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PATH rapidly computes a path and a transition state between crystal structures by

minimizing the Onsager-Machlup action. It requires input parameters whose range

of values can generate different transition-state structures that cannot be uniquely

compared with those generated by other methods. We outline modifications to

estimate these input parameters to circumvent these difficulties and validate the

PATH transition states by showing consistency between transition-states derived

by different algorithms for unrelated protein systems. Although functional protein

conformational change trajectories are to a degree stochastic, they nonetheless pass

through a well-defined transition state whose detailed structural properties can

rapidly be identified using PATH. VC 2016 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4941599]

INTRODUCTION

Computational treatments of protein conformational changes tend to focus on the trajectories

themselves, despite the fact that it is the transition state structures that contain information about

the barriers that impose multi-state behavior. Enzymatic reactions often take place in multiple

steps. Slower, protein conformational changes can be rate-limiting even if the catalyzed chemical

reaction is rapid.39 Such conformational transitions act as molecular timers to help regulate am-

plitude and duration of cellular processes.28 High-energy configurations, or conformational tran-

sition states, therefore impose discrete multi-state behavior on proteins,21 significantly enhancing

function by creating the capacity for a protein to transmit time and ligand-dependent information

and/or mechanical motion necessary for signaling and other free-energy transduction processes.

Structures of conformational transition states should therefore reveal valuable information about

the energy barriers that separate one equilibrium structure from another. Understanding confor-

mational transitions, however, requires characterizing the conformational transition states, an

approach that is akin to understanding chemical reactions by characterizing their chemical transi-

tion states.

The structural reaction profile of Geobacillus stearothermophilus tryptophanyl-tRNA syn-

thetase (TrpRS) involves three conformationally distinct states6 that impose rate-limiting con-

formational changes.40,41 Attempts to understand those rate-limiting conformations have led to

two studies in which we showed that the PATH algorithm18 suggested previously unsuspected

consistency with Molecular Dynamics (MD) simulations23 and steady-state kinetics measure-

ments of TrpRS catalysis41 and TrpRS structural reaction path. The present work was therefore

undertaken in order to validate those conclusions, and in particular to assess the generality with

which PATH identifies appropriate conformational transition-state structures. We begin by

describing several of the algorithms now in use to simulate trajectories for conformational

changes—as distinct from protein folding reactions. Then, we outline the PATH algorithm with
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particular emphasis on the conceptual difficulties it poses and an approach that circumvents

most of these difficulties, enhancing its general utility. We conclude by describing three new

results that furnish complementary validation of the transition state structures identified by

PATH.

In summary:

• We confirm and amplify observations summarized by Pinski and Stuart33 that minimizing the

Onsager-Machlup (OM) functional requires optimized estimates of both the time taken for the

transition and the energy difference between initial and final states, and that as such paths can

involve non-physical features, they must be treated with caution, and hence validated by other

types of information, which here include comparing different algorithms and molecular

systems.
• These difficulties notwithstanding, distinct algorithms including PATH18 and ANMPathway8

produce quite similar transition-state structures to that generated using the temperature-

dependent string method,31 which can be considered a “gold standard.”
• The transition state structure obtained by modifying the PATH algorithm to eliminate non-

physical invariant portions of the trajectory coincides closely with the saddle point in the free

energy surface simulated using Discrete Molecular Dynamics (DMD).34,42

• Cooperative repacking of aromatic side-chains is a common feature of transition state structures

for domain rearrangements in three unrelated protein systems.

Computational characterization of complex protein configurational landscapes

Considerable effort has been devoted to identifying structural features of the highest energy

ensembles during protein folding.7,10,12,13,30,34,36 A general conclusion of that work is that mul-

tiple pathways can lead to the folded structures of many proteins, via an ensemble of related

structures. We focus here on a much more restricted ensemble that occurs during conforma-

tional changes between distinct stable, folded structures formed as the result of ligand binding

(i.e., allostery) and/or catalysis. The existence of such high-energy structures was suggested by

the observation that removing ligands from MD simulations of two, quite similar structures

representing the TrpRS Pre-transition state (Pre-TS) complex, caused them to relax rapidly, one

toward Products, the other toward the Open ground state.20,21

The transient lifetimes of conformational transition states prevent access by traditional

experimental approaches to their structures. Computational approaches, like MD simulations, do

allow these states to be probed. Though successful for small proteins, conformational changes

in large proteins occur on time scales that are several orders of magnitude larger and require

intensive computational resources.

Two algorithms, among others, can increase the efficiency of searching the complex config-

uration spaces of large proteins. Replica exchange sampling37 furnishes a comprehensive

mapping of the conformational free energy landscape.42 The string method15,31 furnishes an

analytical algorithm for mapping the most probable path through such landscapes.

The replica exchange algorithm efficiently searches the configuration space of proteins by

overcoming the sampling problem that affects single temperature simulations, which is that, at

low temperatures the structures do not have enough energy to overcome conformational barriers

and at high temperatures, the structures are unfolded and are far from the equilibrium states. In

replica exchange simulations, multiple replicas of the starting structure are simulated at different

temperatures and at defined time intervals, structures at different temperatures are exchanged. By

doing this, replica exchange simulations allow systems to explore structures at different tempera-

tures, thus sampling the conformational landscape, quickly and efficiently.

The string method computes a most probable trajectory through the conformational free

energy surface using intervals between nodes defined in terms of “collective variables” along

the path. It describes the transition pathway as the curve that connects successive metastable

states so as to maintain a tangential projection of the curvature of the collective variables with

respect to Cartesian space onto the free energy surface defined by the collective variables. This
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procedure can be seen as an application of the chain rule. Using collective variables reduces

the number of degrees of freedom over which MD simulations are required.

The progress between successive states is monitored in the String method with the help of a

reaction coordinate called the committor function, which is the fraction of molecules that com-

plete the trajectory from each node. The transition state along a trajectory between the two equi-

librium states is achieved when the committor function reaches a value of 0.5. The all-atom

Chemistry at HARvard Molecular Mechanics (CHARMM) potential and the analytical formula-

tion of the gradient mean that the string method can be considered to be the gold standard in the

field. In spite of the success of the string method, it is nevertheless resource intensive.

