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Abstract

Animal and human studies have found that males and females show distinct stress responses. 

Recent studies suggest the contribution of estrogen in the brain to this sexual dimorphism. 

Repeated stress has been found to impair cognitive behaviors via suppressing glutamatergic 

transmission and glutamate receptor surface expression in pyramidal neurons of prefrontal cortex 

(PFC) in male rats. On the contrary, female rats exposed to the same stress paradigms show 

normal synaptic function and PFC-mediated cognition. The level of aromatase, the enzyme for the 

biosynthesis of estrogen, is significantly higher in the PFC of females than males. The stress-

induced glutamatergic deficits and memory impairment are unmasked by blocking estrogen 

receptors or aromatase in females, suggesting a protective role of estrogen against the detrimental 

effects of repeated stress.

Sexually Dimorphic Effects of Stress and Role of Estrogen

Corticosteroid stress hormones serve as a key regulator of cognitive and emotional processes 

(de Kloet et al., 2005; Joëls, 2006; McEwen, 2007). It has been proposed that there is an 

“inverted U” relationship of stress to cognitive function (Diamond et al., 1992), such that a 

moderate level of corticosteroid has pro-cognitive effects, while too low or too high 

corticosteroid levels are detrimental to cognitive processing (Joels, 2006). Our group has 

found that stress exerts dual effects on cognition through bi-directional modulation of 

glutamatergic transmission in prefrontal cortex (PFC), a key target region of stress 

hormones. In young (~4 weeks old) male rats, acute stress significantly enhances glutamate 

receptor-mediated synaptic currents and improves working memory (Yuen et al., 2009; 

2011). Conversely, young male rats exposed to one-week repeated restraint or unpredictable 

stress show the diminished PFC glutamatergic transmission and the impaired PFC-mediated 

cognitive function, temporal order recognition memory (TORM, Yuen et al., 2012).

While these findings support the notion that short-term (acute) stressors elicit adaptive and 

beneficial changes, whereas long-term (chronic) stress results in maladaptive and deleterious 
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effects, this pattern of stress responses appears to apply to only males. In response to one 

acute stressful event of intermittent tail-shocks, spine density is enhanced in the male 

hippocampus but reduced in the female hippocampus (Shors et al., 2001). When the 

subchronic stress challenge, which induces cognitive impairment in males (Yuen et al., 

2012), is introduced to young female rats, their glutamatergic transmission in PFC and 

TORM function are unaffected (Wei et al., 2014, Fig. 1A). Similar sex differences to chronic 

stress have also been reported by other groups. For example, in male rats, restraint stress (6 

h/day, 21-day) impairs performance on a variety of spatial memory tasks including radial 

arm maze, object placement, Y-maze, water maze, and a nonspatial, recognition memory test 

(Beck and Luine, 1999; 2002; Conrad et al., 1996; Kitraki et al., 2004). In contrast, females 

exposed to the same stress paradigm show enhanced cognition and memory in almost all of 

these tasks (Beck and Luine, 2002; Bowman et al., 2001; 2002; 2003, Bowman, 2005; 

McLaughlin et al., 2005, Conrad et al., 2003; Kitraki et al., 2004). These animal studies 

suggest that females are more resilient to chronic stress than males, at least in terms of the 

measured cognitive behaviors (Cohen and Yehuda, 2011).

Interestingly, when estrogen receptor (ER) function is blocked in female rats, the detrimental 

effects of repeated stress (2-hr restraint, 7-days) on PFC glutamatergic transmission and 

TORM function are unmasked (Wei et al., 2014, Fig. 1B). On the other hand, when estradiol 

is administered in male rats, they become resilient to the same stressor (Wei et al., 2014, Fig. 
1C). It suggests that an estrogen-mediated mechanism makes females less susceptible to the 

deleterious effects of repeated stress than males.

