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Summary

A recent paper (Zhang et al., 2012) compares regression based and inverse probability based
methods of estimating an optimal treatment regime and shows for a small number of covariates
that inverse probability weighted methods are more robust to model misspecification than
regression methods. We demonstrate that using models that fit the data better reduces the concern
about non-robustness for the regression methods. We extend the simulation study of Zhang et al
(2012), also considering the situation of a larger number of covariates, and show that
incorporating random forests into both regression and inverse probability weighted based methods
improves their properties.
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1. Introduction

In an excellent article (Zhang et al., 2012), on estimating an optimal treatment regime, the
authors consider the following situation: n subjects in a study, who are either in the
treatment (A = 1) or the control (A = 0) group. Each subject has p baseline covariates X =
(X1, ..., Xp) and higher values of the continuous outcome measure (Y) are better. A treatment
regime g(X) is a function from X to {0, 1}, such that patients should receive A = 1 if g(X) =

1and A =0if g(X) = 0. The value of g(X) is determined by whether ’70+Z::177JX1' is
positive or not. The goal is to find the optimal treatment regime. Both a randomized trial and
an observational study setting were considered. The authors develop and compare different
approaches. One is a regression approach (RG), which requires a model for u(A, X) = E(Y|A,
X). Other approaches are based on inverse probability weighted estimators (IPWE). The
standard IPWE does not require a model for p(A, X), but does requires a model for P(A = 1|
X). The authors extend the IPWE to an Augmented Inverse Probability Weighted estimator
(AIPWE), which requires models for both p(A, X) and P (A = 1|X). The AIPWE results is a
gain in efficiency relative to IPWE and has a double robustness property. In a simulation
study, the RG method was the best if the model for p(A, X) was correctly specified, but was
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not robust to misspecification of p(A, X). With correct specification of p(A, X), the AIPWE
method was not quite as efficient as RG.

For the misspecified model for (A, X), residual plots would immediately recognize the
model as providing a poor fit to the data. In this paper we examine the relative merits of RG,
IPWE and AIPWE when one uses a model for p(A, X) which better fits the data.

2. Review Of Methods

Let Y(g) be the response for a patient who follows regime g. For a randomly chosen patient
from a population the expected response if regime g(X) is followed is given by E(Y(g)) =
Ex[u(1, X)g(X)+u(0, X){1—g(X)}]. The optimal treatment regime is g°P{(X) = I{u(1, X) >
H(0, X)}. Let g denote an estimated regime that is derived from a dataset.

Denote by Q(g) the average value of the expected response for subjects in a future
population of very large size N if regime g were to be used, where Q(g) is given by

N
Q)= 201 X9 (X +u0, X){1 = (XN

Larger values of Q(g) are better. Thus, when u(A, X) is known, the success of different
methods for estimating g can be based on Q(g) and also compared to Q(g°PY).

2.1 Regression Method
The RG method is to posit a parametric regression model for p(A, X) = u(A, X; B), estimate g

from the data, then 975 (X)=I {H (1, X;ﬁ) > <0, X;ﬂ)} Below we will also consider
alternative nonparametric regression models for p(A, X).

2.2 Inverse Probability Weighted Estimators

For the IPWE method, a parametric form for g(X) = g(X; ) is specified. For fixed #, define
Cyi = Aig(Xi; m) + (1-A{1-9(X;; m} and 7(X) = P (A = 1|X). Then the expected

population average outcome is EZZ;leYi/ﬂC (X;) which is maximized over nto give

Gt (X)) =g (X30) where rr, (X;) =m(X;)* {1 — = (X;)}*~* For a randomized study the

9ipw
propensity score #(X) is estimated by the sample proportion assigned to treatment 1, which

will be close to 0.5. For a non-randomized study logistic regression is used to estimate 7(X).

