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Abstract

Background/Objectives

Cross-sectional studies suggested that obesity is promoted by the gut microbiota. However,
longitudinal data on taxonomic and functional changes in the gut microbiota of obese
patients are scarce. The aim of this work is to study microbiota changes in the course of
weight loss therapy and the following year in obese individuals with or without co-morbidi-
ties, and to asses a possible predictive value of the gut microbiota with regard to weight loss
maintenance.

Subjects/Methods

Sixteen adult patients, who followed a 52-week weight-loss program comprising low calorie
diet, exercise and behavioral therapy, were selected according to their weight-loss course.
Over two years, anthropometric and metabolic parameters were assessed and microbiota
from stool samples was functionally and taxonomically analyzed using DNA shotgun
sequencing.

Results

Overall the microbiota responded to the dietetic and lifestyle intervention but tended to
return to the initial situation both at the taxonomical and functional level at the end of the
intervention after one year, except for an increase in Akkermansia abundance which
remained stable over two years (12.7x10° counts, 95%Cl: 322-25100 at month 0; 141x10°
counts, 95%Cl: 49-233x10° at month 24; p = 0.005). The Firmicutes/Bacteroidetes ratio
was higher in obese subjects with metabolic syndrome (0.64, 95%CI: 0.34—0.95) than in the
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“healthy obese” (0.27, 95%CI: 0.08—-0.45, p = 0.04). Participants, who succeeded in losing
their weight consistently over the two years, had at baseline a microbiota enriched in Alis-
tipes, Pseudoflavonifractor and enzymes of the oxidative phosphorylation pathway com-
pared to patients who were less successful in weight reduction.

Conclusions

Successful weight reduction in the obese is accompanied with increased Akkermansia num-
bers in feces. Metabolic co-morbidities are associated with a higher Firmicutes/Bacteroi-
detes ratio. Most interestingly, microbiota differences might allow discrimination between
successful and unsuccessful weight loss prior to intervention.

Introduction

Obesity is a growing health problem. It is associated with health disorders such as insulin resis-
tance (IR), non-alcoholic fatty liver disease (NAFLD), or the metabolic syndrome (MetS) [1].
Apart from life style and genetics, the gut microbiota seems to play a role in obesity pathophys-
iology, as shown in experiments using germ-free mice displaying 40% lower body fat content
than normal mice [2].

Several studies revealed different compositions of the gut microbiota between lean and
obese individuals. Particularly, it was shown that a higher Firmicutes to Bacteroidetes ratio cor-
relates with obesity [3,4]. Firmicutes members degrade complex polysaccharides into short
chain fatty acids absorbed by colonocytes resulting in a higher energy load than Bacteroidetes
would do [5]. However other studies failed to find such changes of the Firmicutes to Bacteroi-
detes ratio in obesity [6-8]. This might be due to the different techniques used for microbiota
analysis, or related to differences of the patient cohorts containing patients with or without
comorbidities and different obesity grades. Recently, it has been suggested that only Bacteroi-
detes numbers are regulated primarily by environmental factors such as diet, whereas Firmi-
cutes numbers depend from the genetic makeup of the host [9].

A large number of studies revealed that diet, as main source of energy for the gut micro-
biota, has a strong impact on its composition and function (reviewed in [10]). Arumugam et al.
described a limited number of well-balanced host-microbial symbioses, which are not influ-
enced by geographical origins but by long-term dietetic habits [11]; however, gut microbiota
also responds rapidly to specific changes in diet [12]. Although there have been several studies
quantifying gut microbial changes after a diet intervention (reviewed in [13]), only a few
involved whole genome shotgun sequencing, such as the study of Cotillard et al. [14] showing a
possible predictive potential of gene richness of the microbial community for the efficacy of
dietetic interventions.

To gain more insight into the interaction between microbiota, diet, and obesity we analyzed
the metagenomes of 16 obese patients who underwent a weight-loss program based on a very
low calorie inulin-enriched formula diet. We aimed to answer three major questions, (i) how
does the microbiota change during intervention, both at taxonomic and functional level; (ii)
does the gut microbiota from patients with different co-morbidities differ; and (iii) does micro-
biota analysis allow any prediction of successful weight-loss?
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Subjects and Methods
Subjects and study design

For the present cohort study, we selected subjects out of a larger cohort from a multicenter clin-
ical trial and research project "Obesity and the gastrointestinal tract” (ClinicalTrials.gov identi-
fier: NCT01344525), approved by the ethics committee of the University Hospital of Tiibingen,
Germany. Written informed consent was obtained from every subject prior to participation.
Exclusion criteria were chronic or current gastrointestinal disease, severe eating disorders, and
treatment with anti-, pre- or probiotics within 3 months before sample collection. Selection cri-
teria included a similar BMI and a similar age at baseline, and a subject’s affiliation to the same
enterotype (Bacteroides-enterotype, determined through sequencing of the first sample) to
minimize inter-individual variability. Among those who fulfilled these criteria, we selected
individuals, who were successful regarding weight-loss maintenance after two years (relative
weight loss (RWL) at T24>10%, n = 9, persistent success = PS group) or not (RWL at
T24<10%, n = 7, no persistent success = NS group), as we wanted to check for potential differ-
ences in the gut microbiota between subjects with and without persistent success. A threshold
of 10% weight loss and maintenance of it over one year has been proposed as definition for suc-
cessful weight loss maintenance [15]. This lead to a cohort of 16 subjects (9 women) with a
mean BMI of 43 + 7 kg-m™* and age of 40 + 8 years at baseline. A predetermination of the sam-
ple size was performed for the relative weight loss (at T24) using a power of 80%, an alpha of
0.05, an expected difference between the two groups of 18% RWL and a standard deviation of
11% RWL, which lead to a group size of seven per group. The difference of 18% RWL was cho-
sen, because we wanted it to be above the threshold of 10% RWL and higher than the observed
standard deviation.