Many functional conformational changes are distinct from protein folding reactions in that

they entail primarily large amplitude motions that are independent of individual covalent bond

vibration. Often, these conformational changes are rigid-body motions that can be replicated by

the superposition of a few large amplitude normal modes. Numerous algorithms have been

introduced to exploit Elastic Network Models (ENM)2 in the computation of conformational

change trajectories,26,43 based either on minimizing the path integral of a free energy functional

corresponding to the action or “resistance” along the path26 or on incremental searches from

the initial and final states along the direction of a distance vector connecting the two states.43

The former approach has the appeal of producing a differentiable curve through the centers of a

smooth tube in pathspace containing the most probable paths.14,33 Another related algorithm is

ANMPathway,8 which uses an Anisotropic Network Model (ANM)1 to describe the potential

energy wells of the two equilibrium states. This method requires two types of energy minimiza-

tion steps that are performed, one within the cusp hypersurface at the transition state, and the

other in the energy wells of the two states.

Curiously, despite the relative importance of conformational transition states, few, if any of

the computational studies on conformational changes to date have focused on the transition

state structures. We argue that in many ways transition-state structures, not the exact path, may

be what are most important about conformational transitions. In this paper, we therefore investi-

gate further the possibility that these simplified potentials may furnish a sufficient basis set to

identify valid transition state structures for such motions. Thus, whereas most treatments focus

on the trajectories; we focus here on the transition states themselves because they contain infor-

mation about the barriers that impose multi-state behavior on proteins.

PATH rapidly computes the most likely path and transition state

PATH (formerly MinActionPath18) is an algorithm that rapidly computes conformational

transition states and the associated trajectories by minimizing the OM functional. The probabil-

ity of finding a stochastic system at a given position and time is given by the Fokker-Planck

equation. The OM functional is derived from the solution to the Fokker-Planck equation,29 such

that its minimization by a variational computation, implemented using the Euler-Lagrange equa-

tions, furnishes equations of motion describing the most probable path.

PATH defines the structures of equilibrium states using a linearized ANM potential. This

approximation of the complex potential energy landscape works because most protein confor-

mational changes are small displacements from the equilibrium states. PATH uses either all

atom or more limited ANM models to identify the transition state. Then, it computes paths to

and from that transition state using the OM equations of motion. It also computes the time to

the transition state, which is formally the reciprocal of a rate. The ratio of forward to reverse

rates potentially can be used to estimate the equilibrium constant, and hence the free energy

difference associated with the conformational change. This algorithmic difference means that

potentially useful kinetic and thermodynamic information might be obtained from PATH simu-

lations. We deal only tangentially with thermodynamic and kinetic aspects in this report, in

which we focus on structural characterization of transition states.

The main drawback with the current implementation of PATH18 is that several input pa-

rameters must be known before simulations can be set up. These input parameters include the

force constants for the ANM descriptions of, and the free energy difference between, the initial
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and final states, as well as the total time allowed for the transition. This dependence of the

PATH output transition-state structures on these input parameters limits comparisons with other

simulation methods and experiments. In this paper, we modify the PATH algorithm and outline

a method for choosing suitable values of these input parameters, thereby making PATH a more

effective simulation algorithm for studying protein conformational changes.

Minimum action pathways depend on input parameters

PATH models the two equilibrium structures, between which the path has to be computed,

as harmonic potential wells and the point of intersection of the two wells as the transition state.

The shapes of the harmonic wells are defined by force constants kl and kr for the left and the

right potential wells, respectively (Fig. 1).

The two structures are input crystal structures, a and b, and the force constants are calcu-

lated from the Hessian matrix as described in Appendix B. At the point of intersection, which

is the transition state �x, the two wells have the same energy U‡. If we consider the total time

taken to make the full transition to be tf, then the time taken to reach the transition state from

the initial state, �t, is a fraction of the total time and it uniquely identifies each minimum action

path at that tf.
From Fig. 1, it can be seen that if either force constant, kl or kr, the relative energy differ-

ence between the two wells, (DE), or tf are changed, then the minimum action path that the

system will take would be different. This means that for different values of DE and tf, and as

noted previously,33 there are different minimum action paths between the given equilibrium

states, each defined by a different �t. As previously mentioned, since �t uniquely identifies each

path, when plotted against different values of DE and tf, it gives rise to the surface that we call

the convergence surface (Fig. 2).

This surface represents all the possible minimum action trajectories between a given pair

of structures and it is different for different pairs of structures. The bi-sigmoidal functional

form of this surface is discussed in Appendix C. This surface also means that multiple, locally

minimum action paths are possible for the same pair of structures. Appropriate values of both

DE and tf must therefore be chosen to identify a single minimum action path and transition

state that is closest to what is observed in nature.

As mentioned earlier, the force constants are calculated from the Hessian matrix, which is built

using a scale constant that is obtained by fitting crystallographic B values to the mean-square

FIG. 1. The two states of the protein as represented by the two wells. The width of the well is given by the magnitude of

the force constant, larger the magnitude, narrower the well and vice versa. The difference in energy between the two min-

ima is given by DE. In the current representation, the abscissa is the euclidean distance between the two minima. But in a

different representation, the abscissa can also be the time axis with 0 at the first minimum and tf at the second minimum.

012101-4 Chandrasekaran et al. Struct. Dyn. 3, 012101 (2016)



fluctuations of atoms in the structure.2 Hence, their accuracy depends strongly on the resolution of

the X-ray data. This restriction appears to limit the application of PATH to high resolution crystal

structures. Alternately, force constants can, in principle, be determined iteratively by perturbative

methods. Parameter estimation can thus require tens of simulations, compromising on the relative

speed of PATH simulations. An alternate method to calculate the force constants must be used to

elevate the applicability of PATH to that of a general method for studying protein conformational

changes.

In the following, we describe these parameters in greater detail, in the context of PATH

computations and the convergence surface, and then outline a general strategy for estimating

appropriate values of these parameters.

THEORY OF PATH

A significant advantage of the string method31,38 is that it calculates the Minimum Free

Energy Path (MFEP) between two equilibrium states. The MFEP must be contrasted with the

Minimum Energy Path (MEP) that minimizes the Freidlin-Wentzell action,27 which is the low

temperature homolog of the Onsager-Machlup action. Thus, significant parallels emerge between

MEP trajectories that minimize the latter action (previously termed “resistance”3) and MFEP

that minimize the Onsager-Machlup action. The essential difference between the two approaches

is that entropic changes play no role at zero temperature. Pinski and Stuart33 showed that the

effects of temperature are of little significance, provided there was no energy difference between

initial and final states, but that significant energy differences between states introduced compara-

ble changes in the transition states obtained at different temperatures when minimizing the

Freidlin-Wentzell action functional. The relevance of free-energy differences between initial and

final conformational states emphasizes the value of minimizing the Onsager-Machlup action

functional as a useful approximation to the computationally intensive string method. PATH18

implements such an algorithm.