For the AIPWE method, #is obtained by maximizing

_I GiYi Gy e (X) A

over 77, where m(X; 5, ) = W(1.X; AHY(X; ) + u(0,X; AH{1-9(X; 7}

The Zhang et al (2012) also considered the consistency properties and calculation of
standard errors for 5 we will not consider these in the current paper.
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3. Simulation Study
In the simulation study in Zhang et al (2012), in Table 8 of the Supplementary Materials,
data were generated from a true model Y; = p(A;,X;) + €j, where e;~N(0, 1) and

14, X) =exp {2.0 - 15X — 15XF+3.0X1 Xo+A (—0.1 — X1+X5+0.2X;) |

3

where Xj; and Xj, were U(—1.5,1.5) and X;3 and A; were Bern(0.5). For this model g°P{(X) =
1(—0.1-X1+X»+0.2X3>0). They considered two parametric regression models for p(A, X), a
correctly specified model of the form

i (A, X;B8) =exp {ﬁ0+ﬁ1X12+/32X22+/33X1X2+A (ﬁ4+ﬁ5X1+56X2+ﬂ7X3)} @)

and a misspecified simple linear model of the form
Hmst (A, X38) =Bo+01 X1 +82 X0+ 03 X3+ A (Bu+0: X1+06 Xo+57X3) . (9)

From standard residual plots it is obvious that the misspecified model gives a very bad fit to
the data, and wouldn’t be seriously entertained, particularly for the RG method. Inspection
of the data suggests that some transformation of the response Y may lead to an improved fit.
Although log(Y) might appear to be a natural choice, it is not possible because a small
fraction of the Y’s are negative, thus we choose Y3 as an approximation. Thus the question
is, if one used a better fitting model for Y in both the RG and AIPWE methods would the
results improve? We consider two parametric models, as well as a non-parametric estimator.
The first misspecified parametric model recognizes the benefit of a transformation, and the
second also recognizes the need for quadratic terms and interactions. In these models we
develop predictions for Z = Y13, and then cube these predictions of Z to obtain predictions
of Y. The simple misspecified cube root model is given by

E(Z) =pims33 (A, X;;8) =00+ 51 X1+ 52 X2+ B3 X3+ A (Ba+05 X1+ 86 Xo+57X3) . (5)

and the misspecified complex cube root model is given by

2
Pmess (A, X5B) =pmsaz (4, X38) +Zﬁj+7X]2+/310X1 X Xo+P11 X1 X X3+ P12 Xo X X3, (6)
=1

Standard model assessment methods would recognize some lack of fit for pumc33 although it
is a noticeable improvement over pyg and Hiyeas:

In the other approach, we used random forests as a non-parametric estimator of p(A,X). and
denote the estimate by ; (A, X'). The RG method consists of maximizing

3[40, X0) g (Xam) +2(0,X0) {1~ 9 (Xem))] o)

i=1
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with respect to 7. While we present results for random forests, other non-parametric
estimators could be considered. To implement random forests, with Y/3 as the response, we
used the function randomforest in R, using default settings except that the number of trees
was 1000. Similar to previous work (Foster et al., 2011), we found that the performance of
random forests was improved by using 4, X, X7, X;.I (A=1)and X I(A=0) fork=1top
as input covariates. We note that random forests with Y2/3 as the response gave a very mild
improvement over random forests with Y as the response.

To fit the linear model in equations 4, 5 and 6, the R function Im was used. To fit the non-
linear model in equation 3, the R function nIsLM was used. To maximize the criteria in
equations 2 and 7, we used the R function genoud, as described in Zhang et al. (2012).

3.1 Results For Three Covariates

In our simulation study 1000 datasets, each of size 500 was generated. We report in table 1

two quantities: the average of the ratio @ (9) /@ (90pt) and the average fraction who would
be treated if, following each trial, 4 were to be used. For each of the 1000 datasets ( (g) and
Q(g°PY) were calculated from equation 1, with N=1,000,000.

The 2nd and 3rd columns show the results for three covariate, labeled as Case A, matching
the situation considered in (Zhang et al., 2012). For this setting Q(g =0) =3.02,Q(g=1) =
3.48, and Q(g°PY) = 3.95. The first two rows are for ideal, but not applicable in practice,
methods in which the structure of the true model for p(A,X) is known. Amongst these two,
RG; is slightly better than AIPWE;, achieving the desired values of 1 and 0.5 for the Ratio to
optimal and the Fraction treated respectively. Amongst the applicable methods, RGca3
generally improves on RGpg1 and RGps33, and RGy¢ is the much better than both. Amongst
the AIPWE methods they are all preferable to IPWE, with AIPWE,+ being the best.

Also of note is that the inverse probability methods tend to recommend treating closer to the
true 50% fraction of patients, than the regression methods. The regression methods tend to

include too many subjects in the region g (X)) =1.

