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Facultad de Medicina, Universidad de Antioquia, Medellı́n, Colombia
6Department of Medical Genetics, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
7Department of Neurorestoration, Wolfson CARD, Hodgkin Building, Guy’s Campus, King’s College London, London SE1 1UL, UK
8World Class University Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Korea
9These authors contributed equally to this work
*Correspondence: j.wood@ucl.ac.uk (J.N.W.), a.ruizlin@ucl.ac.uk (A.R.-L.)

DOI 10.1016/j.neuron.2010.04.030
SUMMARY

Human monogenic pain syndromes have provided
important insights into the molecular mechanisms
that underlie normal and pathological pain states.
We describe an autosomal-dominant familial
episodic pain syndrome characterized by episodes
of debilitating upper body pain, triggered by fasting
and physical stress. Linkage and haplotype analysis
mapped this phenotype to a 25 cM region on chro-
mosome 8q12–8q13. Candidate gene sequencing
identified a point mutation (N855S) in the S4 trans-
membrane segment of TRPA1, a key sensor for envi-
ronmental irritants. The mutant channel showed
a normal pharmacological profile but altered
biophysical properties, with a 5-fold increase in
inward current on activation at normal resting poten-
tials. Quantitative sensory testing demonstrated
normal baseline sensory thresholds but an enhanced
secondary hyperalgesia to punctate stimuli on treat-
ment with mustard oil. TRPA1 antagonists inhibit the
mutant channel, promising a useful therapy for this
disorder. Our findings provide evidence that varia-
tion in the TRPA1 gene can alter pain perception in
humans.

INTRODUCTION

Inherited human neurological disorders caused by mutations in

ion channels encompass a diverse range of conditions including

pathological pain states (Indo, 2001; Yang et al., 2004;

Einarsdottir et al., 2004; Cox et al., 2006; Fertleman et al.,
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2006; Foulkes and Wood, 2008). Voltage-gated Na+ and Ca2+

channelopathies account for many cases of familial hemiplegic

migraine and epilepsy, while K+ channel mutations have been

associated with epilepsy, peripheral nerve hyperexcitability,

and ataxia (Kullmann and Hanna, 2002). Dominant gain-of-func-

tion mutations of the peripheral nervous system sodium channel

NaV1.7 have been linked to the painful disorders paroxysmal

extreme pain disorder and erythermalgia (Yang et al., 2004; Fer-

tleman et al., 2006; Dib-Hajj et al., 2007). Loss of functional

NaV1.7 channel activity leads to congenital insensitivity to pain

(Cox et al., 2006).

Transient receptor potential (TRP) channels are cation chan-

nels that are implicated in all aspects of sensation, including

vision, olfaction, mechanosensation, thermosensation, and

damage sensing (Nilius, 2007). However, no human heritable

disorders of pain sensation have as yet been linked to mutations

in TRP channels, despite knockout mouse studies that suggest

a number of TRPs play an important role in pain pathways (Cregg

et al., 2010). Mutations in TRPV4 (which is activated by innoc-

uous heat and hypotonicity and is a putative mechanosensor)

do not alter pain responses, but underlie two different neurode-

generative diseases, scapuloperoneal spinal muscular atrophy

and Charcot-Marie-Tooth disease type 2C (Auer-Grumbach

et al., 2010; Deng et al., 2010; Landoure et al., 2010) as well as

two forms of skeletal dysplasia (Rock et al., 2008; Krakow

et al., 2009). TRPA1 is expressed in primary afferent nociceptors

in rodents and man (Story et al., 2003; Anand et al., 2008) and

has been shown to play an important role in the response to envi-

ronmental irritants in mouse models (Kwan et al., 2006; Bautista

et al., 2006; McMahon and Wood, 2006). There is also strong

evidence that TRPA1 is gated by cold temperatures and debate

about whether the channel is mechanosensitive (Kwan et al.,

2006; Rugiero and Wood, 2009). Here we describe the identifica-

tion of a point mutation in the S4 domain of TRPA1 that underlies

an autosomal dominant Mendelian heritable episodic pain
June 10, 2010 ª2010 Elsevier Inc. 671Open access under CC BY license.
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syndrome identified in a family from Colombia, South America.

Episodes are triggered by conditions of fatigue, fasting, and cold

and result in severe pain localized principally to the upper body.

By comparing the biophysical properties of the expressed mutant

channel with wild-type (WT) TRPA1, we have been able to identify

a mechanism that is likely to underlie the painful episodes. To our

knowledge, this is the first example of a human pain-associated

TRP channelopathy and is likely to be followed by further genetic

insights into the role of TRP channels in pain pathways as pain-

related genome-wide association studies come to fruition.