FIG. 2. From Fig. 1, it can be seen that the path must depend on both tf and DE. Since �t, at each value of tf, uniquely identifies

a path as a function of DE, it gives rise to the convergence surface shown in this figure. The surface was fitted to simulations

of the catalytic step of TrpRS (R2¼ 0.99). The surface shows a sigmoidal dependence of �t on both DE and tf. Since only posi-

tive values of tf are used in the simulations, only the lower half of the sigmoid is seen along the tf axis and it can be fitted

approximately to a rectangular hyperbola. This surface retains its shape for the diatomic system in one dimension.
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PATH simulates the dynamics of a protein molecule by computing the solution to the equation

of motion derived from the minimization of the Onsager-Machlup functional, using the Euler-

Lagrange equations [Appendix A]. For studying conformational changes between two different

equilibrium structures, PATH represents the two structures using a double well potential well (a lin-

earized ANM) and uses a separate equation of motion for the dynamics within each potential well.

In the case of a simple diatomic system in one dimension (Fig. 3), the Onsager-Machlup

equations of motion are written as

xl tð Þ ¼ aþ �x � að Þ sinh kltð Þ
sinh kl�tð Þ

� �
when t � �t;

�
(1)

xr tð Þ ¼ bþ b� �xð Þ
sinh kr t� tfð Þ

� �
sinh kr tf � �tð Þð Þ

 !
when t � �t;

(
(2)

where �t is the time taken to reach the transition state, tf is the total time for transition, �x is the

transition state, a and b are the initial and the final states, respectively, kl and kr are the force

constants for the initial and the final states, respectively.

For a smooth transition from one well to the other, the paths have to satisfy boundary con-

ditions based on position and velocity. We express these conditions mathematically in the fol-

lowing way:

xlðt! �tÞ ¼ xrð�t  tf Þ;
_xlðt! �tÞ ¼ _xrð�t  tf Þ:

(3)

Also xlð0Þ ¼ a; xrðtf Þ ¼ b and xð�tÞ ¼ �x, where xl and xr are the trajectories in the left and

right well, respectively.

For multiatom 3D system, the interactions between the atoms are more complex, and in the

case of a linearized ANM the interaction matrix is a hessian matrix [Appendix B]. Then, the

equations of motion can be written as

xl tð Þ ¼ V

t
�t

0

0
sinh ki

lt
� �

sinh ki
l
�t

� �
0
BBB@

1
CCCA�w

2
6664

3
7775þ a; (4)

xr tð Þ ¼ W

tf � t

tf � �t
0

0 �
sinh ki

r t� tfð Þ
� �

sinh ki
r tf � �tð Þ

� �

0
BBBBBB@

1
CCCCCCA

�/

2
6666664

3
7777775þ b; (5)

where �w ¼ VTð�x � aÞ; �/ ¼ WTð�x � bÞ. V and W are the eigenvectors of the Hessian matrices

of the initial and final wells, and ki
l and ki

r are their eigenvalues. The eigenvalues replace the

force constants in the trajectory equations because by diagonalizing the Hessian matrix, we

FIG. 3. The diatomic system can be represented by the ball and spring model. In the two states, the distance between the

two atoms is different, and also the strength of the spring (force constant) is also different. The diatomic system also affords

an analytical functional form for the bi-sigmoidal dependence of the convergence surface on DE and tf.
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generate 3N normal modes whose individual motion depends on the rate at which the structure

changes, which is given by the eigenvalues. The final trajectory is generated by a linear combi-

nation of the normal modes.

To solve for the transition state, we apply velocity continuity

V

1

�t
0

0
ki

lcosh ki
l
�t

� �
sinh ki

l
�t

� �

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
L

�w

2
66664

3
77775
¼ W

1

�t � tf
0

0
ki

rcosh ki
r

�t � tfð Þ
� �

sinh ki
r

�t � tfð Þ
� �

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R

�/

2
666664

3
777775
; (6)

which can be rewritten, to compute the transition state, as

�x ¼ VLVTa�WRWTb

VLVT �WRWT
: (7)

Once the transition state is identified, the difference in energy between the two equilibrium

states can then be evaluated as

DE ¼ �x � bð ÞTP �x � bð Þ
2

� �x � að ÞTQ �x � að Þ
2

; (8)

DE can also be defined as the energy difference between the transition state energies relative to

the two equilibrium states.

In Equations (6) and (7), the unknowns are �t and �t � tf , which can also be written as �tl and
�tr , such that �tl þ �tr ¼ tf . As noted earlier, estimating the input tf is crucial for generating a cor-

rect transition state using PATH. As the parameters DE and tf are related via the convergence

surface (Fig. 2), this also means that evaluation of tf is essential for the estimation of DE.

Simulations of several systems using PATH indicate that the structure of the transition

state becomes invariant as tf is large. In the case of the 1D diatomic system, we generated the

convergence surface and calculated the DE values for different �t and tf values. For a constant
�t
tf

of 0.5, we observed that at large values of tf the values of DE are invariant. This also

means that the structure of the transition state is a constant. This result implies that the value

of tf is immaterial as long as it is large but this assumption gives rise to another problem

with PATH parameters. At extremely large values of tf, we observe that the path spends most

of its time near the equilibrium structures and uses a fraction of the total time to change the

conformation of the protein. Also we observed that the system spent more time in the nar-

rower (more energetic) well than in the wider well. This behavior contradicts statistical

mechanics. But, at the same time, once the conformational change starts, the system takes

less time to climb up the potential well in the narrower well than in the wider well, which is

consistent with statistical mechanics.

