cases with matched normal adjacent breast tissue 

samples were obtained from the MDACC Breast Tumor Bank. Normal breast tissue is 

defined as grossly unremarkable breast parenchyma away from the area of DCIS identified 

by imaging studies and gross evaluation and confirmed by subsequent histologic evaluation. 

These areas usually selected at least 1 cm and more away from the lesions. Patient tissue 

samples were collected after proper informed consents were obtained and protocols 

approved by ethical and institutional review boards. Ten cosmetic normal mammoplasty 
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specimens were obtained from the Cooperative Human Tissue Network. Normal breast 

epithelial organoids were freshly isolated from the normal mammoplasty specimens as was 

previously described by us (19) and used for identification of differentially expressed genes 

(DEG) and differentially methylated genes (DMG) between normal and HG-DCIS samples.

DNA from 29 of 30 (97%) pure HG-DCIS samples and their paired normal breast tissue 

samples (total 58 samples) were subjected to exome capture sequencing analysis (Exome-

Seq). DNA from 24 of 30 (80%) HG-DCIS samples and 5 normal breast organoids (total 29 

samples) were subjected to reduced representation bisulfite sequencing analysis (RRBS). 

RNAs from 25 of 30 (83%) pure HG-DCIS and 10 normal breast organoids (total 35 

samples) were subjected to RNA sequencing analysis (RNASeq; see Supplementary Table 

S1).

Histopathologic and immunohistochemical analysis

Histopathologic analysis of tumors and lymphocytic infiltrates were performed on 

hematoxylin and eosin (H&E)-stained sections. Intratumor-infiltrating lymphocytes (iTIL) 

are defined as intraepithelial mononuclear cells within DCIS cell nests or in direct contact 

with cells (intralobular stroma) and are reported as the percentage of the tumor epithelial 

nests that contain infiltrating lymphocytes. Stromal tumor-infiltrating lymphocytes (sTIL) 

are defined as the percentage of tumor stroma area that contains lymphocytic infiltrates 

without direct contact to DCIS cells. All samples were analyzed for estrogen receptor (ER)/

progesterone receptor (PR) by immunohistochemistry using standard procedures.

Exome-Seq analysis

DNA from 29 DCIS samples and their paired normal breast tissue samples (n = 58 samples) 

were purified using the DNeasy Blood and Tissue Kit (Qiagen). Only DNA samples with 

260/280 ratios greater than 2.0 were processed for library construction using the SPRIworks 

Fragment Library Kit I (Beckman Coulter). Four libraries were pooled together and 

processed for exome capture using the NimbleGen SeqCap EZ Human Exome Library v3.0 

(HG19, Roche), covering more than 23,000 genes and ~64 Mbp, 76-nt paired-end 

sequencing was performed using an Illumina HiSeq2000 platform at our Department's NGS 

Facility. Image analysis, base-calling, and error calibration were performed using Illumina's 

Genome analysis pipeline. Sequencing was performed reaching an average depth of 40× per 

sample. Sequenced 76-bp tags were aligned against the human reference genome (hg19) 

using BWA v0.7.3 and marked for duplicates using Picard v1.88 (http://

picard.sourceforge.net/). Recalibration of base quality and indel realignment was performed 

using the GATK v2.4 (20). Subsequently, single-nucleotide variants (SNV) were identified 

using MuTect v1.1.4 (21). Identified variants were annotated using ANNOVAR (22), 

filtered by functional consequence, and only nonsynonymous and splicing variants were 

selected. In addition, we used Control-FREEC software to detect copy number alterations 

and LOH regions in DCIS samples on the basis of Exome-Seq data (23).

RRBS analysis

We analyzed by RRBS a total of 5 normal breast epithelial samples and 24 DCIS samples. 

DNA libraries were prepared for RRBS at the MDACC's DNA Methylation Core Facility 
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and subjected to next-generation sequencing (NGS). Short read sequences were mapped to 

the human reference genome 19 by Bismark, a program to map bisulfate-treated sequencing 

reads to a genome of interest and perform methylation calls in a single step (24). Raw 

datasets have been submitted to NCBI GEO database with accession number GSE69994. 