However, the role of estrogen in stress responses is not without controversy. There are also 

reports suggesting that estrogen may amplify the stress responses in females. Activating 

stress systems pharmacologically by FG7142, a benzodiazepine inverse agonist, induces 

impaired PFC working memory in females during proestrus (high estrogen), but not during 

estrus (low estrogen), suggesting that estrogen may increase the sensitivity to stress in 

females (Shansky et al., 2004). Estrogen replacement in ovariectomized female rats exposed 

to a behavoral stressor (2-h immobilization for 10 days) also induces the greater dendritic 

remodeling in PFC neurons projecting to the basolateral nucleus of the amygdala (BLA) 

(Shansky et al., 2010). Preclinical studies using fear conditioning and extinction paradigms 

have found that females with low estrogen levels exhibit impaired extinction retrieval (Milad 

et al, 2009, 2010), which can be reversed by stimulation of D1 dopamine receptors (Rey et 

al., 2014). It suggests that estrogen might influence PFC-BLA function in part through 

dopaminergic mechanisms.

Converging evidence supports that females and males exhibit different biochemical, cellular 

and behavioral effects of stress (Shors et al., 2001; Luine et al., 2007; Bowman et al., 2009; 

McEwen, 2010; Bangasser et al., 2010). However, the observed sex differences of stress 

responses and role of estrogen could be affected by a number of factors, such as animal 

strains, animal ages, stress paradigms, estrogen regimen, and measured outcomes.
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Resilience vs. Vulnerability of Females to Stress-related Mental Disorders

Epidemiological studies indicate that women are more likely to develop stress-associated 

mental disorders, such as depression and PTSD (Weissman et al., 1996; Breslau et al, 1999). 

Therefore, it is easy to assume that females have higher stress susceptibility. However, it is 

important to note that gender vulnerability in stress responses is different from gender 

vulnerability in mental disorders. Despite the stress exposure for almost everyone, only a 

small population develops stress-associated mental disorders, including depression and 

PTSD. Genetic risk factors carried by the susceptible individuals are likely to play a causal 

role, while stress may only serve as a trigger to precipitate a variety of emotional and 

cognitive difficulties. Genetic factors probably also directly influence the intrinsic sensitivity 

to stress, which contributes to the pathogenesis of psychiatric diseases (Karatsoreos and 

McEwen, 2011). Recent studies suggest that individuals carrying Vall66met allele of the 

BDNF (brain derived trophic factor) gene have the altered vulnerability to stress and 

antidepressant responses (Yu et al., 2012). Epigenetic mechanisms involving chromatin 

remodeling and gene expression could also influence stress sensitivity (Sterrenburg et al., 

2011; Vialou et al., 2013).

There are two peaks of depression prevalence in women: postpartum depression, and 

perimenopausal depression, both of which are associated with large drops (postpartum) or 

excessive fluctuations (perimenopausal) of serum estradiol levels (Steiner et al. 2003). 

Human PET imaging studies suggest that estrogen decline during perimenopausal age 

elevates the level of monoamine oxidase A, a neurobiological change that also presents 

during major depressive episodes (Rekkas et al., 2014). The critical role of estrogen in mood 

disorders is also supported by animal studies. It has been found that injecting estrogen 

reverses helplessness in animal depression models and enhances hippocampus plasticity 

(Hajszan et al., 2010; Bredemann and McMahon, 2014). Females are more responsive to the 

action of antidepressants than males (Gomez et al., 2014). Corroborating with the role of 

estrogen in females’ stress resilience (Wei et al., 2014), estrogen also shows antianxiety and 

antidepression effects in animal models, which are dependent upon the utilized regimen of 

estrogen and interactions with the hypothalamic-pituitary-adrenal axis (Walf and Frye, 

2006).

Role of Estrogen in Synaptic Regulation and Brain Diseases

One surprising finding is that the stress resistance in females is unchanged by ovaridectomy 

that only terminates the ovarian estrogen, but is blocked by knockdown of ERα only in the 

PFC region (Wei et al., 2014, Fig. 1D) or global inhibition of aromatase, the estrogen 

synthesis enzyme (Wei et al., 2014, Fig. 1E), implying that CNS-synthesized estrogen 

(Woolley, 2007; Konkle and McCarthy, 2011) may determine the sexually dimorphic 

vulnerability to stress. Consistently, it has been shown that estrogen can be synthesized by 

aromatase localized in neurons from endogenous cholesterol (Hojo et al., 2004). Moreover, 

ischemic neuroprotection in females has been attributed to the local, nongonadal estrogen, 

which may be aromatized from precursor androgens (McCullough et al., 2003). The 

expression of aromatase is significantly higher in PFC neurons of female than male rats (Wei 

Yuen et al. Page 3

J Steroid Biochem Mol Biol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2014, Fig. 1F), suggesting that prepubertal female PFC has an endogenous capacity to 

generate estrogen that provides protection against repeated stress.