After inclusion into the study, all participants underwent a defined multidisciplinary
weight-loss program over 12 months, and were further followed up for another 12 months.
During the two-year-period, participants were examined at six time points, at baseline (T0),
and after 3, 6, 12, 18 and 24 months (T3-T24). All participants underwent a detailed medical
examination at baseline. At all time points (T0-T24), a fixed list of examinations were per-
formed (see § clinical parameters).

Weight-loss intervention

The multidisciplinary weight-loss program (OPTIFAST® 52, Nestlé Inc.) was shown to effi-
ciently reduce weight of obese patients and has been described in detail elsewhere [16]. Briefly,
it consists of a lifestyle modification over 52 weeks based on four modules (psychology, medi-
cine, dietetics and exercise) and includes the use of a very low calorie diet (800 kcal/day) offered
as formula diet for 3 months. This formula, which is enriched with inulin as a fiber to improve
bowel movements, is the only source of energy during the first three months of the program.
After the three months, the formula bags are gradually substituted by normal food within a
time period of eight weeks. After returning to normal food, which is a balanced diet following
the recommendations of the national nutrition society, the stabilization phase starts in which
patients slowly increase their energy intake to a level that allows weight maintenance. Compli-
ance to the program for all patients was assessed by weekly visits during the whole program.
The study patients followed 69% (range 29-95%) of the visits over the 12 months. Further
details of the program are described elsewhere [16]. Before starting the weight reduction pro-
gram, patients were asked to fill in a food diary over one week to assess dietetic habits prior to
the intervention. Ten out of 16 patients provided a complete record that was analyzed using
the EBISPro program [17].
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Clinical parameters

At all six time points, patients were weighed, their height and waist circumference (WC) mea-
sured. Liver sonography was performed using the LOGIQ-P6 device (GE Healthcare, Solingen,
Germany) by a trained physician to assess NAFLD as described [18]. Blood was collected by
venipuncture between 07.30 and 09.00 a.m. after an overnight fast. Within 15 min, serum was
separated by centrifugation at 2000xg for 15 min at 4°C. Patients collected stool samples from
the same passage and transferred them into collection tubes containing a DNA stabilizer (Stra-
tec Molecular, Berlin, Germany). Blood and stool samples were stored at -80°C. Blood serum
was analyzed for alanine aminotransferase (ALT), y-glutamyl-transferase (GGT), C-reactive
protein (CRP), leukocytes, fasting glucose, insulin, HbAlc, total-, LDL- and HDL-cholesterol,
and triglycerides in a certified medical laboratory (Laborérzte Sindelfingen, Germany).

The Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) index was calculated
to estimate insulin sensitivity as described [19]. The Fatty Liver Index (FLI) is a validated
marker of risk for fatty liver disease and was calculated as described [20]. We used the defini-
tion of the International Diabetes Foundation (http://www.idf.org/metabolic-syndrome) for
determining the metabolic syndrome state of study participants at different time points.

The parameters were monitored in order to establish potential relationships between micro-
biota, body-weight, body composition, and obesity-associated-disease such as hypertension,
insulin resistance,-fatty liver disease (Table 1).

Analysis of gut microbiota by shotgun sequencing

For whole metagenome analysis we used shotgun sequencing of stool DNA to assess taxonomic
and functional changes at the six examination time points.

DNA extraction from the stool samples was performed using the “PSP-Spin-Stool-DNA-
Plus Kit” with lyses enhancer according to the manufacturer’s instruction (Stratec Molecular,
Berlin, Germany). Briefly, lysis enhancer was added to an aliquot of the samples stored in the
‘Stool DNA Stabilizer’ solution and incubated ten min. at 95°C. Next, samples were vortexed
for two minutes with Zirconia beads. Cleaning of DNA was achieved first through removal of
contaminants using the ‘InviAdsorb’ absorber, then by using a filter spin column. After quality
check and quantification of the DNA with a Nanodrop Photometer 2000 (Thermo Scientific),
DNA was sequenced on an Illumina HiSeq 2500 Sequencer by the company CeGat, Tiibingen,
Germany. Samples (50 ng as quantified by Qbit) were processed with the Illumina 'Nextera-
DNA-Sample-Preparation Kit' according to manufacturer's protocol. Sequencing was done
with 2x100 nucleotides (paired-end sequencing) on 8 lanes with 300GB raw data. On an aver-
age, the sequencing achieved 2.1 GB/sample. Samples were sequenced with a sequencing depth
of 10.9 million reads per paired-end sequencing file (s = 6.3 million).