Promoter regions were calculated on the basis of RefSeq gene annotations, such that the 

region starts 2-kb upstream of the annotated transcription start site and extends to 500 

downstream of the transcription start site (TSS). CpG islands were downloaded from UCSC 

genome annotation database assembled by NCBI (hg19). CpG shores were defined as 2,000-

bp flanking regions on upstream and downstream of a given CGI. To identify differentially 

methylated sites, first we filtered samples on the basis of read coverage ≥ 20. And the 

significant differentially methylated CpGi (DMC) sites were identified when the difference 

of methylation percentages between normal breast epithelia and DCIS were greater than 

0.25 and q < 0.01.

RNA-Seq analysis

RNA was isolated and purified using TRIzol reagent (Life Technologies) and RNeasy mini 

kit (Qiagen). RNA concentration and integrity were measured on an Agilent 2100 

Bioanalyzer (Agilent Technologies). Only RNA samples with RNA integrity values (RIN) 

above 8.0 were considered for subsequent analysis. mRNA from normal breast epithelial 

samples and DCIS samples were processed for directional mRNA-Seq library construction 

using the ScriptSeq v2 RNA-Seq Library Preparation Kit (Epicentre) according to the 

manufacturer's protocol. We performed 76-nt paired-end sequencing using an Illumina 

HiSeq2000 platform and obtained about 40 million tags per sample. The short sequenced 

reads were mapped to the human reference genome (hg19) by the splice junction aligner 

TopHat (25). We used several R/Bioconductor packages to accurately calculate the gene 

expression abundance at the whole-genome level using the aligned records (BAM files) and 

to identify differentially expressed genes between normal and DCIS samples. Briefly, the 

number of reads mapped to each gene on the basis of the UCSC.hg19.KnownGene database 

were counted, reported, and annotated using the GenomicFeatures, Rsamtools, and 

org.Hs.eg.db packages. Raw datasets have been submitted to NCBI GEO database with 

accession number GSE69994. To identify differentially expressed genes between normal 

breast epithelium and DCIS samples, we used the edgeR-test on the basis of the normalized 

number of reads mapped to each gene (26).

Pathway-based analysis was performed using the PARADIGM software at the Five3 

Genomics server (default options; discretization bounds of 33%) on the basis of the 

normalized gene expression profiles of the deregulated transcripts between normal and 

DCIS samples [false discovery rate (FDR) < 0.01; log fold change (FC) ≥ ±1] expressed in 

log2 counts per million (27). PARADIGM produces a data matrix of integrated pathway 

activities (IPA), this data matrix was used in place of the mRNA expression profiles to 

identify the topmost variable IPAs among samples. Heatmap visualization of differentially 

expressed transcripts and IPAs were done with the MultiExperiment Viewer software (MeV 

v4.9; ref. 28). Intrinsic subtype classification of DCIS samples into luminal-like, basal-like, 

ERBB2-enriched, and normal-like groups was performed using the 50-gene (PAM50) 

predictor bioclassifier R script (29). We used the ESTIMATE algorithm (Estimation of 
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STromal and Immune cells in Malignant Tumors using Expression data) to infer the immune 

and stromal components from each DCIS sample (30).

Bioinformatic analysis of the The Cancer Genome Atlas-BRCA dataset

To perform a comparative analysis of the mutational, gene expression, methylation, and 

pathway activities profiles identified in DCIS with invasive stages, we analyzed invasive 

breast cancer (IBC) datasets obtained from the The Cancer Genome Atlas (TCGA)-BRCA 

project (31). The clinical (including PAM50 subtypes from RNAseq) and preprocessed data 

(IBC gene-level mutation, IBC gene expression Illumina HiSeq, IBC DNA methylation 

450K and IBC Paradigm RNAseq + CNV profiles) were retrieved from the Cancer 

Genomics Browser (https://genome-cancer.soe.ucsc.edu/) and cBioPortal (http://

www.cbioportal.org/). Data integration and visualization were done with R and MeV 

software, respectively.

Results and Discussion

Fresh-frozen pure DCIS samples are extremely difficult to obtain, as all tumor materials are 

submitted for routine histopathologic evaluation with formalin fixation and paraffin 

embedding. Only cases with available frozen tissue samples are usually those from large 

palpable DCIS cases, which tend to be HG-DCIS. Nevertheless, we were able to gather from 

our Institution's breast tumor bank a group of fresh-frozen "pure" HG-DCIS samples (i.e., 

with no evidence of invasion in the same breast) and matching normal pairs and subjected 

them to a thorough characterization involving whole Exome-Seq, RRBS, and RNA-Seq. We 

also generated RNA-Seq and RRBS data from breast epithelial organoids obtained from 

normal mammoplasty specimens for identification of differentially expressed genes and 

differential methylated genes between normal and DCIS lesions.