The protective effect of estrogen against stress is in line with the critical role of estrogen in 

neurogenesis (Ormerod et al., 2004), synaptic spine growth (Hajszan et al., 2010) and 

memory consolidation (Sellers et al., 2014). Depriving estrogen in rats induces postpartum-

depression symptoms, and altered expression of genes involved in learning and memory 

(Suda et al., 2008). It has been found that estrogen protects females from several 

neurological diseases, including seizure (Pottoo et al., 2014), ischemia (Perez-Alvarez et al., 

2014) and Alzheimer's disease (Lan et al., 2015). Studies suggest that estrogen receptor 

(ERα), which is expressed at synapses of hippocampus (Adams et al., 2002) and PFC (Wang 

et al., 2010), influences synaptic function through a non-genomic mechanism (McEwen et 

al., 2001; 2012). For example, estrogen potentiates the activation of NMDA receptors and 

voltage-gated calcium channels, which results in the increased calcium influx and new 

excitatory synapses in hippocampus (Woolley et al., 1997; McEwen et al., 2001). 

Intracellularly, estrogen rapidly activates synaptic Akt that facilitates local synthesis of 

PSD-95, a scaffolding protein required for spinogenesis (Akama and McEwen, 2003). 

Moreover, estrogen activates RhoA-ROCK-LIMK-cofilin signalling pathway that controls 

actin polymerization involved in spine growth (Spencer et al., 2008; Kramár et al., 2009). At 

circuitry level, estrogen suppresses inhibitory GABAergic interneuron by downregulating 

BDNF synthesis, which indirectly increases excitatory synaptic transmission of pyramidal 

neurons in hippocampus (Murphy et al., 1998).

Recent studies have uncovered new functions of brain-derived estrogen (17αestradiol). This 

neurosteroid can be produced in hippocampus (Kimoto et al., 2001). It is proposed that 

estrogen exerts its action in various brain regions through a combination of genomic and 

nongenomic mechanisms. Unlike the sustained effect of ovarian estrogen, injection of 17α 

estradiol in ovariectomized animals rapidly induces hippocampal spine formation without 

increasing the expression of synaptic proteins (Spencer et al., 2008). Electrophysiological 

data suggests that 17α estradiol exerts an immediate effect on glutamatergic transmission by 

enhancing presynaptic glutamate release (Smejkalova and Woolley, 2010).

Sexual Dimorphism in Developing Brain

Evaluation of the distribution of ERα and ERβ has revealed their presence in diverse brain 

regions (cerebral cortex, basal forebrain, amygdala, etc) through early postnatal periods (p3-

p14), supports a potential role for estrogens in neural development (Pérez et al., 2003). Our 

study shows that estrogen protects prepubertal females from the detrimental effects of 

repeated stress (Wei et al., 2014), suggesting that estrogen plays a role in developing female 

brains, rather than being a typical sex hormone for reproduction. In agreement with this, 

mounting studies pinpoint the sexual dimorphism in brain development. For instance, 

comparing to neurogenesis in females, males have a higher proliferation rate and a better 

survival rate of de novo neurons (Zhang et al., 2008). Imaging study indicates that white 

matter development is strongly influenced by hormonal environment of estrogen during 

early postnatal period, but is minimally affected later in life (Kranz et al., 2014). 

Significantly decreased levels of ERβ and aromatase (the enzyme converting testosterone to 
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estrogen) have been found in PFC of human subjects with autism spectrum disorders (Crider 

et al., 2014), which may be linked to the elevated testosterone effects on arousal and social 

anxiety (Pfaff et al., 2011), and contribute to male predominance in autism.

Why are there gender differences in brain development and function? Genetic information 

encoded in the sex chromosome has been suggested as an underlying reason. For example, 

the SRY gene on Y chromosome underlies sex-dependent neuroanatomical structures in 

various brain regions, as well as behavioral phenotypes, such as social exploration and 

aggression (De Vries et al., 2002; Hensbroek et al., 1995). Other theories suggest that 

females’ additional X-chromosome may provide the pattern of X-linked gene effects that is 

different from males (Davis and Pfaff, 2014).