Bioinformatic analysis of sequencing data

Raw sequences obtained from 92 metagenomic samples (16 patients, 6 time-points each, 4
time-points missing from 4 different patients) were subjected to a quality check using the
FastQC software (www.bioinformatics.babraham.ac.uk/projects/fastqc/). Quality check com-
prising per base sequence quality, per sequence quality scores, per base sequence content, per
sequence GC content, per base N content, sequence length distribution, sequence duplication
levels, kmer content and over-represented sequences. All samples showed satisfactory values
for each parameter tested. Next, the sequences were processed using PRINSEQ for removing
low quality reads, trimming of poly-Ns and A/T tails [21]. Each sample was subjected to a
BLASTX analysis using an in-house developed tool (MALT http://ab.inf.uni-tuebingen.de/
software/malt/) against the NCBI-NR database with a maximum allowed e-value of 1.0. The
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Table 1. Clinical parameters along the study period.

Parameter

Body wt (kg)
BMI'

Waist circ. !
FBS' (mg/dl)
HbA:c (%)
RR dias."
RR sys. '
Puls (1/min)
Total chol. !
HDL chol. °
LDL chol.
Triglycerides
ALT' (UN)
GGT' (U/)
Leukocytes'
CRP' (mg/dl)
FLI'
HOMA-IR!
MetS' (n)
NAFLD' (n)

1

Month 0

mean

129
43,1
125
104
5,9
86,3
127
74,6
202
47,0
129
183
42,2
40,3
7,9
9,2
94,3
4,8
9/16
13/16

Month 3 Month 6 Month 24
95% ClI mean 95% ClI mean 95% ClI mean 95% ClI
119-140 106 *** 95,9-116 102 *** 90,8-113 116 ** 104—128
39,5-46,8 35,4 *** 31,8-38,9 33,8 *¥** 30,2-37,4 38,7 ** 34,5-42,8
116-134 105 *** 97,3-113 102 *** 93,2-110 112 ** 104—-120
94,3-114 94,2 * 88,8-99,6 95,4 * 89,9101 102 85,6-118
5,6-6,1 5,4 *** 5,3-5,6 5,5 ** 5,3-5,6 5,6 * 5,3-5,8
80,5-92,0 75,9 ** 70,6-81,3 74,5 *** 69,2-79,8 79,1 * 73,5-84,6
119-136 112 ** 105-120 114 ** 105-122 119 ** 110-128
70,0-79,2 64,2 ** 60,0-68,5 65,7 ** 62,0-69,5 71,9 65,3-78,4
181224 158 *** 141-175 178 ** 159-197 189 * 166—213
41,8-52,1 40,9 * 38,5434 47,4 43,5-51,2 49,3 43,2-55,4
116-144 110 * 93,4-126 114 *** 98,4-129 126 109-143
104-263 93,7 *** 72,3-115 95,3 *** 74,2-116 131 ** 67,3-194
29,6-54,7 37,8 28,0-47,6 28,9 * 14,7-43,0 33,6 * 20,4-46,8
26,9-53,7 29,9 * 18,1-41,6 27,7 ** 16,9-38,5 36,6 ** 16,3-56,8
6,8-8,9 6,40 ** 5,5-7,3 71 * 6,2-8,0 6,8 * 5,8-7,7
6,3-12,1 10,1 2,9-17,4 5,1 *** 2,9-7,3 5,5 ** 3,7-7,4
87,6—-101 63,7 *** 48,1-79,3 77,7 ** 62,6-92,7
3,3-6,2 2,1 *** 1,48-2,8 3,5 1,7-5,2

6/15 4/16 7116

8/16 6/16 8/16

Statistics: Mean values and 95% confidence intervals (Cl) are shown. Significant changes between baseline and month 3 (after formula diet), month 6
(after end of dietetic intervention), or month 24 (end of observation period) are indicated with *for P<0.05, **P<0.01 and ***P<0.001.
T Abbreviations: wt, weight; BMI, body mass index (kg/m?); Waist circ., waist circumference (cm); FBS, fasting blood sugar (mg/dl); RR dias. and sys.,
diastolic and systolic blood pressure (mmHg); Total chol., total cholesterol (mg/dl); HDL and LDL chol.; high-density lipoprotein and low-density lipoprotein
cholesterol (mg/dl); Triglycerides (mg/dl); ALT and GGT, alanine aminotransferase and y-glutamyl-transferase (U/l); Leukocytes (1/nl); CRP, c-reactive
protein (ng/ml); FLI, fatty liver index; HOMA-IR, homeostatic model assessment—insulin resistance; MetS, metabolic syndrome (definition see text);
NAFLD, non-alcoholic fatty liver disease (definition see text).

doi:10.1371/journal.pone.0149564.t001

BLASTX files were imported into MEGANS (http://ab.inf.uni-tuebingen.de/software/megan5/
). MEGANS carries out binning of the reads into taxonomic and functional categories based on
the BLASTX hits. The minimum bit score used for the analysis was 50 and a minimum support
of 50 reads for each taxonomic category was used for the LCA algorithm. Ultimately reads get
assigned to a taxonomic and functional category. On an average, about 50% of the reads in
each sample was assigned to some category, 79% thereof down to the level of genera and about
61% to the level of species. The samples were normalized with respect to each other. The func-
tional annotation of the reads was done based on the KEGG library (Kyoto Encyclopedia for
Genes and Genomes, http://www.genome.jp/kegg/). Metagenomic data is available in the
NCBI database under Bioproject ID PRINA290729.