The origin of these behaviors can be understood in the following way. As described in

more detail in Appendix A, converting the equations of motion from those defined by classical

action to those defined by OM action changes the fractional increment in position, x(t), from an

oscillatory motion to the hyperbolic sine function in (1). As a consequence, the system invaria-

bly spends most of its time at the origin (i.e., at x(t)¼ a) and commences its climb to the transi-

tion state after an inordinately long time. This problem of the system spending most of the time

in the initial state has previously been observed.17,19,33 As was true of the analytical gradient

provided in the string method, a solution to this problem can be obtained by transforming the

Lagrangian from the time-dependent Newtonian description to the dual, energy-dependent

Hamilton-Jacobi description.16 That elegant coordinate transformation affords a more complete

solution to the problem. It is possible that for complex dynamic processes like ab initio protein

folding, where important structural changes may occur at the level of bond vibration, neglecting

part of the trajectory may entail the loss of relevant information.
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For protein conformational changes, like domain motions that depend on large frequency

rigid-body motions, we describe multiple lines of evidence that no essential information is lost

by truncating the initial, invariant portion of the trajectory during which the structure does not

change. To resolve this problem, we realized that the system must be given just enough time

for the transition state to converge and no more. We therefore truncate the PATH trajectory by

beginning only when the system has moved away from a by at least 10% of the total distance

between the equilibrium state and the transition state. This is an arbitrary choice; using 1% of

the distance from a would change the resulting transition state almost imperceptibly.

An appropriate value of tf can be calculated for the 1D diatomic system in the following

way. Using (1), a general trajectory equation can be written as

x tð Þ ¼ aþ �x � að Þ sinh ktð Þ
sinh k�tð Þ

; (9)

when �t !1, (9) becomes

xðtÞ ¼ aþ ð�x � aÞe�kð�t�tÞ: (10)

As we are interested in the time at which the system has changed by at least 10%,

e�kð�t�tÞ ¼ 0:1; (11)

which gives

�t opt ) �t � t ¼ 2:302

k
: (12)

This equation directly computes �t for a 1D diatomic system but for multiatom systems in 3D,

there are multiple interatomic interactions, and hence multiple force constants associated with

the diagonalized Hessian matrix. Hence, we calculated the average force constant for a structure

which is the average of the trace of the Hessian

�k ¼ tr Hð Þ
3N

; (13)

where N is the number of atoms.

The new path algorithm avoids an iterative search

The MinActionPath algorithm18 calculates the structure of the transition state �x using the veloc-

ity continuity equation (6) by assuming a value of �t based on the given value of tf. Then, this �x is

validated by checking if it satisfies the energy equation (8) for a given value of DE. If �x does not

satisfy the energy equation, then a new value of �t is assumed and a new �x is identified. This pro-

cess is repeated until a value of �t is found for which �x satisfies the energy continuity requirement.

In the new algorithm, using (13), �topt is directly evaluated from the force constants. This
�topt is used to identify the transition state structure directly, without iteration, which speeds up

the PATH calculations by an order of magnitude, thereby simplifying, and substantially increas-

ing the speed of an already fast method. Using this modified algorithm to calculate �topt, we

calculated the transition state for three different systems and compared the structures with those

generated from other simulation methods.

RESULTS

First, we show that although PATH and two other computational approaches produce dif-

ferent low-energy structures connecting the ground-states with the transition state, all three
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methods agree closely on the configurations of their transition states. Second, we show that the

PATH transition states are close to the saddle points of free-energy surfaces connecting initial

and final states generated by replica-exchange Discrete Molecular Dynamics simulations.10,11,34

We show that aromatic side-chain rearrangements create similar potential energy barriers in the

transition-state structures identified by PATH for a signaling protein, a contractile protein, and

an enzyme.

PATH and ANMPathway trajectories agree most closely with string method trajectories

at their transition states

We compared trajectories from the simulations of the converter domain from myosin VI

performed using the string method,31 ANMPathway, and PATH. Since the reaction coordinates

of the three trajectories are different, it would be difficult to compare them at every instant. We

compare in Fig. 4 the structural similarity and energetic properties of the string transition state

as evaluated according to the linearized ANM force field used by PATH. For both comparisons,

subset of structures in the string trajectory that was structurally most similar to the PATH tran-

sition state (Fig. 4(a)) was the same subset for which the absolute potential energy difference

between those calculated with respect to the initial and final states, was closest to zero (Fig.

4(b)). In the context of PATH, the structure whose corresponding potential energy difference is

zero is, by definition, the transition state.

FIG. 4. The ANMPathway trajectory and the string trajectories were compared with the PATH trajectory. In (a), we calcu-

lated the RMSD between the transition state from the PATH trajectory and all the states along the ANMPathway trajectory.

States 28–31 are structurally similar to the PATH transition state. In (b), we calculated the potential energy (PE) of each

state in the ANMPathway trajectory with respect to the potential energy well of the initial and the final state and their abso-

lute difference was plotted. States 27–30 have the lowest potential energy difference, which coincides with the states in (a).

We performed a similar comparison between the string trajectory (G3c) and the PATH transition states in (c) and (d).

States 18–23 are structurally similar to PATH transition state, and the same states also have the lowest potential energy dif-

ference, implying their proximity to the same transition state.
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We performed a similar analysis with the myosin conformational change trajectory from

the ANMPathway method.8 We found that when the PATH transition state is compared with

the ANMPathway trajectory, the structures are the closest [root mean squared deviation

(RMSD) 0.52 Å] near the transition state of the ANMPathway trajectory [Fig. 4(c)].

Similarly, the same group of structures have the absolute potential energy difference closest to

zero [Fig. 4(d)].

Discrete molecular dynamics replica exchange simulations verify that transition states

identified by path are close to saddle points in the free energy surface connecting initial

and final states

The main reason we undertook to study conformational transition state structures was to

extend what previously had been established for the structural reaction profile of the B. stearo-
thermophilus tryptophanyl-tRNA synthetase (TrpRS; Kapustina et al.21). TrpRS passes through

three distinct structural states:

• an Open state that can be stabilized either by stoichiometric amounts of tryptophan or by sub-

stoichiometric amounts of Mg�ATP (adenosine triphosphate)
• a closed, Pre-TS, stabilized by stoichiometric amounts of Mg�ATP and a tryptophan

analog
• a closed, Product state (Pdt), stabilized either by the bound intermediate adenylate product,

tryptophanyl-50AMP, or by stable analogs thereof

As the ligands bind to the Open state, the protein undergoes an induced fit conformational

change and goes to the Pre-TS state. At the Pre-TS state, a subsequent catalytic step takes the

Pre-TS state to the Pdt state. Both induced-fit and catalysis are slow, relative to the chemical

transformation of the substrates; each is therefore associated with a different conformational

transition state. Preliminary analysis with the PATH program had given us descriptive accounts

of the two transitions.