RESULTS

Mapping the Familial Episodic Pain Syndrome Mutation
Individuals with FEPS present with episodes of debilitating upper

body pain starting in infancy that are usually triggered by fasting

or fatigue (illness, cold temperature, and physical exertion being

contributory factors). Triggers did not start attacks with 100%

reliability and often a combination of factors are needed; a typical

example would be swimming in cold water not having eaten for

a number of hours. These episodes have a typical duration of

�1.5 hr, starting with a prodromal phase (which can sometimes

be aborted, mainly by resting and eating), followed by intense

pain, and terminating in a period of exhaustion and deep sleep.

The period of intense pain is accompanied by breathing diffi-

culties, tachycardia, sweating, generalized pallor, peribuccal

cyanosis, and stiffness of the abdominal wall. Affected individ-

uals reported no altered pain sensitivity outside the episodes.

They had a normal neurological examination, including normal

sensitivity to light touch, pin prick, vibration sense, and joint posi-

tion sense. Other than the Colombian pedigree described here

we are not aware of any previous reports of this clinical

syndrome (see Supplemental Information for illustrative case

history and Tables S1–S4 summarizing clinical features, avail-

able online). A total of 21 affected family members in four gener-

ations were identified by pedigree extension, consistent with an

autosomal dominant mode of inheritance (individuals included in

the study are shown in Figure 1A).

We performed a genome-wide linkage scan with �550 micro-

satellite markers in 13 affected and 10 unaffected family

members (Figure 1A). Parametric linkage analysis produced

positive LOD scores across chromosome 8q12.1–8q24.1, with

a maximum two-point LOD score of 4.18 for marker D8S512

(at q = 0) and a multipoint LOD score of 4.42 between markers

D8S512 and D8S279 (at 8q12.3–8q13.3). Typing of additional

microsatellite markers in the region resulted in a maximum multi-

point LOD score of 5.36 at position 79 cM on chromosome 8q13

and haplotype analysis further narrowed down the candidate

region to an interval of �25 cM spanning chromosome 8q13.2–

8q22.2 (Figure 1). Candidate gene sequencing in affected indi-

viduals identified an A to G transition in exon 22, at position

2564 of the TRP channel member TRPA1 cDNA (c.A2564G;

Figure 2A). This change was observed in all affected individuals

but not in unaffected family members. Sequencing of 139 ethni-

cally matched unaffected controls failed to detect the c.A2564G

mutation in the general population. This mutation results in the

substitution of an asparagine by a serine (N855S) in the putative

transmembrane segment S4 of TRPA1 (Figure 2B). TRPA1,
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which contains N-terminal ankyrin repeats, is a homolog of the

NOMPC channel involved in hearing in Drosophila. However,

knockout mouse studies have demonstrated an important role

for TRPA1 in response to irritant chemicals, but not hearing

(Kwan et al., 2006; Bautista et al., 2006). Zebrafish TRPA1 is

also mechanically insensitive (Prober et al., 2008).

Psychophysical Studies of FEPS Patients
Skin biopsies were obtained from three subjects with the N855S

TRPA1 mutation and three unaffected relatives. Both the

morphology and density of intraepidermal nerve fibers (revealed

by immunostaining with the pan-neuronal marker PGP 9.5) were

normal (Figure S1). Quantitative sensory testing (QST) was per-

formed in nine individuals with FEPS and in eight unaffected rela-

tives. No significant difference was observed in tactile detection

threshold, vibration detection threshold, or cold, heat, or pres-

sure pain detection threshold in mutation carriers (Table S4).

Mustard oil (Allyl isothiocyanate) is known to activate TRPA1

and in humans it has been shown to produce ongoing pain,

a cutaneous flare response, and sensitization of the nociceptive

system (Koltzenburg et al., 1992; Jordt et al., 2004). No signifi-

cant difference was observed in the pain response [as assessed

by visual analog scale (VAS)] during application of 50% mustard

oil when comparing mutation carriers and non-carriers

(Figure 3B). There was a (non-significant) increase in the mean

flare area comparing FEPS patients versus control (SD in paren-

theses): 7.2 cm2 (±4.6) and 3.9 (±2.4), respectively (p = 0.1

unpaired t test; Figure 3C). Some (4/8) FEPS patients developed

very large flares (of over 8 cm2) at 10 min after mustard oil appli-

cation, whereas this reaction was not seen in the controls. Muta-

tion carriers also showed a significant increase in the area of

punctate hyperalgesia at 10 and 60 min after mustard oil applica-

tion (p < 0.05, unpaired t test; Figure 3D) and a (non-significant)

increase in the area of brush-evoked allodynia (Figure 3E). We

were not able to perform extensive dose-response studies using

mustard oil, however, as an initial trial (to assess tolerability) of

0.5% mustard oil was applied to the volar forearm and this did

not evoke a response in either FEPS patients or control.