In the 4th and 5th columns of the table we show results for Case B, a situation in which the
optimal regime is that 90% of the subjects should be treated. The data were generated from
the model

(A, X) =exp {2‘0 — 15X? — 1.5X3+43.0X; Xo+A (—0.1 — X1+X2+0.2X3)}, where
Xi1 was U(=1.5,1.5), Xjp was U(0.2,3), Xj3 was Bern(0.6) and A; was Bern(0.5). For this
setting Q(g = 0) = 1.66, Q(g = 1) = 2.51, and Q(g°P!) = 2.64.

We considered four parametric outcome regression models. The first one is p:(A, X; ), the
correct nonlinear regression model, as given in equation 3; the other three were the
misspecified models pmsi(A, X; A), Ums33(A, X; B and umcaz(AX; B), as given in equations
4,5 and 6. The results again show the benefit of using random forests to estimate u(A, X) in
both RG and AIPWE methods and that again RG; has similar performance as AIPWE;;.
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We also considered a case similar to case A, but in which the covariates were correlated.
The results were very similar to the uncorrrelated case and are not presented here.

In the 6th and 7th columns of the table we show results for Case C, a situation where the
optimal g is not determined by a linear combination of the covariates. The data were
generated from the model

(A, X) =exp {2.0 —1.5X2 — 1.5X243.0X; Xo+A(—0.1 — X1+X2+0.2X3+0.5X1X3)}
where X;; and X, were U(—1.5,1.5), X;3 and A; were Bernoulli(0.5). For this setting Q(g =

0) =3.02, Q(g = 1) = 3.49, and Q(g°PY) = 3.99. The optimal g(X) is I(—0.1 — X + X, + 0.2X3
+0.5X1X3 > 0).

We considered four parametric outcome regression models. The first one is p:(A,X; f)

e (A, X38) =ewp { Bo+01 X7+05 X3+ B3 X1 Xo+-A (8105 X1+ Xo+Br Xa+0s X1 X3) }

corresponding to the correct nonlinear regression model; the other three were Ungi(AX; A
and Pms33(AX; B), and Pmess(A,X; ) as given in 4, 5 and 6.

The results are similar to those for Case A, with for the RG methods a mild improvement by
using the complex parametric model and substantial improvement by using random forests.
The results again show the benefit of using random forests to estimate p(A, X) in the AIPWE
methods. The fact that the optimal g is not within the class of models being estimated does
not seem to have negatively impacted the performance of the methods.

3.2 Results For Fifteen Covariates

The above results are for a small number of three covariates. With a larger number of
covariates, the task of building models for u(A,X) is more challenging. Fitting parametric
models with many quadratic terms and interactions is not feasible, or would require variable
selection. The ability of non-parametric regression methods, such as random forests, to give
reliable predictions decreases with increasing p. The performance of the AIPWE methods is
also likely to deteriorate with larger p, because the maximization in equation 2 will give
poorer estimates of 7. To investigate this, we considered a situation of 15 covariates, where
the true model for p(A, X) was

1(A, X) =exp {2.0 - 15X] — 1.5XF+3.0X1 Xo+A (<0.1 = X1+X5+0.2X5) |,

with corresponding g°PY{(X) = I(X, > X;—0.2X3+0.1), and where X1 and X, ~ U(=1.5, 1.5),
X3~ Bern(0.5), X4, Xs, X7, Xg, X10, X11, X13, X14 ~ U(—1.5,1.5) and X6, Xg, X12, X15 ~
Bern(0.5). For this setting Q(g = 0) = 3.02, Q(g = 1) = 3.48, and Q(g°P!) = 3.95. The linear
combination that determines the estimated g could include 15 variables.

We considered three possible parametric outcome regression models. The first one was

pt (A, X58) =exp {50+ﬁ1X12 +B2 X5 +B3 X1 Xo+A (By+85 X1+ 86 Xo+ 57 X3) } which
corresponds to the correct nonlinear regression model; the second one is
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15 15
frmst (A, X35) :ﬁ0+2j:16jX7+A <ﬂ1‘3+2j:1*37'+16X-7>. The third one is PUms33(A X; B),

which is the same as g (A,X; B) except that the response is YL/3. Fitting pimcas(AX; B was
not feasible in this case. The RGs and AIPWE methods were also implemented.