Significantly mutated genes and DNA copy number variations in DCIS

Exome-Seq data on 29 pure DCIS normal matched pairs indicated a median of 75% targeted 

genome loci having at least 40× coverage. We detected 2,908 single-base substitutions, 

including 1,324 nonsynonymous (missense) SNVs, 46 stop gain, 2 stop loss, 16 mutations at 

splicing sites, 151 noncoding RNA (ncRNA) mutations, and 1,369 SNVs encoded 

synonymous (silent) mutations (Fig. 1A; Supplementary Table S2). Almost 50% of these 

mutations were C>T:G>A transitions in agreement with the previously described most 

prevalent mutation-type signature in breast cancer (Fig. 1A; ref. 32). We also detected 24 

frameshift deletions, 10 frameshift insertions, and 43 non-frameshift deletion/insertion 

events. Every single DCIS displayed a significant number of mutations. The total mutation 

rate was 1.61 mutations per Mbp on average with a range of 0.8 to 3.8 mutations per Mbp 

(Fig. 1B), indicating that some DCISs have quite higher mutation rates than others. We 

identified somatic mutations affecting at least 10 genes reported as mutated at a ≥2% rate in 

IBC (33). In total, 18 of 29 HG-DCIS cases (62%) displayed mutations affecting one or 

combinations of targets described as cancer driver genes or potential drivers. Among these, 

we detected mutations affecting PIK3CA (21%), TP53 (17%), GATA3 (7%), MLL3 (7%) and 

single cases of mutations affecting CDH1, MAP2K4, TBX3, NF1, ATM, and ARID1A (Fig. 

1B). The comparative frequency of mutations of these genes in pure DCIS and the TCGA 
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database on IBC (n = 976 cases as per September 2014) is shown in Fig. 1C. Similarly to 

IBC previous gene mutation data (31, 33), the most frequently mutated genes are PIK3CA (6 

cases; 4 of them affecting ER/PR-positive cases) and TP53 (5 cases; 4 of them affecting 

ER/PR-negative cases). Only one case displayed mutations in both genes. Interestingly, 

several genes reported as mutated in IBC, such as MAP3K1, PTEN, AKT1, RUNX1, RB1, 

and various others so far, have not been detected mutated in DCIS, suggesting that perhaps 

some of these mutations may be associated with postinvasion events; however, our sample 

number is still limited. In summary, we observed that 100% of pure HG-DCIS display 

numerous somatic mutations, but only a subgroup display mutations affecting cancer driver 

genes or potential drivers. Nevertheless, the mutational profile in pure HG-DCIS is 

extremely similar to that observed at invasive stages with only a moderate lower frequency 

of mutation for cancer driver genes. As we performed RNA-Seq in parallel, the identified 

mutations were validated by allele-specific RNA-Seq data.

Somatic copy number variations (CNV) were estimated using Exome-Seq data to predict 

regions of genomic alterations such as amplification, gains, and losses (23). Figure 1D 

summarizes the overall frequency of DNA gains/losses affecting all chromosome arms 

among DCIS samples. The profile of copy number changes across the genome in HG-DCIS 

is practically identical to profiles reported in invasive breast lesions (34) and is in agreement 

with early observations using comparative genome hybridization (CGH) approaches (35). In 

our approach, however, we were able to define with more precision the genomic regions 

spanning the CNV (Supplementary Table S2). The most common regions of increased DNA 

copy number include chr1q, chr8q, chr17q, and chr20q and regions of common copy 

number loss include regions chr8p, chr11q, chr17p, and chr22q (Fig. 1D; Supplementary 

Fig. S1 and Supplementary Table S2). Regions of potential focal amplification were also 

identified, including ERBB2, VEGFA, MYC, AURKA, MDM2, FGFR1, and CCND1 (Fig. 1B 

and Supplementary Table S2).

Among the most important conclusions of the CNV analysis is that 83% (24 of 29) of DCIS 

lesions displayed evidence of large chromosomal alterations; only in 5 samples (T9, T15, 

T28, T30, and T31), large chromosomal copy number changes were not detected 

(Supplementary Table S2). Interestingly, multiple cases (T2, T4, T5, T10, T13, T16, T22, 

and T24) displayed significantly large chromosomal copy number alterations but no 

mutations in known cancer driver genes, whereas 16 of 18 cases (89%) with mutations in 

cancer driver genes all show significant chromosomal copy number alterations (Fig. 1B; 

Supplementary Table S2). Importantly, in only 3 of 29 (10%) HG-DCIS (T9, T15, T28), no 

large chromosomal abnormalities or mutations in putative cancer driver genes were 

detected. Nevertheless our findings also suggest that large chromosomal copy number 

alterations (trisomies, monosomies, large chromosomal duplications, and deletions) occur 

early in tumor progression, perhaps preceding the selection of alleles with mutations in 

driver genes.