Biophysical Studies of the FEPS-Associated TRPA1
Mutant Channel
Clones encoding the WT and N855S mutant human TRPA1

channel were expressed in HEK293 cells and characterized elec-

trophysiologically using the whole cell patch configuration (Story

et al., 2003). Calcium imaging studies used FURA-2-loaded

HEK293 cells and OpenLab software as described previously

(Abrahamsen et al., 2008). The half maximum effective concen-

tration (EC50) for cinnamaldehyde (CA), a ligand that covalently

modifies and activates TRPA1, was similar in both WT and

mutant channels and in the range of the reported value for

TRPA1—61 mM (Bandell et al., 2004) (Figures 4A and 4B). This

is consistent with the mutation being distant from the N-terminal

region, which has been implicated in CA binding (Hinman et al.,

2006; Macpherson et al., 2007). However, the current-voltage

relationship of the mutant channel revealed by ramp protocols

was dramatically altered by the N855S mutation. Current-

voltage plots in transfected cells in the absence of agonist

were identical with both WT and mutant channels (Figure S2A).



Figure 1. Genetic Mapping of the Mutant

Locus Underlying FEPS

(A) Pedigree segregating FEPS. Microsatellite

haplotypes spanning the linkage peak on chromo-

some 8q12.1–8q24.1 identified in the whole-

genome scan. The haplotypes shown were recon-

structed using markers from the whole-genome

scan and fine-mapping stages. The haplotype co-

segregating with the pain phenotype is shown in

red. The minimal critical region spans 25 cM and

is flanked by marker D8S1775 on the centromeric

end and marker D8S1762 on the telomeric end

(informative recombinants individuals being III:8

and II:5, respectively). Only individuals included

in the linkage analysis are shown (individuals

with an asterisk were unavailable for genotyping).

(B) Multipoint LOD scores obtained on chromo-

some 8 (including fine-mapping markers) and

location of the TRPA1 gene. Physical distance

(in Mb) is shown at the top and genetic distance

(in cM) at the bottom. The dotted lines indicate

the LOD score thresholds of 3 and �2 (i.e., signif-

icant evidence for or against linkage, respectively).

Neuron

A Gain-of-Function Mutation in Human TRPA1
On agonist activation, inward current at normal neuronal resting

potentials (�60 to �70 mV) showed that the mutant channel

carried considerably more current than the outwardly rectifying

WT channel (Figures 4C and 4D). While outward currents were

identical at +100 mV in WT and mutant channels, at �100 mV
Neuron 66, 671–6
the mutant channel carried 5.4-fold

more current (Figure 4C, WT: �100 mV =

�0.13 ± 0.02, +100 mV = 0.93 ± 0.04;

mutant: �100 mV = �0.68 ± 0.04, +100

mV = �0.95 ± 0.03). At normal neuronal

resting potentials, >4-fold increase in

current was observed (Figure 4D, WT:

�70 mV = �0.12 ± 0.02; mutant: �70

mV = �0.48 ± 0.02). Furthermore, no dif-

ference in current density was recorded

between WT and mutant channel [current

density (pA/pF) for WT at +100 mV =

0.09 ± 0.02 and mutant at +100 mV =

0.08 ± 0.02], thus ruling out possible

effects on trafficking of the channel. Both

WT and mutant channels were blocked by

the non-selective calcium channel blocker

ruthenium red (Figures 4A and 4C). The

increase in inward current was accompa-

nied by a leftward shift in the midpoint

(V1/2) of voltage activation curves derived

from tail currents from +58.0 ± 2.1 mV

in the WT channel to +1.7 ± 2.1 mV in

the mutant channel (Figures 4E–4G). No

change in voltage sensitivity was ob-

served between WT and mutant channels

(k = 52.3 ± 1.25 mV and 49.3 ± 1.56 mV

for WT and mutant, respectively). Never-

theless, the small shift of the activation
curves at negative potentials alone cannot account for the large

increase in current in the mutant channel. This suggests that

N855S mutation is also likely to affect the gating of TRPA1. In

nominally Ca2+-free external solution, the TRPA1 half-activation

voltages for WT and mutant channel were +83.3 ± 1.1 mV
80, June 10, 2010 ª2010 Elsevier Inc. 673



Figure 2. Identification of a Point Mutation Underlying FEPS

(A) Sequence chromatogram showing the TRPA1 mutation identified in the

FEPS family. The arrow indicates the location of the mutation. Below is a selec-

tion of mammalian TRPA1 sequences showing that the mutation site region is

evolutionarily conserved.