The results for Case D, given in the 8th and 9th columns, differ from those of Case A. Here
the RG method with a simple misspecified linear model has properties as good as those from
AIPWE using this misspecified model and better than the IPWE method. Again we see that
both RG and AIPWE methods are improved by the use of random forests. The general
performance of all the methods, is clearly worse when there are more covariates.

3.3 Results For Non-randomized Trial Setting

For this situation the RG methods are unchanged, but the IPWE and AIPWE require
formulating and fitting an additional model for P (A=1|X).

In the first simulation scenario presented by Zhang et al (2012), they generated data from a
true model of the form Y; = p(A;, Xj) + &, where g ~ N(0, 1) and

1A, X) =exp {2.0 - 15X} — 15XF+3.0X1 Xo+A (<0.1 - X1+X5)} (9)
where X1 and X, were independent U(—1.5, 1.5). The treatment group indicator A; was
determined by the model logit { P (A=1|X)} = — 0.1 + 0.8X{+0.8X3.

For model (9) g°P{(X) = I(—0.1 — Xq + X, > 0), and E{Y(g°PH} = 3.71. Two regression
models for (A, X) were considered, a correctly specified model of the form

11 (A, X38) =ewp { Bo+01 X+B> X3+ X1 Xo+A (Ba+05 X1+ 06 X2) |

and a misspecified simple linear model of the form

tmst (A, X58) =Bo+1 X1 +52Xo+A (83401 X1 +05 X3) .

The misspecified model pmg33 is E(Z) = g + SiX1 + X + A(B + X1 + 5X5) and
misspecified model mcas IS

2
E(Z) =Po+61 X1+ P2 Xo+A (B3 451 X1+85Xa) +) By s X7+0sX1 X Xo

j=1
where Z = Y1/3. Method rf applies the random forest approach. The input covariates used
were A, X, X2, X;.I (A=1)and X¢I(A = 0) for k = 1to 2, and the response variable is Z.

The propensity score model for P(A=1|X), required for IPWE and AIPWE, is either correctly
specified as logit { P (A=1]| X))} =7o+71X}+72X3 or incorrectly specified as logit {P(A =
1X)}=10 + X1 + r2Xe.
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The results show that the use of random forests in the RG methods is as good as any other
method, and that poorly fitting parametric models for both RG and for AIPWE when the
propensity score model is incorrect can lead to regimes with noticeably worse properties.

4. Discussion

The Zhang et al (2012) paper illustrates that regression methods may not be robust to model
misspecification, and that AIPWE methods do have an appealing robustness property.
However, this robustness property shouldn’t be an excuse for not seeking reasonably fitting
models for the data. We demonstrate in a small simulation study, that modeling the response
for the regression method with a better fitting parametric model leads to some improvement,
while using a readily available non-parametric method removes concerns about non-
robustness of the regression method. Furthermore, the properties of both regression and
augmented inverse probability weighted methods are improved by using the non-parametric
method for the response compared to parametric models, and are quite similar. Thus the
extra modeling needed for the AIPWE is not doing any harm, but also may not be necessary.
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Table 2

Simulation results, nonrandomized studies. Ratio to optimal is @ (9) /@ (QOpt). Fraction Treated denotes the
fraction that would be treated in a future population if regime g was followed. Two independent covariates.
Optimal fraction treated = 0.5. The subscripts denote the model that was used for estimating (A, X), t=true,
msl=misspecified simple linear, ms33=misspecified simple with Y1/3, mc33=misspecified complex with Y 1/3,
rf=random forest

Method Ratiotooptimal  Fraction treated
RG, 1.000 0.47
RGs) 0.878 0.25
RGmsas 0.861 0.18
RGlmess 0.936 0.50
RGy 0.994 0.49

Propensity score model correct

IPWE 0.979 0.47
AIPWE, 0.998 0.47
AIPWE(pg 0.988 0.47
AIPWE ez 0.984 0.47
AIPWE a3 0.991 0.46
AIPWE( 0.995 0.47

Propensity score model incorrect

IPWE 0.921 0.33
AIPWE, 0.998 047
AIPWE 0.961 0.39
AIPWE} g3 0.934 0.35
AIPWE 33 0.982 0.42
AIPWE 0.995 047
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