Statistics

The normalized read counts for taxonomic and functional categories were used for all statisti-
cal tests by using the R software (http://www.r-project.org/) and its packages MASS, vegan and
labdsv [22-24]. The indval function was used for detection of indicator species in ecological
studies [25]. Changes over time were identified using Friedman’s test, differences between two
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time-points using Wilcoxon’s test for paired samples and differences between two independent
groups using Mann-Whitney’s test. Correlations between microbiota components and biologi-
cal parameters were analyzed using Spearman’s test. Benjamini-Hochberg’s correction (BH)
was used for multiple testing. To look for possible microbial markers of weight-loss success, an
Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA) was per-
formed with the SIMCA13.0 software (UmetricsAB, Umea, Sweden), using Pareto-scaling and
seven-fold cross-validation [26]. A p value lower than 0.05 was considered as statistically
significant.

Results
Effect of the weight-loss program on clinical parameters

The multidisciplinary weight-loss program lead to a strong weight reduction during the first
three months in all participants, and a further weight-loss during the following three months
when formula diet was gradually replaced by normal food (mean relative weight loss, RWL T0/
T6 =22.0+7.3%). After the six first months, no further weight loss was observed, as expected
(maintenance phase). This tendency became even more visible within the second year resulting
in an average mitigation of success (Fig 1A). As expected patients fell into two categories
regarding long-term weight loss; those with persistent success (RWL at T24>10% mean =
18.2+4.7%, n =9, PS group), and those with no success (RWL at T24<10% mean = 0.2 +
8.2%, n = 7, NS group). The difference in RWL between the 2 groups was highly significant (T-
test: p<0.0001). The PS and NS group showed no differences regarding age, sex, and initial
BMI (not shown), however, a significant difference in the rate of visits attended during the
12-months-program was observed between the two groups. Patients with persistent success
attended 80% of the visits, whereas those without persistent weight loss only attended 58% of
the visits (p = 0.01). Virtually all parameters associated with obesity-related co-morbidities
listed in Table 1 correlated with the BMI (not shown). Also insulin resistance (assessed by cal-
culating the HOMA-IR) and liver steatosis (estimated by the FLI) paralleled body-weight
changes over time (Fig 1B and 1C).

Bioinformatic analysis

Over all samples, around 55 phyla, 1000 genera, 2000 species and 6000 different KEGG genes
could be detected. The most abundant phyla were Bacteroidetes (contributing for 68% of all
counts), Firmicutes (27%), Proteobacteria (1.7%), Actinobacteria (1.7%), and Verrucomicrobia
(1.3%). At the genera level Bacteroides clearly dominated (55%), followed by Alistipes (8.0%),
Faecalibacterium (6.4%), Eubacterium (5.4%). Among the 290 detected KEGG pathways the
most abundant ones were “selenocompound metabolism” (6.0%), “tryptophan metabolism”
(5.9%), “chemical carcinogenesis” (5.8%). For subsequent analyses, only taxa or functional lev-
els with a mean relative abundance >10 counts were taken into account, which effectively were
632 genera, 1228 species and 211 pathways.

Taxonomical analysis of the metagenomic samples

At the phylum level no significant changes could be detected over whole intervention (Fried-
man test); however, when selectively comparing changes between T0 and T3 some very rare
phyla like Euryarchaoteae (p = 0.0002) and Deinoccocus-thermus (p = 0.0003) increased at T3.

In previous studies, the Firmicutes-to-Bacteroidetes (F/B) ratio was linked to body-weight
and BMI [3,4]. Therefore, we calculated the F/B ratio for each sample and found a high
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Fig 1. Clinical parameters of the study population. A. Relative weight loss during the observation period of
two years consisting of one year intervention program with very low calorie diet (VLCD) during the first 3
months, reintroduction of normal food (reintrod.) during month 3—-6, and weight maintenance therapy under
normal diet during month 7—12, followed by a one-year-observation without intervention. Each line represents
a patient (n = 16). Patients were grouped into those with persistent success (PS group, >10% RWL at T24,
black lines and symbols) or no persistent success (NS group, <10% RWL at T24, grey lines and symbols). B.
Change of insulin resistance during time. Insulin resistance was assessed using the HOMA-IR as described
in Subjects and Methods. C. Change of liver steatosis assessed by sonography (circles) and fatty liver index
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(squares). Data in B and C are indicated as means +/- 95% confidence intervals (n = 16), **P<0.01 and
***P<0.001 (as compared to baseline, Wilcoxon’s test).

doi:10.1371/journal.pone.0149564.g001

variability between individuals and time-points without correlation with BMI or other clinical
parameters (not shown).

To analyze the microbial community at the genera and species levels, a non-metric multi-
dimensional scaling analysis was performed. Microbiota of the obese patients displayed a high
inter-individual variability before start and during intervention. While the genera composition
at baseline overlapped partly with the microbiota at T3, the following time-points tended to
cluster between the 2 first ones, as shown for T24 (S1 Fig). Using the adonis function of the
vegan package [23], we performed a permutated MANOVA (multivariate analysis of variance)
to test if the variation in the microbial community could be attributed to time and/or individ-
ual. We found a significant impact only of individual (p<0.001) even if this factor could only
explain a small part of the variation (sum of squares explained = 5%). No association was
found between the microbial composition at the genera level and age or sex, respectively.

When analyzing relative abundances at the genera and species level, we found no significant
changes over the whole intervention when correcting for multiple tests, suggesting a strong sta-
bility of the gut microbiota during intervention. However, as we were interested in genera that
might be modulated by the weight-reduction program, we identified 56 genera that changed
significantly according to the Friedman’s test without correction (p<0.01, SI Table). As shown
for the five most abundant ones, most changes in genera composition occurred between base-
line and T3, and were transient (Fig 2A). When comparing the genera abundance between
baseline and T24, only Akkermansia increased significantly (11 fold, from 0.26 to 2.9% of total
counts, p = 0.005, Fig 2B).