Gene expression analysis of coding RNAs

Whole-transcriptome unsupervised analysis from RNA-Seq data demonstrates a clear 

segregation of normal breast epithelium and DCIS samples on the basis of similarity 
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distances (measured in leading logFC) from dimension 1 in a multidimensional scaling plot 

(MDS; Fig. 2A). More importantly, DCIS samples were clustered into two subgroups 

(cluster 1 or DCIS-C1 and cluster 2 or DCIS-C2) according to the positive and negative 

distances from MDS dimension 2.

We observed that the ER/PR status determined by immunohistochemistry and their intrinsic 

subtypes predicted by using the 50-gene PAM50 model (29) were significantly associated 

with each identified DCIS cluster (P < 0.001). Sixty-seven percent of the cases in DCIS-C1 

were ER/PR double negative and basal-like or ERBB2+ with high proliferative scores. On 

the other hand, 100% of the cases in DCIS-C2 were ER/PR double positive, luminal-like 

with low/moderate proliferative scores (Fig. 2B).

Statistical analysis of RNA-Seq data revealed 5,985 transcripts differentially expressed 

between normal and DCIS samples (FDR < 0.01; logFC ≥ ±1), 95% were coding RNAs and 

5% were ncRNAs. Among the deregulated genes, 885 were differentially expressed between 

both DCIS clusters (FDR < 0.01; logFC ≥ ±1; Supplementary Table S3). To identify 

bioprocesses that differentiate DCIS-C1 from the DCIS-C2, we performed functional 

enrichment and pathway activity analyses. Gene ontology (GO) analysis of deregulated 

transcripts between DCIS clusters revealed specific functional modules characteristic for 

each of both subgroups: a functional module strongly related to immune (P < 1.46E−35) and 

inflammatory (P < 6.4E−19) responses clearly associated to the DCIS-C1 group and a 

module related with response to steroid hormones (P < 9.1E−4) associated to the DCIS-C2 

group (Fig. 2C and Supplementary Fig. S2). In addition, functional annotation analysis 

identified "T-cell differentiation", "B-cell activation", "angiogenesis," "negative regulation 

of apoptosis," and "ECM remodeling" to be highly associated with DCIS-C1 -modulated 

genes. Given the aforementioned strong association with immune-related themes, we 

performed a blind evaluation of lymphocytic infiltrates on H&E sections of all DCIS 

samples determining iTIL and sTIL scores. Supporting the GO and functional annotation 

observations, DCIS-C1 samples showed a significantly higher number of iTILs (P < 0.01) 

than the DCIS-C2 counterparts. Similarly, a gene expression signature–based method known 

as ESTIMATE (30) predicted higher immune scores on DCIS-C1 versus DCIS-C2 (P < 

0.001; Fig. 2D).

Further analysis of the behavior of the 885 deregulated transcripts that discriminate both 

DCIS clusters within the TCGA breast cancer dataset demonstrated that a large number of 

genes (~80%)identified as upregulated in the DCIS-C1 group remained upregulated in basal-

like and ERBB2+ breast cancers compared with the luminal A/B subtypes (Fig. 2E). This is 

in itself very significant, and similarly to the above described mutational and CNV analyses, 

it indicates that most of the gene expression changes characteristic of IBC are already 

present at the pure DCIS (preinvasive) stage.

Pathway-based representation analysis (PARADIGM; ref. 27) of deregulated transcripts 

identified a plethora of signaling pathways that differ in their activity between normal and 

DCIS samples, such as AP1, TNF, TP53, FOXM1, MYB, and E2F1/DP1 pathways (Fig. 

3A; Supplementary Table S3). It was striking to observe that the TP53 signaling pathway 

was found deactivated in all DCIS samples analyzed regardless of TP53 mutation status, 
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ER/PR expression status or intrinsic subtype when compared with normal epithelium (Fig. 