• Induced-fit proceeds by an early and higher energy barrier that matches the behavior seen by

MD simulations of the TrpRS monomer23

• Catalysis proceeds by a later, lower barrier transition state in which the volume of the trypto-

phan binding pocket assumes a minimum value immediately after the conformational transition

state identified by PATH.41

The earlier MD calculations relating to the Induced-fit transition were short, 10 ns simu-

lations, and represented what appeared to be a slower conformational change. As MD simu-

lations led to a confirmation of the results PATH had given for the Induced-Fit transition,23

we decided to see whether similar, but more detailed simulations might allow a more strin-

gent test of results the PATH algorithm had given for the catalytic transition. As the cata-

lytic transition represents what is likely a more rapid conformational change with a lower

barrier, we carried out replica exchange calculations using DMD,10,11,34 with sufficiently

long equilibrations to appropriately sample the free energy surface connecting the Pre-TS

and Pdt states.

DMD simulations were set up with the same configuration of ligands that we had used for

PATH: AMP (adenosine monophosphate), Tryptophan, and Pyrophosphate. These ligands were

configured as before41 to allow an approximation to the actual chemical reaction displacing

pyrophosphate from ATP with tryptophan. From the resulting snapshots, we computed the inter-

nal coordinates used previously to describe the Induced-Fit transition (Twist and Hinge20).

Sufficiently many steps were computed to visualize the relative populations centered on the two

states. For each case, we identified representative structures for the two different distributions.

Free energy surfaces were then computed by fitting a bi-variate quadratic to the points between

the two equilibrium states. These representative structures reflect the stable, equilibrium struc-

tures of the two states in the DMD force field9,34 as obtained from the DMD simulations. They

were then input as initial and final states to PATH.
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These calculations produced two notable results:

• The apparent free energy difference between the Pre-TS and Product states depends strongly

on the presence of the bound product, pyrophosphate (PPi). If the PPi was retained in the bind-

ing pocket by a harmonic potential, the equilibrium was far on the side of the Pre-TS state

(Fig. 5(a)). On the other hand, if this potential (or constraints) mimicking PPi binding was

relaxed or omitted, we observe rapid PPi release and the distribution of states exhibits higher

probability towards product state (Fig. 5(b)). This behavior is especially interesting in view of

the possibility that early release of orthophosphate following actin binding triggers the myosin

V powerstroke.32

• Transition states for the transitions with and without the harmonic potential restraining the PPi

output by PATH fall close to the coordinates of the saddle points of the respective energy surfa-

ces (Figs. 5(c) and 5(d)).

FIG. 5. Free energy surfaces for the fully liganded TrpRS monomer derived from DMD replica exchange computations

and plotted as a function of the two conformational angles, Twist and Hinge, which represent collective variables for the

catalytic conformational change derived by Kapustina.20 The structures (2000 snapshots) generated at the lowest DMD

temperature (�175 K) were used in the analysis. (a) Distributions of the TrpRS Pre-transition state and Product derived

from simulations initiated from the Product state in the (harmonically restrained) presence of AMP, tryptophan, and pyro-

phosphate. (b) Distributions of these two states in similar simulations without pyrophosphate and without restraining poten-

tials. In (a) and (b), the dark blue circles represent the free energy minima of the less populated state fitted to a bivariate

quadratic response surface. Light blue circles represent free energy minima computed using the same approach for the

more highly populated states. (c) Free energy surface derived from (a). (d) A similar plot derived from (b). Blue spheres

represent the initial and final states input to PATH computations; red spheres represent the coordinates of the transition

states produced by PATH.
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Transition states identified by PATH display comparable rate-limiting structures in three

different systems

We began these studies to access structural information about the transient conformational tran-

sition state(s) that appear to be rate-limiting for TrpRS catalysis.21 In the course of the work, we

found it useful also to investigate PATH behaviors of other model systems, including the 1D sys-

tem described earlier here. Two well-defined protein conformational transitions–Ca2þrelease by the

Ca2þ-binding domain of calmodulin and the converter domain of myosin VI–also proved useful in

verifying the generality of aspects described in the Theory of PATH section. These studies reveal a

remarkable similarity in all three transition-states (Fig. 6). In each case, the rate-limiting conforma-

tional change involves re-packing of multiple aromatic side chains4,5,22 associated with subtle rear-

rangements of the surrounding backbone chains. Such rearrangements are known to occur on a far

slower timescale (ls to ms (Ref. 35)) than rotamer exchanges of aliphatic side chains in hydropho-

bic core regions. Further, the timings of the three transition states (middle, late, early) are consistent

with the overall equilibrium constant for the conformational change, via Hammond’s postulate.

CONCLUSIONS

We have reviewed a substantial literature on the methodology of computing trajectories

for conformational changes from what is essentially a hybrid between technical and lay per-

spectives, consistent with our own interest in the biochemical importance of conformational

transition states. In the process, we have de-mystified much previous work in what we hope are

useful ways. A remarkable aspect of that literature is that it has yet to describe either the struc-

tural details of the cooperative side chain behavior that comprise the barrier or the functional

implications of conformational transition states. To contribute usefully to that discussion, we

have here tried to address these two aspects of conformational trajectories.

PATH affords a rapid, accurate way to assess the structural features that limit the rate of

conformational changes. PATH computations can be performed in a manner that circumvents

the problem of defining the four required input parameters. In identifying the mathematical ori-

gin of the time-course anomalies and a workable algorithm for choosing appropriate tf values,

we have established a basis for more widespread use of the PATH algorithm. One important

potential benefit of the broader investigation into details of conformational transition states

would be to facilitate the identification of specific residues likely to be involved in allosteric

communication, as we have done with TrpRS,21,40,41 thereby enhancing the role of combinato-

rial mutagenesis to investigate higher-order coupling in protein functions.

We have provided persuasive evidence that minimization of the Onsager-Machlup action

with the PATH algorithm produces a transition state in good agreement with that provided by

the String Method and by ANMPathway. The most probable path is generally considered to

define a smooth curve through the center of a tube in pathspace.14 Opinions differ, however,

over the effective diameter of such a tube, and/or whether multiple tubes might pass through

FIG. 6. Conformational transition state structures for Calmodulin Ca2þ-binding domain (a), Myosin VI converter domain

rigor to Prepowerstroke (b), and the TrpRS induced-fit (c) transition states. Aromatic residues that flip at the transition state

are highlighted in red. The initial state is 50% transparent, to distinguish the states before and after the rate-limiting step.
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different transition states.26 We show here that three distinct algorithms based on different force

fields, using different sets of collective variables to define the pathspace identify quite similar

transition state structures. That observation suggests that functionally distinct domain configura-

tions in proteins are separated by well-defined structural barriers.