(B) Schematic representation of the TRPA1 channel. The substitution (S) iden-

tified in the FEPS family occurs in asparagine (N) 855 located in putative trans-

membrane segment S4.
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and +22.8 ± 1.0 mV, respectively (Figure S3). This shift in V1/2

between the WT and mutant channel was the same as in the

presence of Ca2+ (�60 mV), suggesting that external Ca2+ has

no role in the shift of activation curves between WT and mutant

channels. Nevertheless, in the absence of Ca2+ the slope of

the voltage-activation curve of the mutant channel was shallower

than the WT [k = 24.3 ± 1.8 mV and 42.2 ± 1.4 mV for WT and

mutant, respectively (p < 0.01); Figure S3]. This demonstrates

that the gating of the mutant channel is closely dependent on

external Ca2+. It is worth noting that current traces at positive

potentials always appear slower in the WT channel when

compared to the mutant channel. This is similar to what is

observed with heat-sensitized TRPV3 channels (Chung et al.,

2005) and constitutes another argument in favor of a change in

voltage dependence and gating of the channel by the N855S
674 Neuron 66, 671–680, June 10, 2010 ª2010 Elsevier Inc.
mutation. However, whether this has any physiological relevance

is unlikely.

The enhanced activity in the mutant channel was also

apparent when the ligand used was the endogenous mediator

4-hydroxynonenal (4-HNE; Figures 5A and 5B), as well as

mustard oil (Allyl isothiocyanate; Figure S2B) or menthol (Fig-

ure S4). Both WT and mutant channel types were blocked by

the selective antagonist HC-030031 (Figures 5A and 5B).

The mechanism of activation of TRPA1 by cold is a contentious

subject. Here we show that cooling activated both WT and

mutant channels with increased inward currents associated

with the N855S variant (Figure 5C). This is due to a leftward shift

of the activation curve with the mutant channel showing a greater

shift compared to the WT channel (V1/2 = +90.9 ± 1.3 mV and

+62.7 ± 1.6 mV at 25�C and 12�C, respectively, for WT and

V1/2 = +90.3 ± 1.1 mV and +4.0 ± 1.8 mV at 25�C and 12�C,

respectively, for the mutant channel; Figure 5D). This effect

was reversed upon application of the TRPA1-specific antagonist

HC-030031 (Figure S5). This shift in voltage dependence of

channel activation toward more negative potentials is similar to

what has been described for other temperature-sensitive TRP

channels (Voets et al., 2004). The increase in inward current in

the mutant channel is therefore independent of activation mech-

anism and is observed with all ligands tested as well as with cold

activation (Table S5).

DISCUSSION

The present study unambiguously identifies a gain-of-function

point mutation in TRPA1 (N855S) as the cause of the previously

undescribed human pain syndrome, which we have named

FEPS. This mutation is highly penetrant, giving rise to stereo-

typed episodes of severe pain affecting principally the upper

body triggered by cold and fasting; there is complete segrega-

tion of the mutation with the clinical syndrome. Biophysical

studies using heterologously expressed channels show that

the N855S mutation does not alter exogenous or endogenous

ligand binding, but does increase current flow through the acti-

vated channel at negative membrane potentials.

FEPS is likely to be rare as it has not previously been described

in the pain literature. A number of conditions such as Fabry’s

disease (Zarate and Hopkin, 2008) or familial amyloid neuropathy

(Wang et al., 2008), which result in injury to nociceptor axons

(small fiber neuropathies), are associated with neuropathic pain

in the extremities. In FEPS patients, however, the pain has a

proximal distribution, is episodic, and intraepidermal nerve fiber

density [a sensitive measure of small fiber neuropathy (Lauria

et al., 2005)] was normal. Therefore, in a manner analogous to

gain-of-function mutations in NaV1.7 (Yang et al., 2004; Fertle-

man et al., 2006; Drenth and Waxman, 2007), FEPS occurs as

a consequence of altered functional properties of nociceptive

afferents. In these patients we did not observe any changes in

baseline mechanical or thermal pain thresholds. However, there

was evidence of enhanced sensitization of the nociceptive

system following application of mustard oil (a TRPA1 agonist).

The greater flare response reflects increased neurogenic inflam-

mation and the increase in the area of punctate hyperalgesia

probably represents enhanced central sensitization due to



Figure 3. Increased Area of Punctate Hyperalgesia in Patients with FEPS after Topical Mustard Oil Application

(A) The area of flare, secondary hyperalgesia to punctate stimuli, and brush-evoked allodynia 10 min after mustard oil application in a patient with FEPS and

a family control.