3B). Since on the basis of mutational evidence is currently believed that TP53 inactivation is 

mostly a feature of the basal-like intrinsic subtype (31, 33), we were surprised by our 

finding, thus we decided to perform a pathway-based analysis focused on the TP53 pathway 

exclusively in the existing TCGA IBC dataset. Interestingly, PARADIGM analysis based on 

TCGA-BRCA RNA-Seq and CNV profiles predict that TP53 pathway inactivation is a 

common theme affecting well above 85% of breast cancers regardless of intrinsic subtypes 

(and as consequence also regardless of TP53 mutation status; Supplementary Fig. S3). 

Nevertheless, this novel information on TP53 pathway inactivation in most breast cancers 

should be taken with caution and requires further validation.

In the DCIS-C2 cases, the activity of the E2/ERa pathway was the predominant signature 

(Supplementary Fig. S2), whereas in the DCIS-C1 subgroup, the HES1 and HIF1A/ARNT 

pathways were more frequently activated. Interestingly, the HIF1A/ARNT was previously 

identified as one of the key regulatory features associated with basal-like carcinomas (31).

More importantly, PARADIGM analysis identified that 80% of DCIS-C1 cases showed 

activity of Treg cells (CD4+/CD25+/FOXP3+) and CTLA4+/CD86+ complexes (Fig. 3C). 

These results are revealing, as a growing body of evidence indicates that the outcome of an 

immune response toward a tumor is largely determined by the specific characteristics of the 

infiltrating lymphocytes. A tumor-directed immune response involving cytolytic CD8+ T 

cells, T-helper 1 cells (Th1), and natural killer (NK) cells appears to protect against tumor 

development and progression, whereas activation of humoral immunity involving B cells 

and/or Th2 response appears associated to protumorigenic phenotypes (36). Suppression of 

antitumor immune response by inducing T-cell anergy due Th2-polarized activity and/or 

expansion of Treg cells (CD4+CD25+FOXP3+) with a subsequent loss of T-cell–mediated 

cytotoxicity, together with the development of angiogenesis and tissue remodeling could be 

instrumental for promoting the progression of HG-DCIS to the infiltrating stages. Recently, 

Kristensen and colleagues (37) suggested that the perturbation in the immune response and 

IL signaling (IL4, IL6, IL12, and IL23) can lead to classification of IBC subclasses with 

prognostic value. Patients who have basal-like breast carcinomas are characterized by high 

expression of protumorigenic Th2/humoral-related genes and a low Th1/Th2 ratio. In 

addition, the immune response and IL signaling identified in IBC appears also prominent in 

DCIS (37). Importantly, the IPA described in our study indicates that DCIS-C1 lesions are 

characterized by a tumor-associated immunosuppressive phenotype, suggesting a 

protumorigenic polarization of the immune response. In other words, DCIS-C1 lesions bear 

all the immunomodulatory characteristic of invasive breast lesions, thus indicating that the 

host immune defenses (tumor rejection responses) have been or are in the process of being 

defeated.

Gene expression analysis of noncoding RNAs

RNA-Seq analysis allowed us to identify 193 long noncoding RNAs (lncRNA) as 

differentially expressed between normal and DCIS samples (P < 0.01, FDR < 0.01), 127 of 

which were antisense RNAs and 66 were long intergenic noncoding RNAs (lincRNA; Fig. 

4A and B). Eighty-seven percent of the identified lncRNAs (168 of 193) were upregulated in 
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DCIS (Supplementary Table S4). Interestingly, 46 of the 127 antisense RNAs and 18 of the 

66 lincRNAs have been recently identified as potentially relevant in breast cancer (38). The 

Genomic Regions Enrichment of Annotations Tool (GREAT) resource was used to evaluate 

the correlation between deregulated lncRNAs and their neighboring genes (39). We found 

that 52% of the mRNA genes in the vicinity of the affected lncRNAs were also deregulated 

(Supplementary Table S4), and most of them (80%) showed a positive association with the 

expression of the lncRNAs, which would indicate that deregulation of cis-acting lncRNA 

prevails in DCIS. Among the deregulated lnRNAs in DCIS, we found HOTAIR (HOX 

transcript antisense RNA; logFC = +5.03; FDR = 1.92E−8) and HOTAIRM1 (HOXA 

transcript antisense RNA myeloid–specific 1; logFC = −1.90; FDR = 8.63E−7; Fig. 4C). 