Further, transition states identified by PATH coincide closely with stationary points of free

energy surfaces derived using replica-exchange DMD simulations. That evidence validates the

use of PATH by a wider group of potential users interested in structural details of the coopera-

tive side chain rearrangements26 that limit conformational changes in proteins of interest.

Further, our demonstration that residues involved in limiting the TrpRS conformational changes

can be implicated in long-range coupling to the active site40,41 suggests that PATH may be

useful in identifying candidates for a broad range of combinatorial mutational analyses of enzy-

matic Fig. 6(c), signaling Fig. 6(a), and contractile Fig. 6(b) mechanisms.

The observation that quite similar side-chain configurations limit the conformational

changes of three quite distinct proteins points to a more general phenomenon in which nature

chooses to build multi-state behavior in similar ways. This conclusion has potentially deeper

significance because the transition states we have described are more or less independent of

whether side chains are included in the simulations. ANMPathway simulations are necessarily

performed with only Ca atoms, and we performed PATH simulations both with all-(heavy)atom

and Ca only coordinate files. The resulting transition states are almost indistinguishable

(RMSD¼ 0.25 Å for Ca atoms). We cannot account for this coincidental behavior except to

note that it suggests a higher-order coupling between side-chain and backbone behavior.7,24

That behavior is, however, reminiscent of our observation that combinatorial point mutation of

residues limiting the rate of domain movement during induced-fit in TrpRS show that those

residues are coupled to the catalytic activation of the active-site Mg2þ ion40 and to specific rec-

ognition of tryptophan41 by essentially the same free energies as those coupling the anticodon-

binding and the CP1 insertion domains to catalysis and recognition.25

MATERIALS AND METHODS

Structures

We use three TrpRS structures in our studies. These structures were derived from the crystal

structures of the three conformations of TrpRS, namely, Open (1MAW,1MB2), Pre-TS (1MAU)

and Pdt (1I6L). We excised the terminal aminoacid (R328) from the structures as it is not

observed in most of the crystal structures. We believe that its absence would not affect the con-

formational change of the rest of the protein. The ligands in the binding pockets are different for

the different states of TrpRS. To make the ligands consistent in all the three structures, we used

Tryptophan, AMP, PPi as separate molecules in the binding pocket; the distance between these

molecules changes, depending on the state and the chemical species that they represent. We

have previously used a similar arrangement23 and this allows approximating the chemical reac-

tion without requiring the use of quantum calculations. The myosin VI structures for the rigor

state and the prepowerstroke state were derived from 2BKH and 2V26, respectively. As

described in Ref. 31, only residues 703–788, which form the converter domain, were used in the

simulations. The equilibrium structures for calmodulin were derived from 1CMF and 1FW4.

Path simulations

To run PATH simulations, the number of atoms in the two equilibrium states and their

relative order in the two pdb files must be the same. Only the heavy atoms are used. The modi-

fied algorithm requires no input parameters other than the two equilibrium states, because the

force constants are assumed to be 0.01 for both states, and errors in this assumption are compen-

sated by the evaluation of �t for the forward and reverse reactions from Eq. (12). For purposes of

comparison, we note that the free energy surfaces (Fig. 5) from which we estimated the transi-

tion state structure using replica exchange DMD simulations took 104 times longer than the

PATH calculation. The new PATH algorithm is available from the author.
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ANMPathway simulations

The ANMPathway calculations8 were set up on the ANMPathway server. Default input

force constants¼ 0.1 were used for both the energy wells. All the other parameters were set to

their default values–Cutoff - 15 Å, Energy offset - 0, Step size (on cusp) - 0.8, Step size (slide

down) - 0.04 and Target RMSD - 0.1 Å.

DMD simulations

Replica Exchange Discrete Molecular Dynamics (REX/DMD) simulations were set up

with the Pdt state structure described previously. A harmonic potential was applied between the

atoms of the ligands and all the surrounding atoms within 3.5 Å to retain the ligands within

the binding pocket. In general, replica exchange simulations are used for efficient sampling of

the conformational landscape of a given system. However, we were only interested in monitor-

ing the transition between the Pdt and Pre-TS state. To facilitate the exploration of this particu-

lar transition event as well as to expedite the sampling, we introduced weak harmonic

constraints to guide the system progressing from Pdt to Pre-TS state. By comparing the native

contacts within the two systems (as obtained from their crystal structures), we extracted the

unique contacts that were present in the Pre-TS and not the Pdt state. Those contacts were used

as experimental constraints. The DMD force field is currently equipped to work only with Cu2þ

or Zn2þ. Since ATP is complexed with Mg2þin in the Pre-TS state, we replaced it with Zn2þ.

We believe that this replacement would not affect the conformational change of the protein in a

significant way. We simulated parallel replicas at 24 temperatures ranging from �175 K to

�405 K for a total duration of 2.5 million steps (�125 ns) as described in detail in Ref. 42. As

the system requires 500 000 steps to equilibrate, all our analyses were performed with the

remaining 2 million steps. Snapshots were generated every 1000 steps, hence all our analyses

(Fig. 5) include 2000 snapshots.

Fitting the free energy surfaces

Each of the 2000 snapshots from the lowest temperature replica exchange DMD simulation

was segregated in 225 bins of equal size, based on their Hinge and Twist angles. Based on the

distribution of structures within these bins, the free energy surface is computed using the

formula

DG ¼ �kBTln 100 � ni

N


 �� �
;

where ni is the number of structures in the ith bin and N is the total number of structures.

Then, these free energy values are fitted to the following equation to generate the free

energy surfaces in Fig. 5,

DG ¼Cþ Ae
� X�Tw1ð Þ2

2SigTw1
þ Y�H1ð Þ2

2SigH1
þ J X�Tw1ð Þ Y�H1ð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SigTw12þSigH12
p

� �
þ Be

� X�Tw2ð Þ2
2SigTw2

þ Y�H2ð Þ2
2SigH2

þ L X�Tw2ð Þ Y�H2ð Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SigTw22þSigH22
p

� �
þD X � Twtð Þ þ F X � Twtð Þ2 þ G Y � Htð Þ þ H Y � Htð Þ2;

where X and Y are the Twist and Hinge angles and the constants Tw1, H1, Tw2, and H2 are

the twist and hinge, respectively, of the Pdt and Pre-TS structures and Twt and Ht are coordi-

nates of the saddle point.
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APPENDIX A: EQUATIONS OF MOTION FOR THE MOST PROBABLE PATH

PATH is based on the ANM, in which the interatomic interactions are modeled on vibrating

springs. In general, such a system follows Newtonian mechanics and the path that the system takes

is the path of least action. In addition to that, PATH considers the dynamics of such a system to be

stochastic in nature and models the system to follow the Langevin equation of motion and replaces

the classical action with the OM action. In this section, we describe PATH and OM action by com-

paring them with the familiar classical spring system.