Besides genomic influence, epigenetic factors also play a key role. Estradiol regulates its 

own receptor function via DNA methylation on the promotors of ERs, which is thought to 

contribute to the sexual dimorphism of neuronal anatomy and behavior (Nugent et al., 2011). 

Consistent with this, knockdown of ER with antisense oligonucleotides disrupts sexual 

differentiation of the brain (McCarthy et al., 1993). ER knockout female mice display 

diminished maternal behaviors and exhibit male-like aggressive behaviors (Ogawa et al., 

1996).

Postnatal stress is thought to affect the ability to cope with adversity in adulthood (Bagot et 

al., 2009). Emerging evidence suggests that the vulnerability to stress in developing brains is 

also gender-dependent. Study of prenatal stress shows that male, but not female, offsprings 

exposed to stress in early pregnancy have maladaptive stress responses, which is associated 

with alterations in corticotrophin-releasing factor (CRF) and glucocorticoid receptor (GR) 

expression (Mueller and Bale, 2008). Female offspring is more resilient to various early life 

stress challenges than male offspring (Lajud and Torner, 2015). When exposed to postnatal 

stress, such as early weaning from maternal lactation or limited nesting & bedding materials, 

neurogenesis is perturbed in male, but not female, animals (Kikusui and Mori, 2009; 

Naninck et al., 2015). Such gender-dependent susceptibility to stress during development 

may be linked to mental illnesses in adult life (Bale, 2009; Davis and Pfaff, 2014).

In summary, animal and human studies have found that males and females show distinct 

stress responses and have different vulnerability to stress-related mental disorders. Recent 

studies have suggested the contribution of estrogen in the brain to this sexual dimorphism. 

The differential effects of stress on glutamatergic transmission in males vs. females, which 

are attributed to the influence of estrogen on synaptic plasticity (Fig. 2, Yuen et al., 2012; 

Wei et al., 2014), may underlie the sex-specific impact of stress on cognitive processes. 

More detailed genetic, epigenetic and molecular mechanisms await to be elucidated.
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Highlights

Stress exerts sexually dimorphic effects on synaptic and cognitive function.

Estrogen protects females against the detrimental effects of repeated stress.

The level of aromatase is higher in prefrontal cortex of females than males.
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Figure 1. Estrogen protects against the detrimental effects of repeated stress on cognition
A, Bar graphs (mean ± SEM) showing the discrimination ratio (DR) of temporal order 

recognition memory (TORM) tasks in control or repeatedly stressed (restraint, 7-day, RS) 

male or female rats (4-wk-old). B,C, Bar graphs showing the DR of TORM tasks in control 

vs. repeatedly stressed females with injections of the ER antagonist ICI182,780 (B, 0.05 

mg/kg, s.c.), or males with the injections of the ER agonist estradiol (C, 0.1 mg/kg, s.c.). 

D,E, Bar graphs showing the DR of TORM tasks in control vs. repeatedly stressed females 

with the PFC injection of GFP or ERα shRNA lentivirus (D), or with the injections of 

aromatase inhibitor formestane (2 mg/kg, s.c.). **: p < 0.005, ANOVA (A-E). F, 
Quantitative real-time RT-PCR data on the mRNA level of ERα, ERβ and aromatase in PFC 

from male vs. female rats. #: p < 0.05, T-test. Adapted from Wei J, et al., Mol. Psychiatry, 

19: 588-598, 2014.

Yuen et al. Page 12

J Steroid Biochem Mol Biol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. A diagram showing the role of estrogen in determining the sexually dimorphic effects 
of stress on glutamatergic synaptic function in prefrontal cortical neurons
In males, repeated stress triggers the activation of glucocorticoid receptors (GR). GR bind to 

glucocorticoid response element (GRE) on the promoters of downstream genes, triggering 

the increased glutamate receptor ubiquitination and degradation. In females, estrogen 

activates estrogen receptors (ER), which bind to estrogen response element (ERE) and 

enhance the transcription of synaptic plasticity genes that promote the synthesis and 

exocytosis of glutamate receptors, therefore counteracting the stress-induced depressing 

effects.
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