(B–E) Comparison of pain assessed by VAS during topical mustard oil application (B) and the area of flare (C), punctate hyperalgesia (D), and brush-evoked al-

lodynia (E) at 10, 30, and 60 min after application in FEPS patients versus family controls. All assessments were performed in the same nine cases and eight family

controls, except in (C) where only eight cases where examined. The boxes span the 25th to 75th percentile with the median represented as a solid line and the

mean as a dotted line, the whiskers show the full range of the data. *p < 0.05, unpaired t test.
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increased nociceptor drive. The initial trigger for TRPA1 activa-

tion is unknown, but the contribution of tiredness, cold, and fast-

ing to the attacks, coupled with the preventive role of food and

warming, suggests that some metabolic dysfunction, for

example, lowered membrane potentials or increased intracel-

lular calcium levels, could contribute to the start of attacks

(Zhang and Lipton, 1999; Velasco et al., 2006).

The molecular basis of FEPS resides in the N855S mutation

present adjacent to a cysteine residue in the putative S4 domain

of TRPA1. Activation of TRPA1 by electrophilic compounds, such

as 4-HNE and mustard oil, has been shown to occur through

covalent modification of N-terminal cysteines (Macpherson

et al., 2007; Peterlin et al., 2007; Trevisani et al., 2007; Materazzi

et al., 2008; Taylor-Clark et al., 2009). In contrast, TRPA1 activa-

tion by non-electrophilic compounds such as menthol is deter-

mined through transmembrane domain 5 (Xiao et al., 2008). The

present studies suggest that agonist binding to the mutant

channel remains unaffected. However, the N855S mutant has
complex effects on channel behavior, mixing a shift of TRPA1

activation toward more negative voltages and a change in the

gating of TRPA1 through a Ca2+-dependent mechanism.

Previous studies have shown that the voltage dependence of

thermoTRPs is linked to the S4 segment (Voets et al., 2004,

2007). The present results demonstrate that the S4 transmem-

brane segment of TRPA1 contributes to agonist- and tempera-

ture-dependent channel activity. A similar mutation in the S4

segment of TRPM8 at an adjacent amino acid residue (856) also

resulted in a leftward shift in the voltage activation curve (Voets

et al., 2007). This suggests that temperature and ligand regulation

of voltage dependency among thermoTRPs may be conserved.

Our data also suggest that the S4 segment of TRPA1 is

involved in gating the channel via a Ca2+-dependent mechanism.

Internal Ca2+-dependent activation of TRPA1 was shown to

occur through an EF-hand domain in the N terminus of the

channel (Zurborg et al., 2007). Here we show that external

Ca2+ regulates the voltage sensitivity of TRPA1 through the S4
Neuron 66, 671–680, June 10, 2010 ª2010 Elsevier Inc. 675



Figure 4. Pharmacological and Biophysical Analysis of hTRPA1-WT and hTRPA1-N855S

(A) Intracellular calcium response to 250 mM, 100 mM, 50 mM, and 10 mM CA and to 100 mM CA in the presence of 3 mM ruthenium red (RR). Results for HEK293

cells expressing hTRPA1-WT are shown on the left and for hTRPA1-N855S on the right. Horizontal bars at the top indicate the time of CA application.

(B) Dose-response curve of CA-evoked calcium responses for hTRPA1-WT and hTRPA1-N855S. [Ca2+]I normalized to maximum calcium response to 250 mM CA.

Traces represent average [Ca2+]I from 20–30 cells. Data were fit to the Hill equation.

(C) HEK293 cells expressing hTRPA1-WT (left; n = 5) or hTRPA1-N855S (right; n = 6) show activation by CA (100 mM) and inhibition by ruthenium red (RR). Currents

were recorded at +100 mV and –100 mV and are normalized to current at +100 mV. Letters denote time point at which voltage ramps (shown in D) were acquired to

generate current-voltage relationships.

(D) Average current-voltage relationship of hTRPA1-WT and hTRPA1-N855S in the presence of 100 mM CA. Currents are normalized to +100 mV.

(E) Whole-cell current traces of HEK293 cells expressing hTRPA1-WT in response to the indicated voltage step protocol in the absence (left) and presence (right)

of 100 mM CA. Bottom panel shows higher resolution of normalized tail current in response to a step to�140, 0, and +140 mV. Dotted line shows zero current level.

(F) Same as (E) but in HEK293 cells expressing hTRPA1-N855S.