Classical action

Consider a 1D diatomic system following Newtonian dynamics in a single potential well. The

equation of motion can be derived by identifying the path that minimizes action. Since the path is

deterministic, the probability, p, of this path is always equal to 1. But to compute this path, it is

required to know the kinetic and potential energies of the system.

Potential energy can be calculated from the interaction between the two atoms. As mentioned

previously, the two atoms are considered to be connected by a Hookean spring, and the interaction

between the atoms is considered to be harmonic in nature. Hence, we write the potential energy as

V xð Þ ¼ k

2
x� að Þ2; (A1)

where a is the equilibrium distance between the two atoms, and x � a is the displacement from

the equilibrium position a.

Since the kinetic energy of the system is T ¼ 1
2

m _x2, we write the Lagrangian as

L ¼ T � V ¼ 1

2
m _x2 � k x� að Þ2
� �

: (A2)

Using (A2), we write the equation for classical action as

Scl ¼
ðt

0

L:dt ¼
ðt

0

1

2
m _x2 � k x� að Þ2
� �

dt: (A3)

Equation (A3) computes the action of any given path but we have to find the path of minimum

action. Since action is a functional, its extremum is calculated using a variational principle. In

Lagrangian mechanics (using the Lagrangian to derive Newton’s equation of motion), this boils

down to finding the solution to the Euler-Lagrange equation

@L

@x
� d

dt

@L

@ _x

� �
¼ 0: (A4)

On applying the boundary conditions, B1 and B2, which are, at time t1, x(t1)¼ x1 and t2, x(t2)¼ x2,

the solution to the Euler-Lagrange equation gives the following trajectory equation:

x tð Þ ¼ aþ 1

sin x t2 � t1ð Þð Þ
x1 � að Þsin x t2 � tð Þð Þ � x2 � að Þsin x t1 � tð Þð Þ

 �
; (A5)

where x ¼
ffiffiffi
k
m

q
is the angular frequency. This is the equation of motion of a spring following

Newtonian dynamics which also minimizes classical action with boundary conditions B1 and B2.
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To calculate the action from (A3), we calculate the velocity of the system, which is

_x tð Þ ¼ 1

sin x t2 � t1ð Þð Þ
�x x1 � að Þcos x t2 � tð Þð Þ þ x x2 � að Þcos x t1 � tð Þð Þ
 �

; (A6)

and the total action of this path is

Scl ¼
mx

2 sin x t2 � t1ð Þð Þ
x1 � að Þ2 þ x2 � að Þ2

h i
cos x t2 � t1ð Þð Þ � 2 x1 � að Þ x2 � að Þ

h i
: (A7)

Protein conformational change is a stochastic process

Unlike the classical spring, dynamics of protein molecules cannot be considered to be deter-

ministic but rather a stochastic process, which is modeled by an overdamped Langevin dynamics

equation

mc _x ¼ � dV xð Þ
dx
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mckBT

p
n; (A8)

where c is the diffusion coefficient, and n is a delta-correlated Gaussian random (zero mean) force.

That is

hnðtÞi ¼ 0; (A9)

hnðtÞnðt0Þi ¼ dðt� t0Þ: (A10)

In order to understand the Langevin equation, consider the same diatomic 1D system. Unlike the

deterministic and periodic equation for a classical spring, if the Langevin equation describes a

stochastic process, it can only calculate probabilities of paths that the system might take. Given

the current state x1 at time t1, the probability of reaching state x2 at a small time increment Dt,
assuming microscopic reversibility, is given by

p x2 at tþ Dtjx1 at tð Þ ¼ e�
k

4kBT x1�að Þ� x2�að Þe
kDt
mc

� �2

�1þcoth kDt
mcð Þð Þ

1

4pkBT
k 1þ coth

kDt

mc

� �� �
 �� ��1
2

; (A11)

where kB is the Boltzmann constant, and T is the temperature. This is the solution to the Fokker-

Planck equation.

If the total path is a succession of such states, then the joint probability can be calculated as

the product of the probabilities of the individual segments. But since we are interested only in the

probability of the most probable path, we calculate this by minimizing the exponent in (A11). To

do this, Onsager and Machlup29 developed an interesting method to calculate the trajectory by

considering Equation (A11) to be of the form

p / e�
SOM

2mkBT: (A12)

By treating the numerator of the exponent to be analogous to classical action, they were able to

simplify it into an integral of the form

SOM ¼
1

2c

ðt

0

mc _x þ k x� að Þð Þ2dt; (A13)

and the functional SOM is now referred to as the Onsager-Machlup action.
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Since we have a functional whose minimum value has to be calculated, it can be done by

solving the Euler-Lagrange equation and on application of the same boundary conditions as in the

classical case, B1 and B2, we get the following trajectory equation:

x tð Þ ¼ aþ 1

sinh C t2 � t1ð Þð Þ
x1 � að Þsinh C t2 � tð Þð Þ � x2 � að Þsinh C t1 � tð Þð Þ

� �
; (A14)

where C ¼ k
mc. This is the equation of motion of the minimum action path undergoing stochastic

dynamics, modeled by Langevin equation.

From (A14), we calculate the velocity as

_x tð Þ ¼ 1

sinh C t2 � t1ð Þð Þ
ðð�CÞðx1 � aÞcosh C t2 � tÞÞ � ð�CÞðx2 � aÞcoshðCðt1 � tÞÞÞ:ðð (A15)

And by substituting (A14) and (A15)) to (A13), we calculate the action as follows:

SOM ¼
mk

2sinh C t2 � t1ð Þð Þ
½ðx2 � aÞ2eCðt2�t1Þ þ ðx1 � aÞ2e�Cðt2�t1Þ � 2ðx2 � aÞðx1 � aÞ�: (A16)

APPENDIX B: CONSTRUCTING THE HESSIAN FOR A LINEARIZED ANM POTENTIAL

PATH uses a linearized ANM potential to represent interatomic interactions where each atom

pair is connected to each other in some manner via springs with a single force constant k.