Also at the level of species, belonging to genera changing during intervention, we found
changes in relative abundance at different time-points (Fig 3). Again, most changes were tran-
sient and comprised preferentially increases from baseline to T3. A few changes were found for
species belonging to genera which did not change as a whole. For example, Bacteroides abun-
dance did not change; however, that of B. vulgatus, and B. dorei decreased between T0 and T3
(both p = 0.007) whereas that of B. cellulosilyticus and B. intestinalis increased (p = 0.005 and
0.02, resp.). We also calculated the Shannon diversity index (SD], at species level) at different
time-points, because microbial gene richness was shown to have an impact on weight-loss ther-
apy response [14]. We found a tendency of higher alpha-diversity in patients with lower BMI
at TO, but not at T24 (S2 Fig). No correlation between RWL at T24 and SDI was found.

Functional analysis of the metagenome over intervention

We could not find changes at the phyla level over time, probably because of the high variability
in abundance of the five most prominent phyla between the different patients and time-points.
However, functional analysis of the metagenome revealed similar clusters of orthologous
groups (COG, see [28]) in all patients independent of the time-points suggesting stable func-
tions of the microbiota despite the taxonomic variability (S3 Fig).

Furthermore, we determined changes in functional composition using the KEGG hierarchi-
cal classification at the pathway and KEGG orthologous group level. Again after correction, no
significant changes were found. Without BH correction, we identified four pathways changing
in abundance, the most abundant being the “Amino and nucleotide sugar metabolism”

(p =0.009, Fig 2C). When focusing on changes between baseline and T3 we found six path-
ways affected. The strongest effect occurred in the “Lysine biosynthesis” pathway (p = 0.0006,
Fig 2D).
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Fig 2. Abundance change of genera and metabolic pathways during the study. A. Relative abundance of five genera, which were the most abundant
among those that changed during time. B. Akkermansia abundance. C. Relative abundance of all KEGG pathways that changed during whole study. D.
Metabolic pathways that changed from baseline to T3. Abbreviations: bios, biosynthesis; met, metabolism. Statistics: Relative abundances are expressed in
percent (abundance at TO is 100%). Each dot is the mean at a given time point. Relative abundances at different time points were compared using the
Friedman test (A, C: over the six time points), or the Wilcoxon test (B, D, *p < 0.05: between baseline and T3 or T24).

doi:10.1371/journal.pone.0149564.g002

Microbiota and physiological parameters in the context of the metabolic
syndrome

The number of patients with MetS decreased during intervention (Table 1). We compared
patients with and without MetS regarding microbiota taxonomy and function. Patients with
MetS had a significantly higher F/B ratio at TO (Fig 4A), but not at T24 (not shown). In addi-
tion, we found a number of bacterial, virus and fungi taxa, that were different between patients
with and without MetS, both at TO and T24 (S2 Table).

At the functional level we could also detect differences between patients with and without
MetS. At baseline, the pathways “Pentose and glucuronate interconversions”, “Two component
system”, “Plant-pathogen interaction”, “Bacterial chemotaxis”, and “Flagellar assembly” (all
p<0.05) including the filament Flagellin itself (Fig 4B) were more abundant in patients with
MetS, in contrast to “Ascorbate and aldarate metabolism” (p = 0.04). At T24, again the path-
ways “Bacterial chemotaxis” (p = 0.01) and “Flagellar assembly” (p = 0.02) were more abun-
dant in MetS participants, whereas “oxidative phosphorylation” showed the opposite pattern
(p = 0.008). When correlating these differential bacterial genera and pathways with laboratory
parameters related to the MetS, we found a number of highly significant correlations, both at
T0 and T24, but none of them for both time-points (Table 2).

The metabolic syndrome is associated with NAFLD. We assessed NAFLD-risk by calcula-
tion of the FLI, and NAFLD-grade by sonography. Following intervention the NAFLD preva-
lence decreased from 81% to 40-50%. When comparing the groups of patients with and
without NAFLD at T24 (n = 8 each) with respect to bacterial composition, we found several
differences, e.g. a lower abundance of Subdoligranulum (p = 0.04) and especially Lactococcus
(p = 0.0006, Fig 4C), while Paraprevotella was more abundant (p = 0.05) in the NAFLD group.
We selected T24 for this analysis to exclude influences of the formula diet on the relation
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Fig 3. Bacterial species changes during weight loss intervention. Cladogram (based on 16S sequences) displaying the most abundant species from
genera influenced by the intervention. Significant changes between T0 and T3 (left column of squares), between T3 and T6 (middle column), and between T6
and T24 (right column) are indicated by a star(p < 0.05). Blue squares indicate a decrease, red an increase in abundance. Species are colored according to the
phyla they belong to (blue: Spirochaetae, pink: Bacteroidetes, green: Firmicutes, light pink: Proteobacteria, orange: Actinobacteria, brown: Verrucomicrobia,
red: Synergistetes). This tree was created using the free software EvolView [27].