(G) Mean steady-state activation curves obtained from tail currents (IT) at�140 mV for hTRPA1-WT (n = 5) and hTRPA1-N855S (n = 6) in the presence of CA. The

midpoints of voltage activation (V1/2) for the WT and mutant channels are indicated at the top. Error bars in all plots represent SEM across individual cell measure-

ments.
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segment of the channel. This is the first demonstration of an effect

of Ca2+ mediated by the S4 segment of a TRP channel. A fasci-

nating aspect of TRPA1 activation lies in interspecies discrep-

ancies.Someelectrophilic thioaminal-containingcompoundsare

able to activate rat TRPA1 while others inhibit human TRPA1

(Chen et al., 2008). This difference is due to key amino acids sit-

uated in the S6 segment. A similar story applies to caffeine, which

was shown to activate mouse TRPA1 but to inhibit the human

channel (Nagatomo and Kubo, 2008), and menthol, which acti-

vates mammalian TRPA1, blocks nonmammalian TRPA1 (Xiao

et al., 2008), and exerts a bimodal action on murine TRPA1 (Kar-

ashima et al., 2009). Therefore, similar compounds are able to

exert opposite effects in different species and this suggests a

complex gating mechanism for TRPA1 in which amino acid sub-

stitutions at key positions determine agonist binding and gating.
676 Neuron 66, 671–680, June 10, 2010 ª2010 Elsevier Inc.
The N855S mutation induces a linearization of TRPA1’s current-

voltage relationship, as can be observed with heat-sensitized

TRPV3 channels (Chung et al., 2005). The similarities with sensi-

tized TRPV3 extend to the leftward shift of the voltage depen-

dence and weaker time-dependent current increase at depolariz-

ing potentials. In contrast, while mutant TRPA1 channels have the

same reversal potential as the WT, suggesting no change in ion

permeability, sensitized TRPV3 has an altered reversal potential,

reflecting a change in ion permeability (Chung et al., 2005). This

suggests that different mechanisms underlie the linearization of

voltage dependence in TRPA1 and TRPV3. This view is strength-

ened by the fact that removing external Ca2+ increases TRPV3

current amplitude, whereas it shifts activation curves of both

WT and N855S TRPA1 toward more depolarized potentials while

at the same time decreasing N855S TRPA1 voltage sensitivity.



Figure 5. Activation of hTRPA1-WT and

hTRPA1-N855S with an Endogenous

TRPA1 Ligand and Cold

(A) HEK293 cells expressing hTRPA1-WT (left;

n = 5) or hTRPA1-N855S (right; n = 7) show activa-

tion by 4-HNE and block HC-030031. Currents

were recorded at +100 mV and –100 mV and are

normalized to current at +100 mV. Letters denote

time point at which voltage ramps (shown in B)

were acquired to generate current-voltage rela-

tionships.

(B) Average current-voltage relationship of

hTRPA1-WT and hTRPA1-N855S in the presence

of 100 mM 4-HNE (as shown by letters a and c,

respectively, in A) and after perfusion of 100 mM

4-HNE + 10 mM HC-030031 (as shown by letters

b and d, respectively, in A). Currents are normal-

ized to +100 mV.

(C) Whole-cell current traces of HEK293 cells ex-

pressing hTRPA1-WT (top) or hTRPA1-N855S

(bottom) in response to the indicated voltage

step protocol applied at 25�C (left) and 12�C

(right). Dotted line shows zero current level.

(D) Mean steady-state activation curves obtained

from tail currents (IT) at �140 mV for hTRPA1-WT

(n = 5) and hTRPA1-N855S (n = 5) in response to

25�C and 12�C. Error bars in all plots represent

SEM across individual cell measurements.
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In this study we also provide further evidence that TRPA1 can

be gated by cold. Cold was first proposed not to be a direct acti-

vator of TRPA1 but rather a trigger for an increase in intracellular

[Ca2+] leading to downstream activation of TRPA1 (Zurborg

et al., 2007). This view has been recently challenged with the

demonstration that cold is able to activate TRPA1 in the absence

of Ca2+ both inside and outside the cell (Karashima et al., 2009).

Here we confirm that TRPA1 can be activated by cold and the

mutant channel shows a similar gain of function on cold applica-

tion to that observed with chemical ligands (Table S5). The

evidence of a role for TRPA1 in transducing cold pain is strong,

while a contribution to mechanosensation may be downstream
Neuron 66, 671–
of primary mechanotransducers (Kwan

et al., 2006, 2009; Bautista et al., 2006).