HOTAIR and HOTAIRM1 expression levels were positively correlated with the expression 

of their adjacent HOXC (located at chr12q13.13) and HOXA (located at chr7q15.2) gene 

clusters, respectively (Fig. 4D). Recent studies have shown that lncRNAs can be associated 

with enhancer regions, leading to increased activity of neighboring genes (40). One of the 

best-known lncRNAs, HOTAIR, found significantly upregulated in DCIS-C1 lesions, was 

suggested to promote breast cancer metastasis and shown to be pervasively overexpressed in 

most human cancers when tumor tissue was compared with adjacent noncancerous tissue 

(41). HOTAIR interacts with and recruits the Polycomb-repressive complex 2 (PRC2) and 

regulates chromosome occupancy of EZH2 (a subunit of PRC2), which leads to histone H3 

lysine 27 trimethylation of the HOXD locus and subsequent silencing of this gene cluster. 

On the other hand, HOTAIRM1, found significantly downregulated in many DCIS lesions 

(particularly DCIS-C1), was shown to play a role in the regulation of gene expression during 

retinoic acid–induced myeloid differentiation preventing the induction of HOXA genes (42). 

Mechanistically, our data indicate that HOTAIR and HOTAIRM1 may act by modulating 

HOX gene expression in trans and cis during early stages of breast cancer progression. This 

is the first study demonstrating that these lncRNAs are deregulated "early" at preinvasive 

stages of breast cancer progression. The remaining lncRNAs (LINC00277, LINC00861, 

LINC00578, LINC00426, and others shown in Supplementary Table S4) would constitute a 

novel group of lncRNAs deregulated in the transition normal DCIS.

In addition, we were able to identify 36 differentially expressed pri/pre-miRNAs among the 

deregulated noncoding transcripts between normal and DCIS as well. We detected MIR3606 

(logFC = +6.58), MIR4728 (logFC = +4.25), and MIR503HG (logFC = +2.91) among the 

most upmodulated small noncoding RNAs in DCIS samples. Interestingly, MIR4728 was 

specifically upmodulated in DCIS-C1 samples (logFC = +2.28). MIR4728 gene is located at 

chr17q12 and encoded within intron 24 of the ERBB2 gene (43). Recently, Newie and 

colleagues demonstrated that ERBB2 amplification might lead to ESR1 downregulation 

through internal seed interaction with miR-4728-3p in breast cancer cells (44). We 

corroborate this observation identifying a positive correlation between ERBB2 and MIR4728 

expression (r = 0.90; P < 0.01) in DCIS samples in agreement with the CNV data.

On the other hand, MIR4260 (logFC = −4.62), MIRNA221 (logFC = −3.55), MIR22/

MIR22HG (logFC = −2.34), MIR3661 (logFC = −2.07), and MIR17HG (logFC = −1.94), 

among others, were detected as downmodulated in DCIS samples. The human MIR22 gene 

is located in a minimal LOH region on chromosome 17 close to TP53. MIR22 has been 
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reported to be downregulated in hepatocellular, lung, colorectal, ovarian and breast cancer, 

acting as a tumor suppressor (45). Furthermore, MIR22 overexpression induces growth 

suppression and senescence-like phenotypes in human breast epithelial and breast cancer 

cells (46). MIR17HG is the host gene for the MIR17–20 cluster (a group of at least six 

miRNAs) located at 13q31 that function as a tumor suppressor in human breast cancer by 

decreasing AIB1 and cyclin D1 expression (47). The MIR17–20 cluster is known to inhibit 

breast cancer cellular proliferation through G1–S cell-cycle arrest (48). Our study suggests 

that gain and loss of expression of key regulatory miRNAs in normal breast epithelium 

might constitute important early procarcinogenic events conducive to overcome the barrier 

imposed by senescence and limited cell proliferation. However, further studies on the 

profiling of the mature miRNAs in normal and DCIS samples are needed to corroborate the 

aforementioned observations.

DNA methylation analysis

RRBS data analysis coupled with RNA-Seq profiling allowed us to identify the most 

relevant methylation events associated to the development of DCIS lesions. We identified 

1,103 DMCs between normal breast epithelia and DCIS samples (Supplementary Table S5), 

mapping at distal (8% at −4 kb to −2 kb relative to TSS), proximal promoter regions (56% at 

−2 kb to +500 bp) or the gene body (36% at +500 to +2 kb) of 311 loci (Fig. 5A). Among 

these 1,103 DMC, 1,029 were hypermethylated and 74 were hypomethylated CpGi sites in 

DCIS samples. Functional enrichment analysis of the hypermethylated regions in DCIS 

identified "regulation of transcription/RNA pol II activity," "cell fate commitment/

morphogenesis," and "regulation of cell proliferation and differentiation" as the predominant 

associated biologic processes (Fig. 5B). Furthermore, we identified 137 DMC for which 

mRNA abundance was inversely correlated in DCIS samples (Supplementary Table S5). 