doi:10.1371/journal.pone.0149564.9003

PLOS ONE | DOI:10.1371/journal.pone.0149564 February 26, 2016 10/18



el e
@ ' PLOS ‘ ONE Gut Metagenome of Obese Patients by Weight Loss

*
159 A D —— 100007 g *
—_— 8 +——>
S 8000~
o 101 E I
S 2 6000
o hit
@ -1 £ 4000
L 0.5 £
[ % 2000-
TS —1
o.c L] ] c T T
with without with without
Metabolic syndrome Metabolic syndrome
*kk o
§ 30007 C 2 25004 D **
3 : 3 —>
£ 5 20001
2 2000 © [
3 ® 1500+ —
(o]
3 S 1000+
8 1000- S
] [=
8 2 5001 L
= 5
- with without g 0 y '
u z with without
NAFLD NAFLD
*% *
g 800007 E o 40007 F < >
£ +—> Q
g 5
§ 70000- | '§ 3000-
: : | B3 —
'© 60000- < 20004
- S
e B g |
é 50000- ; 1000
5 40000 Z 0
Nno success success NOo success success
Weight-loss intervention Weight-loss intervention

Fig 4. Differences in gut microbiota between patients with different co-morbidities or different outcomes. We compared patients with or without
metabolic syndrome (A, B), with or without non-alcoholic fatty liver disease (NAFLD, panels C, D), and with or without persistent success in weight loss (E, F).
In patients with metabolic syndrome, the Firmicutes/Bacteroidetes (F/B) ratio (A) and the flagellin gene (KEGG K02406) abundance (B) were increased at
TO. In patients with NAFLD, the abundance of Lactococcus (C) and “naphthalene degradation” pathway (D) were decreased at T24. In patients with
persistent success in weight loss, the abundance of the “oxidative phosphorylation” pathway was increased (E), whereas the “PAH degradation” pathway
was decreased (F) at TO. Statistics: *p<0.05; **p<0.01, ***p<0.001 (Mann-Whitney’s test).

doi:10.1371/journal.pone.0149564.g004
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Table 2. Correlations between bacterial genera or pathways and parameters related to the metabolic syndrome.

Time point Genera / Pathway Parameter’ Rho P value
TO Alistipes Leukocytes -0.82 0.0002
Phascolarctobacterium ALT 0.86 < 0,0001
Oxidative phosphorylation Leukocytes -0.78 0.0006
Ascorbate and aldarate metabolism HDL chol. 0.66 0.007
Triglycerides -0.66 0.007
T24 Prevotella HDL 0.67 0.004
Subdoligranulum Body weight -0.64 0.007
HOMA-IR -0.68 0.004
FLI -0.65 0.006
CRP -0.71 0.002
Bacterial chemotaxis FBS 0.64 0.008
Flagellar assembly FBS 0.63 0.008
HbA+ 0.70 0.005

Statistics: The Spearman’s rank correlation coefficient (Rho) is shown.

Abbreviations: see Table 1.

doi:10.1371/journal.pone.0149564.t002

between NAFLD and bacterial taxa. Despite such differences, microbiota functions were largely
similar. We detected only one pathway less abundant in patients with NAFLD, the “naphtha-
lene degradation” pathway (p = 0.007, Fig 4D).

Comparison between successful and unsuccessful patients

Comparing patient groups with persistent success (PS), i.e. with a relative weight loss above
10% at the end of the observation period, and those with no persistent success (NS) (relative
weight-loss lower than 10% between T0 and T24) we found candidates for indicator genera for
both groups. In the PS group, the strongest indicator values were obtained over all time-points
for the two highly abundant Akkermansia (indval = 0.712, p = 0.02) and Dialister (0.702,

p = 0.01). In the NS group, even stronger markers could be identified including the highly
abundant Prevotella (0.952, p = 0.0001), Megamonas (0.991, p = 0.0001), Phascolarctobacter-
ium (0.759, p = 0.0009) and less abundant Barnesiella (0.775, p = 0.04) and Alloprevotella
(0.769, p = 0.002).

To search for functional markers of the microbiota that differ between PS and NS group we
performed an OPLS-DA using Pareto-scaled data at the KEGG-pathway level. From this analy-
sis over all time-points, we found two markers strongly associated with PS, “membrane trans-
port” and “oxidative phosphorylation”, and one, “fructose and mannose metabolism” closely
associated with NS (Fig 5).

To answer the question whether the microbiota at baseline could be a predictor for success,
we compared bacterial taxa only at TO in the PS and the NS group. We found no differences at
the major phyla level, but numerous differences at the genera level. In the PS group, Alistipes
(p = 0.04), Pseudoflavonifractor (p = 0.04), Ethanoligenens (p = 0.03), Gordonibacter (p = 0.03)
and Symbiobacterium (p = 0.01) were more abundant. At the species level, several Bacteroides
species such as B. caccae (p = 0.02), B. sp. 1130 (p = 0.04), B. massiliensis (p = 0.01) were less
abundant in the PS group, while Clostridium leptum (p = 0.006), was more abundant compared
to the NS group. At the functional level, we found a higher representation of the “Oxidative
phosphorylation” pathway in the PS group (Fig 4E), whereas the “Cysteine and methionine
metabolism” (p = 0.04) and “PAH degradation”pathways (Fig 4F) were more abundant in the

PLOS ONE | DOI:10.1371/journal.pone.0149564 February 26, 2016 12/18



@’PLOS ‘ ONE

Gut Metagenome of Obese Patients by Weight Loss

0,8 4

0,6

0,4 -

0,24

e PAH degr.