The enhanced currents seen with applica-

tion of cold temperatures in the mutant

channel are consistent with a possible

role for TRPA1 as a cold sensor, although

there is no doubt that cold sensors other

than TRPA1 are expressed by sensory

neurons (Munns et al., 2007; Kwan et al.,

2009; Karashima et al., 2009). Finally, the

demonstration that mutant channels are

sensitive to HC-030031 suggests that

specific TRPA1 antagonists may have a

useful therapeutic role in this pain syn-

drome (Eid et al., 2008).

Enhanced channel activity associated

with the N855S mutation is thus consis-

tent with the pain syndrome observed in
FEPS patients. Increased activity of the mutant channel when

activated by endogenous mediators provides a plausible mech-

anism that could explain the intense pain experienced by carriers

of the N855S mutation, while the localized effect may reflect high

levels of channel expression or the site of production of acti-

vating ligands. There is evidence that SNP variants in TRPA1

influence differential sensitivity to experimentally induced cold

pain in humans (Kim et al., 2006). Our results provide both

a mechanism and a therapeutic approach to treat the pain

episodes experienced in FEPS, which is the first pain-related

TRP channelopathy to be described in humans. It will be of great

interest to establish whether TRPA1 channel variants or
680, June 10, 2010 ª2010 Elsevier Inc. 677



Neuron

A Gain-of-Function Mutation in Human TRPA1
misregulation contribute to the risk and severity of chronic pain in

patient populations.

EXPERIMENTAL PROCEDURES

Study Subjects

The family studied was identified in Antioquia, in North-West Colombia

(Bedoya et al., 2006). Unaffected controls used for screening of the A2564G

mutation were also ascertained in Antioquia. This study was approved by

the ethics committee of the Universidad de Antioquia and was compliant

with the Declaration of Helsinki 2008. Written informed consent was given

by all study subjects.

Microsatellite Typing and Linkage Analysis

A whole-genome scan using 552 microsatellite markers with an average inter-

marker distance of 8 cM was performed in 13 affected and 10 unaffected

members of the FEPS family (Figure 1). Genotyping was carried out by

deCODE Genetics. Parametric linkage analysis was performed using

LINKAGE (Lathrop et al., 1984, 1986; Lathrop and Lalouel, 1984) (two-point)

and SimWalk2 (Sobel and Lange, 1996) (multipoint). Penetrances were set to

0.985 for both homozygous and heterozygous carriers. The phenocopy rate

was set to 0 and the disease allele frequency to 0.01%. Maximum likelihood

haplotype reconstruction was performed using SimWalk2. For fine-mapping,

an additional 15 microsatellite markers (D8S533, D8S1767, D8S1775,

D8S1792, D8S1117, D8S543, D8S1795, D8S1807, D8S1776, D8S275,

D8S1988, D8S1822, D8S276, D8S85, and D8S1122) were genotyped in all

23 individuals across the initial region of the linkage signal on chromosome

8q12.1–8q24.1 (Figure 1). Genotyping was carried out by PCR using fluores-

cence-labeled primers and standard reaction conditions followed by fragment

length analysis on an ABI3037xl Genetic Analyzer (Applied Biosystems). After

fine mapping, multipoint linkage and haplotype analyses were repeated as

described above.

Candidate Gene Sequencing

After fine mapping, haplotype analysis defined a candidate region delimited by

markers D8S1775 and D8S276 on chromosome 8q13.2–8q22.2. Genes within

this region were identified using the BioMart data mining tool (http://www.

biomart.org) on build 35.1 of the human genome sequence. Among the 287

genes in the region, the following candidate genes were chosen based on their

potential roles in excitability and pain signaling: proenkephalin (PENK), the

cation channel TRPA1, and potassium channel genes KCN B2 and KCN S2.

A further potassium channel gene, KCN V1, though outside the narrow candi-

date region, was located within the initial linkage peak on chromosome 8q23.2

and was therefore included in candidate gene sequencing.

Amplicons covering exons and intron/exon boundaries, as well as the

promoter regions (�1 kb upstream of the start of translation), were designed

using Primer3 (http://frodo.wi.mit.edu/; primer sequences are available upon

request), and all amplicons were sequenced bidirectionally in at least one

affected and one unaffected individual using standard dideoxy sequencing

on an ABI 3730xl Genetic Analyzer (Applied Biosystems). Exon 22 of the

TRPA1 gene was sequenced in a similar manner in 13 affected and 9 unaf-

fected members of the Antioquian family (to check for cosegregation of the

A2565G mutation with the phenotype) and in 139 Antioquian population

controls.