According to ANM,1 between any two atoms, then, we have the pair potential

U ri; rj
� �

¼ 1

2
k r � �rð Þ2; (B1)

where ri is the position of the ith atom, rj the position of the jth atom. We form the distance r by

taking the magnitude of r 	 ri � rj, pointing from the jth atom to the ith one. This distance is

compared to the equilibrium length, the magnitude of �r 	 �ri � �rj, where the set f�rigN
i¼1 is a speci-

fied equilibrium configuration defined by the input crystal structure. This potential still yields a

nonlinear set of equations of motion, so we will linearize it and obtain our final effective potential

for the system following.

Consider a small displacement from the equilibrium configuration: dri and drj, then we can

construct dr 	 dri � drj. The potential, for small dr reads

U ¼ 1

2

s

�r2

X
p;q

�rp�rqdrpdrq; (B2)

where the subscripts p and q represent the x, y, and z Cartesian coordinates of the vectors. We can

define the Hessian to be the matrix implicit in the above summation

hij¼:
s

�r2
ij

�r2
x �rx�ry �rx�rz

�ry�rx �r2
y �ry�rz

�rz�rx �rz�rx �r2
z

0
BB@

1
CCA: (B3)

This is the Hessian appropriate to the linearization of the spring connecting atom i with atom j,
but we have many such connections in general. Here, s is a scale constant that is generally derived

from fitting the mean square fluctuation of the atoms to the crystallographic B values.2 For non-

high resolution crystal structures and for computational mutants, since the B values cannot be

used to estimate the scale constants, we assume 0.01 as the scale constant for both the structures.

Because the argument of the sinh term in the OM equation of motion [Eq. (1)] is the product of

the force constant and tf, giving a reciprocal impact of those two parameters [Eq. (12)], we believe
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that any error induced by this assumption will be compensated by the estimation of tf from the av-

erage force constant �k.

We want to build the full Hessian H from these three-by-three blocks. If we refer to the three

coordinates of the ith atom as xi in x (so that x has N such entries), and Hij gives the three-by-three

block of H at row i, column j, then the Hessian is constructed by adding hij from (B3) to Hii and

Hjj and subtracting hij from Hij and Hji.

In the end, we have a symmetric matrix H 2 R3N
3N, and an equilibrium configuration a 2
R3N, the effective potential of the system can be written as

U ¼ 1

2
x� að ÞTH x� að Þ: (B4)

APPENDIX C: ANALYTICAL DESCRIPTION OF THE CONVERGENCE SURFACE

The convergence surface in Fig. 2 shows that different minimum action paths are generated

for different input values of tf and DE. Not only do we observe that �t varies with different values

of these two input parameters but also we understand that the velocity continuity equation (6)

gives rise to this surface.

Though the convergence surface is observed for large proteins and for 1D diatomic systems

alike, we can write a simplified equation only for the latter. In this section, we will derive an equa-

tion for the convergence surface of the diatomic system from the velocity continuity equation.

For the diatomic system in 1D, the most probable trajectory is calculated separately for the

left side and the right side from (A14) as (1) and (2). From those two equations, we can derive the

velocity continuity equation as

krð�x � bÞcothðkrð�t � tf ÞÞ ¼ klð�x � aÞcothðkl�tÞ: (C1)

To further simplify this equation, we have to know the structure of the transition state (�x), which,

in a 1D diatomic system, can be computed by rearranging Equation (8) to

1

2
kl �x � að Þ2 þ DE ¼ 1

2
kr �x � bð Þ2: (C2)

If the initial structure is a¼ (a1, a2) and the final structure is b¼ (b1, b2), then we can calculate the

structure of the transition state �x ¼ ðx1; x2Þ by writing the energy continuity equation as

1

2
�x � að Þ kl �kl

�kl kl

� �
�x � að ÞT þ DE ¼ 1

2
�x � bð Þ kr �kr

�kr kr

� �
�x � bð ÞT : (C3)

The two matrices in Equation (C3) are the Hessian matrices of the initial and final states, as

outlined in Appendix B.

We can rewrite Equation (C3) as

kl

2
x1 � a1 x2 � a2

� � 1 �1

�1 1

� �
x1 � a1

x2 � a2

� �
þ DE

¼ kr

2
x1 � b1 x2 � b2

� � 1 �1

�1 1

� �
x1 � b1

x2 � b2

� �
:

On simplification, the above equation becomes

kl

2
x1 � x2ð Þ � a1 � a2ð Þ½ �2 þ DE ¼ kr

2
x1 � x2ð Þ � b1 � b2ð Þ

 �2
: (C4)

Substituting �X ¼ x1 � x2; A ¼ a1 � a2 and B¼ b1� b2, (C4) becomes
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kl

2
�X � Að Þ2 þ DE ¼ kr

2
�X � Bð Þ2: (C5)

Solving for �X

�X ¼
klA� krBð Þ � A� Bð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krkl þ

2DE kr � klð Þ
B� Að Þ2

s
kl � krð Þ : (C6)

For a diatomic system centered on the origin, x1þ x2¼ 0, giving, together with �X, the transition

state, �x.

This transition state structure can be substituted into the velocity continuity equation (C1),

and simplified to

sinh krtf � kr þ klð Þ�t
� �

sinh krtf � kr � klð Þ�t
� � ¼ kr þ kl

kr � kl

� �
� 2krkl

ZDE kr � klð Þ

� �
; (C7)

where Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krkl þ 2DE kr�klð Þ

B�Að Þ2
q

, and kl and kr correspond to eigenvalues of the respective Hessian

matrices.

In any spring system in one dimension, the overall motion is comprised of N independent

modes, each with its own force constant. In the case of the diatomic system, there is one transla-

tional mode, whose force constant is zero and one vibrational mode. Since each mode behaves in-

dependently from the other, the spring constant associated with each mode is calculated from the

eigenvalues of the respective Hessian matrices. Since tf is known, we can calculate �t of the 1D dia-

tomic system, numerically. Thus, the entire landscape of path trajectories shown in Fig. 2 can be

computed from Equation (C7). This equation also describes the bi-sigmoidal behavior of the con-

vergence surface. For constant values of tf, �t has a sigmoidal relationship to DE. Similarly at con-

stant DE, �t has a sigmoidal relationship to tf, though the shape of the curve in Fig. 2 is that of a

rectangular hyperbola. This behavior rises from the use of positive values of tf, as negative values

of tf are meaningless.
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