® Isoquin. ® Fructose

p(corn)[1]
o

-0,2

0,4 4

Membrane T

-0,6

0,8 4

* Phenylprop
®e Ox. Phosph

o Fatty acid

0,4 0,3

0,1 0 0,1 0,2 0,3
pl1]

SIMCA 13.0 - 24.07.2015 09:43:27 (UTC+2,

Fig 5. S-plot of the OPLS-DA model showing pathways associated with sustained weight loss over the whole study period. Each pathway is
displayed as a dot. Dots located in the top-right corner of the figure are potential markers for non-persistent weight loss, whereas those located in the bottom-
left corner are associated with sustained weight loss. On the x-axis, the loading (p|1]) is indicated, which is a measure for the influence of the variable on the
model. On the y-axis, the p(corr)|1| is indicated, which is a measure of the reliability of a variable as a marker. The strongest marker (defined as |p| > 0.09 and
|p(corr)| > 0.4) are labeled and displayed in black color, the other pathways are displayed without labels in grey. Abbreviations: Fructose, “fructose and
mannose metabolism”; Isoquin., “isoquinoline alkaloid biosynthesis”; PAH degr.,”polycyclic aromatic hydrocarbon degradation”; Fatty acid, “fatty acid
metabolism”; Phenylprop, “phenylpropanoid biosynthesis”, Cyanoamino, “cyanoamino acid metabolism”; Membrane T, “membrane transport”, Ox. Phosph,
“oxidative phosphorylation” pathway. Statistics: The model is based on the following characteristics: 1+2 components, R®X = 0.53, R2Y = 0.496, Q* = 0.277,
pcv-ANOVA = 1.73x10™. Because of low Q?, permutations of the data were performed before running again the OPLS-DA. This lead each time to the same

model.

doi:10.1371/journal.pone.0149564.9005

NS group. Since the way of grouping of the study participants may affect the results, we per-
formed another analysis comparing the five most successful (mean RWL at T24 = 19.5 + 3.9%)
and the five less successful (mean RWL at T24 = -2.8 + 7.8%) patients. The participation to the
program meetings was not different (74 + 6% versus 60 + 9%, p>0.05). Again, we found a sig-
nificant enrichment in Alistipes, Gordonibacter and Symbiobacterium (p = 0.008 for all) and in
the “Oxidative phosphorylation” pathway (p = 0.03) in the most successful patients. By trend,
the “PAH degradation”pathway was more abundant in the five most unsuccessful patients
than in the five most successful (p = 0.15).

Since eating behavior at baseline could influence patients ‘gut microbiota, we analyzed avail-
able food diaries. We were interested to see if patients maintaining their weight-loss success-
fully had an eating behavior at baseline that differs from those without sustained success. From
the ten available diaries, five were from successful patients (RWL>10%). Mean (over the differ-
ent days in the diary) energy, fat, protein, carbohydrate and fiber intakes were calculated as
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percentage of the recommended intake for each person (adapted to sex and age, as recom-
mended by the German nutrition society). Overall, the pre-intervention-diet was too rich in
protein (172% + 24% of the recommended value) and deficient in fibers (55% + 12%) as
revealed by analysis of all ten records. We found no significant differences between the PS and
the NS group regarding global energy, protein, fat, carbohydrate and fiber intake.

Discussion

The present study shows that the intestinal microbiota is quite stable in obese individuals during
non-surgical weight-reduction. In contrast to some previous literature [3,4], we could not find
any consistent relation between the F/B ratio and BMI, body-weight changes or other clinical
parameters. This suggests that the F/B ratio is dependent on other factors than BMI such as co-
morbidities or host’s genetics [9]. Alternatively, the lack of correlation might be related to the
fact that even after intervention, most study participants had a BMI above 30 kg/m”. The alpha
diversity tended to be lower in patients with higher BMI at baseline, but not after two years, sug-
gesting a positive effect of the intervention regarding the distal gut microbiota community.

At the genera and species levels, we found some variations related to the weight-reduction
intervention. For example, we saw a reduction of the butyrate-producing Roseburia within the
first 3 months of intervention, despite the fact that the formula was supplemented with inulin.
It was shown before that low carbohydrate diet leads to a reduction of Roseburia and Bifidobac-
teria abundance in feces from obese subjects undergoing weight-loss [7,29,30]. In our study,
Bifidobacteria numbers were not reduced by the formula diet, possibly because of the bifido-
genic effect of inulin [31,32].

Most changes occurred transiently being maximal at month 3 suggesting a strong resilience
of the gut microbiota after intervention. However, Akkermansia was one of the few genera that
increased in abundance from baseline to the end of the program. Akkermansia was shown to
support mice coping with high-fat diet and therefore has been proposed as an “anti-obesity
bacterium” [33]. Our results confirm this, since patients had a lower mean BMI and a higher
abundance of Akkermansia at T24 than at baseline. Moreover, Akkermansia is according to
our data the strongest indicator for success along the intervention program, even if it does not
significantly correlate with body-weight, BMI or WC at baseline and T24. Finally at T24 it is
found more frequently in patients without MetS than in those with MetS further supporting
the concept of Akkermansia reflecting a healthy intestinal microbiota [34].

While the F/B ratio did not correlate with body weight in our study, we found significant
differences between participants with or without MetS. A high F/B ratio is associated with the
MetS, rather than with body weight or BMI suggesting that such co-morbidities indeed affect
the F/B ratio, or they are affected by it.