Sixteen genes were highly hypermethylated and downmodulated in DCIS compared with 

normal epithelium (Fig. 5C). Some of the most hypermethylated CpGi regions were located 

at the promoters of three SOX family members (SOX10, 15, and 17) and the HOXA5 gene. 

SOX10, SOX15, and SOX17 are novel HMG box–containing tumor suppressors involved in 

a variety of developmental processes that can act as antagonists to the Wnt/β-catenin 

signaling pathway (49–51). These three SOX genes were systematically hypermethylated 

and transcriptionally downregulated in almost all DCIS samples compared with normal 

samples. In agreement with these findings, gene expression analysis of these SOX genes in 

the TCGA dataset showed a significant downmodulation in IBC compared with normal 

samples (Supplementary Fig. S4). In a recent study, it was shown that the SOX10 protein is 

predominantly expressed in basal-like breast carcinomas compared with the other subtypes 

(52). However, TCGA data analysis clearly showed that SOX10 was downmodulated in 

luminal-like and ERBB2+ breast cancer subtypes compared with normal tissue samples 

(Supplementary Fig. S4). Fu and colleagues (50) demonstrated that silencing of SOX17 due 

to promoter hypermethylation is frequent in invasive carcinomas and may contribute to 

aberrant activation of Wnt signaling in breast cancer. This evidence raises the possibility 

that hypermethylation of specific SOX family members could constitute common important 

epigenetic phenomena occurring at early stages of breast cancer development that deserves 

further study.
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Interestingly, in our dataset, HOXA5 hypermethylation was more frequently associated with 

the DCIS-C1 group, characterized by the presence of tumors with basal-like/ERBB2 

intrinsic subtypes (Fig. 5D). TP53 gene expression has been shown to be under the control 

of HOXA5 in breast cancer cells (53). Reduced HOXA5 protein levels correlate with the 

lack of p53 expression, supporting the concept that HOXA5 may act as a tumor suppressor 

via activation of p53 expression. HOXA5 has also been shown to be a strong positive 

regulator of PR (54). It is also important to note that 4 of 5 cases with TP53 non-

synonymous mutations were detected in ER/PR double negative tumors from the DCIS-C1 

group (T3, T7, T26, and T29). Overall, these data suggest that TP53 mutation and HOXA5 

hypermethylation could constitute early events during breast cancer progression that can 

cooperate to inactivate the TP53 pathway in more prone to progress DCIS lesions. In 

addition our pathway-based analysis indicated that TP53 pathway inactivation is an 

extremely common feature in practically all HG-DCIS lesions and HOXA5 methylation 

could be one of the more relevant causative mechanisms. CpGi methylation and expression 

analysis from the TCGA breast cancer dataset demonstrated that HOXA5 hypermethylation 

and downregulation can be also identified and is common in more advanced stages of breast 

cancer progression (Fig. 5E and F).

Concluding Remarks

Comprehensive characterization of pure HG-DCIS lesions at the genome, transcriptome, and 

methylome levels allowed us to identify the most relevant changes occurring at a 

preinvasive stage of breast cancer progression. A comparison of the mutation and 

chromosomal copy number alteration profiles identified in these pure in situ lesions with 

previous observations reported by the TCGA study on IBC, revealing expected similarities 

with IBC (e.g., PIK3CA, TP53, GATA3). However, it was striking to observe that practically 

all known major genomic abnormalities are already present at preinvasive stages at high 

frequency mutation rates and 83% of lesions displaying very large copy number 

chromosomal alterations. In only 10% of lesions we did not detect large chromosomal 

changes or mutations in so-called cancer driver genes. More importantly, at the 

transcriptional level, pathway-based analysis pointed to TP53 pathway inactivation as 

extremely common in DCIS regardless of tumor intrinsic subtype. We also observed that 

deregulation of genes associated with the suppression of the antitumor immune response are 

hallmarks of a HG-DCIS subgroup (highly proliferative basal-like or ERBB2+ tumors), 

displaying profiles very similar to those found at invasive and metastatic stages. In addition, 

we identified novel and relevant regulatory circuits significantly deregulated in DCIS that 

were not previously reported and that involve coding and noncoding transcripts (e.g., 