Biophysical Studies of TRPA1

A full-length coding sequence of TRPA1 was amplified from IMAGE clone

100015422 (BC148423; Geneservice) using the forward primer (50-CCCCA

AGCTTTCCGGGGTGGGGTCAATGAAGCGCAGCCTGAGGAAGAT) and the

reverse primer (50-CCGCTCGAGCGGATTAGAAGCCTCACTGAAGGTCTGAG

GAGCTAAGGCTCAAGATGGTGTGTTTTTG). This 3426 bp PCR product was

then digested with HINDIII and XhoI and ligated into clone pcDNA3JCPOLRED

to give the final clone TRPA1RED. The final clone (TRPA1RED) was sequenced

entirely and corresponds to TRPA1 RefSeq sequence NM_007332. The clone

TRPA1RED was used as a template to generate the c.A2564G mutation using

the QuikChange XL Site-Directed Mutagenesis Kit (Stratagene) according to
678 Neuron 66, 671–680, June 10, 2010 ª2010 Elsevier Inc.
the manufacturer’s instructions. This clone was sequenced entirely by stan-

dard methods.

HEK293 cells were transfected with cDNA clones using Lipofectamine 2000.

Intracellular free calcium was measured using dual excitation of the calcium-

sensitive fluorescence probe Fura-2 (Molecular Probes). Patch clamp electro-

physiological recordings were performed using an Axopatch 200B patch-

clamp amplifier (Molecular Devices). Full details of transfection, calcium

imaging, and recording protocols are to be found in Supplemental Information.

Quantitative Sensory Testing

QST was performed on nine patients with FEPS as well as in eight unaffected

siblings who did not carry the mutation and who were matched as far as

possible for age and sex. None of the subjects had comorbid medical condi-

tions (such as diabetes), which could impair sensory function, were taking

medication, or were experiencing ongoing pain at the time QST was per-

formed. The experimenter was blind to the subjects’ genotype. Vibration

detection threshold was measured using a 128 Hz Rydel-Seiffer tuning fork

placed on the distal phalanx of the index finger. Three readings were taken

and the mean was calculated. The mechanical detection threshold was deter-

mined using von Frey hairs (0.06 to 644 mN). Five threshold determinations

were determined using the ‘‘method of limits’’ with ascending and descending

stimulus intensities and the final threshold was the geometric mean of these

five series. Pressure pain threshold was determined over the ulnar eminence

using a pressure gauge (FDN100; Wagner instruments USA; probe area of

1 cm2 up to 1000 kPa). Thermal thresholds were determined on the volar fore-

arm using a 16 316 mm probe held at an adaption temperature of 32�C con-

nected to a servo-controlled Peltier device (TSA-II; Medoc). Thresholds were

obtained with a ramp stimulus (1�C/S) that terminated when the subject

pressed a button at which point probe temperature rapidly returned to the

adaption temperature of 32�C. The mean of three readings was taken. Cold

pressor pain threshold was determined by measuring the latency to the first

pain sensation after immersion of the hand up to the level of the wrist in ice

water kept at 4�C. This was repeated three times with at least 2 min between

each test (Martikainen et al., 2004).

Mustard Oil-Evoked Sensitization

200 ml of 50% mustard oil (Allyl isothiocyanate; Fluka; v/v in olive oil) was

applied to a 0.64 cm2 region of the volar forearm for 10 min. During this period

pain scores were recorded using electronic VAS. An acetate template was

used to mark dots at 1 cm increments along eight spokes radiating out from

the area of mustard oil application. 10, 30, and 60 min after mustard oil appli-

cation, sensory testing was performed starting at the outermost spoke to act

as reference and moving toward the area of mustard oil application. Punctate

hyperalgesia was determined using a 100 mN filament (Bailey Instruments)

applied once and brush evoked allodynia using a No. 2 sable paintbrush (Just-

brushes) applying four strokes of 1 cm perpendicularly to the spoke at each

point. The area of flare, punctate hyperalgesia, and brush-evoked allodynia

was determined as per Norbury et al. (2007). The primary area of mustard oil

application was subtracted from these figures to determine the area of

secondary change for brush-evoked allodynia and punctate hyperalgesia.

Determination of Intraepidermal Nerve Fiber Density

3 mm punch skin biopsies were taken from the upper arm, a commonly

affected region during pain. Skin was immersion fixed in 4% paraformalde-

hyde overnight and then transferred to 20% sucrose in 0.1 M phosphate buffer

for 24 hr. 50 mm free floating sections were cut and immunostained using an

antibody directed against the pan-neuronal marker PGP 9.5 (1:1000 ultra-

clone), and intraepidermal nerve fiber density was calculated as per Lauria

et al. (2005).
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