Alistipes, a Bacteroidetes member of the family Rickenellaceae, might be a bacterial genus of
particular interest in the field of obesity. We found significant changes of abundance during
intervention, it correlated negatively with leukocytes, and—most interestingly—it was more
abundant at baseline in participants successful in losing and maintaining their weight. A higher
abundance of Alistipes was also observed in healthy individuals compared to HIV patients
treated with antiretroviral therapy or not [35,36]. On the other hand, some studies found Alis-
tipes correlating with health-risk [37-39]. Possibly, only in the context of weight-loss, Alistipes
indicates a positive constellation.

The presence or absence of NAFLD is also associated with specific patterns of the gut micro-
biota, both at the taxa and the functional level. For example, Subdoligranulum (Firmicutes,
Ruminococcaceae) was underrepresented in our subjects with NAFLD, which confirm the
observations of Bajaj et al. who found less Subdoligranulum in cirrhotic compared to healthy
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individuals [40]. Moreover, Subdoligranulum was negatively correlated at study end with dif-
ferent parameters related to metabolic risk such as CRP, FLI and HOMA-IR. Subdoligranulum
variabile, the only specie of this genus, which is more abundant in patients with MetS, was
shown to produce mainly butyrate and lactate from glucose [41]. Butyrate is known for its
healthy potential [42,43], but as an energy source for the host, it could have rather negative
effect in the context of MetS.

We found that the “flagellar assembly” pathway correlates positively with two sugar metabo-
lism related parameters (FBS and HBA1c) and is more abundant in patients with MetS. Many
flagellar products are recognized by TLR5 expressed on the intestinal mucosa. Interestingly
TLR5-KO mice were shown to develop MetS [44]. Furthermore flagellar products are increased
in the microbiota of these mice, which is characterized by a strong instability [45]. These mice
also displayed a higher FBS level than wild-type mice. Our results tend to confirm the connec-
tion between flagellar products, MetS and sugar metabolism. Further studies are necessary to
understand this connection and its mechanisms.

Most relevant, our data suggest that a particular bacterial pattern is related to subgroups of
obese patients with or without persistent success. Not only Alistipes, but several other bacteria
were associated with success. For example, Prevotella (Bacteroidetes) was less abundant in the
successful subgroup. Not only bacterial taxa, but also metabolic pathways seem to be associated
with success in weight-loss. “Oxidative phosphorylation”, the pathway leading to the produc-
tion of ATP, correlated negatively with leukocytes at baseline and was more abundant in suc-
cessful patients. This is surprising, since the pathway leads to the production of reactive oxygen
species and is associated with inflammatory disease [46].

On the contrary, the “Polycyclic aromatic hydrocarbon (PAH) degradation” pathway yield-
ing compounds produced during the incomplete combustion of organic matter is overrepre-
sented in unsuccessful participants at baseline. It was shown in mice [47], and more recently in
children [48], that PAH are obesogenic. A higher amount of PAH intake could therefore
reduce the chances for success of the weight-loss intervention. David et al. observed a higher
abundance of this pathway in the animal diet-associated microbiota [12]. Possibly, the high
representation of this pathway in “unsuccessful” individuals is a result of high charred meat
consumption before intervention, but other environmental sources of PAH cannot be
excluded. From the available food diaries we can confirm that all participants consumed high
amounts of meat, but we cannot distinguish between charred meat and other meat.

The differences in microbiota composition before intervention between successful and non-
successful participants with regard to weight reduction and maintenance warrant further stud-
ies to confirm the predictive value of the microbial markers identified in the present study.
Such predictors for success could help adapting weight-loss strategies individually to the obese
patient and thus make obesity treatment more successful in future.

Supporting Information

S1 Fig. Non-metric Multidimensional Scaling on taxonomic composition of all samples.
NMDS was performed using Bray-Curtis distance to represent all samples based on their taxo-
nomic composition (genera level). Samples are red at TO, black at T3, and grey at T6, T12, T18
and T24. Ellipses represent mean + SD for red: T0, black: T3 and green: T24.

(TTF)

$2 Fig. Shannon diversity Index and body mass index (kg/m?). SDI (at the species level, for
each sample at one time point) tends to negatively (Spearman’s rho = -0.37; p = 0.17) correlates
with BMI at TO (A) but not at T24 (B, p = 0.47).

(TTF)
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S3 Fig. Taxonomic and functional composition of the distal gut microbiota. A, B, C: Phyla;
D, E, F: COG functional categories. A, D: at TO; B, E: at T3; C, F: at T24. Relative abundance is
given as percentage of the whole community. J: Translation, ribosomal structure and biogene-
sis, K: Transcription, L: Replication, recombination and repair, V: Defense mechanisms, T: Sig-
nal transduction mechanisms, M: Cell wall/membrane/envelope biogenesis, U: Intracellular
trafficking, secretion, and vesicular transport, O: Posttranslational modification, protein turn-
over, chaperones, C: Energy production and conversion, G: Carbohydrate transport and
metabolism, E: Amino acid transport and metabolism, F: Nucleotide transport and metabo-
lism, H: Coenzyme transport and metabolism, I: Lipid transport and metabolism, P: Inorganic
ion transport and metabolism, R: General function prediction only.

(TTF)

S1 Table. List of all genera influenced by the intervention.
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$2 Table. Differences in distal gut microbiota composition in obese patients with metabolic
syndrome compared to patients without metabolic syndrome*.
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