HOTAIR, HOTAIRM1). Our comprehensive catalogue of differentially expressed genes is 

also consistent with the existence of the most common breast cancer subtypes, but now we 

show that these important and complex epigenetic changes, such as hypermethylation of 

HOXA5 and specific SOX genes, are already operating at the in situ stage. Our findings 

clearly indicate that a subgroup of HG-DCIS lesions can be identified displaying more 

aggressive molecular profiles, more importantly however is that most, if not all, HG-DCIS 

lesions displayed profiles indistinguishable from IBC.
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Figure 1. 
Mutations and copy number alterations in DCIS samples. A, types of single-base 

substitutions and InDels identified by Exome-Seq analysis. B, driver and co-driver 

mutations in DCIS samples. Each column represents one DCIS case and each row represents 

the number of mutations in each gene per tumor. Blue squares, + mutation. Genes shown 

with an asterisk are rarely mutated in IBC (≤2%); however, they are noted as possible co-

drivers events, as they are found either in the SANGER Cancer Gene Census database or 

have significant potentially carcinogenic biological functions. C, comparative frequency of 
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mutations of driver/co-driver mutations in pure DCIS (red bars) and the TCGA database on 

IBC (blue bars). D, CNVs among DCIS samples. Chromosomal gains (red, up) and losses 

(green, down) as percentage of occurrence in the respective region are indicated.
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Figure 2. 
Transcriptome analysis of normal and DCIS samples. A, multidimensional scaling plot 

showing the distance of each sample from each other determined by their leading logFC. 

The leading logFC is a distance metric that represents the average (root mean square) of the 

largest absolute logFC between each pair of samples. B, prediction of DCIS intrinsic 

subtypes based on the PAM50 gene model based on RNA-Seq profiles. All normal samples 

(not included in the heatmap) were classified as the normal-like subtype. C, functional 

enrichment analysis of the differentially expressed genes between DCIS clusters. D, box and 

whisker plots display increased iTIL (left) and immune scores determined by the 

Abba et al. Page 18

Cancer Res. Author manuscript; available in PMC 2016 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ESTIMATE (30) algorithm (right) for the DCIS-C1 group compared with DCIS-C2 group 

and normal samples. E, heatmap of DCIS-C1 and DCIS-C2 differentially expressed 

transcripts among the IBC subtypes obtained from the TCGA breast cancer database.
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Figure 3. 
Pathway activities analysis in DCIS samples versus normal mammary epithelium. A, 

PARADIGM inferences of the most variable integrated pathway activities using the 

normalized gene expression profiles of the deregulated transcripts between normal and 

DCIS samples. B, TP53 pathway activity was found systematically deactivated in both 

DCIS groups compared with normal epithelium (P < 0.001). C, PARADIGM analysis 

identified increased activities of Treg cells (CD4+/CD25+/FOXP3+) and CTLA4+/CD86+ 

complexes in DCIS-C1 compared with DCIS-C2 samples (P < 0.01).
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Figure 4. 
Gene expression profile of deregulated lncRNAs. A, pie chart displaying the types of 

lncRNAs differentially expressed between normal and DCIS samples. B, heatmap of 

deregulated lncRNAs where black lines on the right indicate potentially relevant transcripts 

in IBC as was determined by Su and colleagues (38). C, box and whisker plots representing 

HOTAIR and HOTAIRM1 expression levels among normal and DCIS samples. D, 

transcriptomic coexpression analysis using HOTAIR and HOTAIRM1 as templates identified 

significant positive correlations with the expression of their neighboring HOXC (located at 

chr12q13.13) and HOXA (located at chr7q15.2) gene clusters, respectively (r > 0.7 and P < 

0.0001).
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Figure 5. 
Analysis of differentially methylated CpGi among normal and DCIS samples determined by 

RRBS. A, distribution of 1,103 differentially methylated CpGi regions between normal and 

DCIS samples mapping at distal (−4 kb to −2 kb relative to TSS), proximal promoter regions 

(−2 kb to +500 bp), or the gene body (+500 to +2 kb). B, functional enrichment analysis of 

differentially methylated CpGi regions. C, heatmap of CpGi hypermethylated and 

downregulated genes in DCIS samples. D, HOXA5 CpGi methylation profile in normal and 

DCIS groups in a promoter region spanning from −285 to 560 bp relative to TSS. HOXA5 

methylation (E) and expression profiles (F) among normal and IBC from the TCGA breast 

cancer dataset.
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